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Abstract

We propose a method to simplify textual Twitter data into understandable networks of terms

that can signify important events and their possible changes over time. The method allows

for common characteristics of the networks across time periods and each period can com-

prise multiple unknown sub-networks. The networks are described by Gaussian graphical

models and their parameter values are estimated through a Bayesian approach with a fused

lasso-type prior on the precision matrices of the underlying mixtures of the sub-models. A

flexible data allocation scheme is at the heart of an MCMC algorithm to recover mean and

covariance parameters of the mixture components. Several implementations of the outlined

estimation procedure are studied and compared based on simulated data. The procedure

with the highest predictive power is used for mining tweets regarding the 2009 Iranian presi-

dential election.

1 Introduction

Twitter is a prominent social media tool that provides a rich resource of information. The

huge volume of gathered information calls for powerful methods to translate large and com-

plex data into small chunks of understandable signals that can be used in several areas ranging

from social sciences and health research to marketing and e-commerce. As an example, stud-

ied later in detail, more than one million tweets related to the social upheaval surrounding the

2009 Iranian presidential election may be compressed into an accessible visual summary. Such

summary information can entail different topics that are highlighted in a certain period of

time and have evolved over time. This can be viewed as a form of network reconstruction

where collections of linked words, concepts or terms represent highlighted topics at a certain

time-stamp. Any changes in such topics over time, from becoming outdated, expanded or cre-

ated, can be explained by evolution of the links between the words.

Our interest is in the reconstruction of networks of words/terms frommultiple Twitter data

sets corresponding to specific time periods, where different networks share topological similar-

ities. Next to this, data from a particular time period may be heterogeneous in that they cannot

be represented by a single network. This phenomenon might be explained by differences

among (parts of) the networks across different time periods, or can originate from hidden sub-
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networks within each time period. Naturally, to end up with interpretable networks we aim to

reconstruct networks in which only a few terms or predictors play an important role. This

means that we search for sparse networks, networks with relatively few links. Therefore we a)
propose a framework to simultaneously reconstruct multiple sparse networks with a possibly

shared structure and b) extend this idea to the case where there is more than one network for a

given time period.

The problem of network reconstruction is operationalized here as the estimation of a num-

ber of Gaussian graphical models (GGMs) for which the nonzero elements of the precision

matrices (inverse covariance matrices) correspond to edges of the network. Estimation of a

single GGM, especially in a high-dimensional setting where the data dimension is larger than

the sample size, often proceeds in a regularized fashion (see, for example, [1–5]). These meth-

ods typically minimize the log-likelihood of the data augmented with an ℓ1-penalty on the ele-

ments of the precision matrix. For instance, Meinshausen and Bühlmann [1] proposed to

identify the edges of a GGM by sparse estimation of the precision matrix through lasso regres-

sions of each random variable on all other variables. Friedman et al. [4] presented the graphical
lasso, a procedure to estimate sparsely the precision matrix directly. In [2, 3, 5] different esti-

mation algorithms for the graphical lasso method are treated. An alternative approach is pro-

vided in [6], where it is illustrated that in cases where the true graphical model does not need

to be extremely sparse in terms of containing many zero elements, ridge penalties coupled

with post-hoc selection may outperform the lasso. A common challenge with these approaches

is that they do not take into consideration the uncertainty of the parameter estimates and

require selection of the penalty parameters that control sparsity. Wang [7] proposed a Bayesian

counterpart to the graphical lasso that provides a solution for such shortcomings, and devel-

oped a fast algorithm to estimate a moderately large precision matrix. However, this method

does not serve our purpose in the face of multiple networks with possibly evolving structures.

There is a number of methods that consider simultaneous estimation of multiple graphical

models corresponding to more than one data set (see for instance [8–12]). Guo et al. [8]

extended the graphical lasso with a certain parametrization of multiple precision matrices

whose elements are expressed as a product of shared and class-specific factors. Through a hier-

archical penalty on both the shared and the class-specific factors their method shrinks some

elements in the inverse covariance matrices to zero. Danaher et al. [9] proposed a general

framework with arbitrary type of penalty and derived fused lasso and group lasso estimators,

where the fused lasso estimation encourages shared structure and/or equal values for the ele-

ments across the precision matrices, while the group lasso estimation emphasizes only a shared

sparse structure. More recently, a fused ridge version of multiple graphical model estimation

has been proposed [11]. As another example, Zhu et al. [10] adapted the truncated ℓ1-penaliza-

tion of [13] to stimulate elements of the precision matrices across data sets to be similar. Bayes-

ian counterparts include [12, 14]. These methods give proper consideration to common

characteristics of the data sets while simultaneously estimating them. However, they lack the

flexibility to account for heterogeneity within each data set. In [15] the problem of learning the

evolution of an interaction network, modeled as a GGM, from cross-sectional, high-dimen-

sional data in the face of heterogeneity was addressed through fused ridge penalized estimation

of a combination of mixtures of GGMs. Here we consider this problem from a Bayesian

perspective.

In this paper we present a novel Bayesian approach to the joint estimation of multiple

graphical models, that takes into account both shared topological structures between the net-

works, and heterogeneity within the networks. In particular, we propose a Bayesian Gaussian

fused graphical lasso estimation algorithm to estimate group-wise precision matrices that

may exhibit network similarities, and augment this with a mixture model to account for
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heterogeneity of the data within a network. This is done in the spirit of the data integrative

Bayesian inference method that we proposed in [16], by forming a new prior distribution on

the elements of the precision matrices and obtaining a posterior distribution that resembles

the ℓ1-penalized likelihood plus a fused penalty. A data allocation scheme is employed to

simultaneously uncover the hidden clustering components of the mixture model while estima-

tion of the cluster-specific precision matrices is achieved through column-wise block Gibbs

sampling. In the application that we consider the different networks originate from multiple

time periods, however, for the method the ordering over time is irrelevant. This makes our

method widely applicable.

The paper is organized as follows. In Section 2.1 we propose a Bayesian Gaussian graphical

network reconstruction method for data from multiple time periods or multiple groups. This

is extended in Section 2.2 to allow for heterogeneity in the sense that each time period may

encompass data from more than one (unknown) sub-population. In Section 3.1, these

approaches are evaluated and compared by simulation. Section 3.2 illustrates the application

of the proposed method in analyzing tweets regarding the 2009 Iranian presidential election.

We conclude in Section 4 with discussing future improvements.

2 Materials and methods

Throughout the paper we will use capital letters to denote random variables, random vectors

or random matrices; bold type will be used for vectors and matrices. The symbol/ stands for

“is proportional to”. To emphasize that for the proposed method the ordering of the time peri-

ods is irrelevant, throughout this section we will use the word group instead of time period,

and the unknown sub-populations belonging to one time period, will be called subgroups, clus-
ters, or components.

2.1 Bayesian fused graphical lasso

Characteristics from a sample of n individuals comprising T groups have been observed.

For t = 1, . . ., T, the number of individuals in group t will be denoted by nt, and for

i ¼ 1; . . . ; n1; n1 þ 1; . . . ; n1 þ n2; n1 þ n2 þ 1; . . . ;
PT

t¼1
nt ¼ n, the random vector Yi

represents the p-dimensional vector of characteristics of individual i. In the sequel we will

write Y ¼ ðYT
1
; . . . ;YT

n Þ for the complete n × p data matrix. For later use we also define

n<t ¼
Pt� 1

s¼1
ns and n<1 = 0. The grouping of individuals is exhaustive and exclusive in the

sense that an individual appears in a single group only.

The random vectors of characteristics are assumed to be independent and to follow a

group-wise Gaussian law,

Yi � N pðμt;Ω
� 1

t Þ; i ¼ n<t þ 1; . . . ; n<t þ nt; t ¼ 1; . . . ;T:

We consider the joint estimation the groups’ precision matrices O = {O1, ‥, OT}. For the pur-

pose of interpretability sparse estimates are sought for, while the context suggests that the

structure of the precision matrices may be shared between groups. In a frequentist setting all

requirements (high-dimensionality, sparsity and a possibly common structure of the precision

matrices) are catered for by the fused graphical lasso estimator [9], which maximizes the fol-

lowing penalized joint log-likelihood

XT

t¼1

logðjΩtjÞ � trðStΩtÞ �
XT

t¼1

lt k Ωtk1 �
X

t1<t2

lt1 ;t2k Ωt1
� Ωt2

k1; ð1Þ

with respect to O. In (1), St = St(Y) denotes the sample covariance matrix of group t. Note that
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the estimator above generalizes the one originally proposed in [9] which uses lt1 ;t2 ¼ lf for all

t1 and t2 (except t1 6¼ t2). The last two summands of the penalized log-likelihood (1) comprise

the fused graphical lasso penalty. The convexity of the penalty tackles the high-dimensionality,

while its first summand (i.e., the lasso penalty) induces sparsity, and, finally, its second sum-

mand (i.e., the fused penalty) shrinks the precision matrices towards a common structure for

large values of the penalty parameter lt1;t2 .

Here we present a Bayesian interpretation of the fused graphical lasso. This requires the

evaluation of the joint posterior distribution p(O|Y, Λ) of the Ot. To this end we denote by

{O}−t the set of precision matrices with Ot excluded, and define for t = 2, . . ., T, the prior distri-

bution of each precision matrix given the others as

pðΩt j fΩg� t; ΛÞ /
Y

j1<j2

lt
2
exp � ltjo

t
j1 j2
j

� �Yp

j¼1

lt
2
exp ð�

lt
2
ot
jjÞ

�
Y

t0 6¼t

Y

j1<j2

lt0 ;t

2
exp ð� lt0 ;t jo

t0
j1 ;j2
� ot

j1 ;j2
jÞ IðΩt � 0Þ:

ð2Þ

In the above ot
ij denotes the i, j-th element of Ot. Note that the (2) is invariant to the order of

conditioning. Furthermore, the diagonal and off-diagonal elements of the precision matrices

are thus assumed to follow a priori an exponential and a double exponential distribution,

respectively, (see for example [17] and [7] for similar approaches). The differences between

corresponding precision elements of any pair of groups also obey a double exponential law.

The term I(Ot� 0) limits the support of the prior to the positive definite matrices. With the

fused graphical lasso prior (2), the posterior distribution Ot is not a well-known standard dis-

tribution, but an efficient Gibbs sampling scheme can be designed. This extends the work of

[7] for the Bayesian graphical lasso. In a nutshell, the Gibbs sampler amounts to iteratively

sampling one column of Ot at the time which guarantees positive definiteness.

As a first step towards our Gibbs sampler we derive a tractable formulation of the condi-

tional posterior of each precision matrix given the others. Application of the definition of con-

ditional probability and subsequent insertion of the equality p(O|Λ) = p(Ot|{O}−t, Λ)p({O}−t|Λ)

yields

pðΩtjYt; fΩg� t;ΛÞ / pðYt jΩtÞ pðΩt j fΩg� t;ΛÞ:

An analytic expression is now readily available from the normality assumption of the data

together with the prior (2). Gibbs sampling, however, is still hampered by the double exponen-

tial distributions employed in the prior of the precision elements. This is circumvented by a

hierarchical representation of these distributions by a scale mixture of normal distributions

[18],

l

2
expð� l jojÞ ¼

Z 1

0

1
ffiffiffiffiffiffiffiffi
2pt
p exp �

o2

2t

� �
l

2

2
exp �

l
2
t

2

� �

dt: ð3Þ

Define, corresponding to each double exponential distribution in the prior, a latent scale

parameter ttj1 ;j2 in accordance with the scale mixture representation (3) above. Furthermore, let

τt ¼ ft
t
j1 j2
g
j1<j2

denote the independent latent scale parameters corresponding to group t, and

let τ = {τ1, . . ., τT}.

Finally, we endow λt and λt0, t with independent gamma priors with shape parameter s and

rate parameter r. Conditioning on the latent scale mixture parameters, and rewriting the
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hierarchical model, we obtain for i = n<t + 1, . . ., n<t + nt, t = 1, . . ., T,

Yi jμt; Ωt � N pðμt;Ω
� 1

t Þ

pðΩtj fΩg� t;Λ; tÞ ¼
Qp

j¼1
1
2 lt expð�

1

2
lto

t
jjÞ
Q

j1<j2
�0;t

g
j1 j2
ðot

j1 j2
Þ

Q
t0 6¼t

Q
j1<j2

�
ot
0

j1 j2
;tt
0

j1 j2
ðot

j1 j2
Þ IðΩt � 0Þ

pðttjΛÞ ¼
Q

j1<j2
1
2l

2

t expð�
1
2l

2

t t
t
j1 j2
Þ

pðtt0 jΛÞ ¼
Q

j1<j2
1
2l

2

t0;t expð�
1
2 l

2

t0 ;tt
t0
j1 j2
Þ; t0 6¼ t;

lt � Gðr; sÞ;

lt0 ;t � Gðr; sÞ for t0 6¼ t;

8
>>>>>>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>>>>>>:

ð4Þ

where ϕa,b stands for the density function of the normal distribution with mean a = 1 and vari-

ance b = 1.

The mean parameters μt are assumed to have independent priors (see Section 2.2.2). Inte-

grating out the scale mixture parameters in the hierarchical model above will yield the double

exponential distributions.

To arrive at an efficient posterior sampling procedure, the precision matrix posterior needs

to be broken down further. For this we let Yt ¼ fYign<tþ1;...;n<tþnt
denote the set of all Yi belong-

ing to group t, t = 1, . . ., T. After putting all components of the hierarchical model (4) together,

we find that the posterior of the precision matrix of the t-th group satisfies,

pðΩtjY
t; fΩg

� t;Λ; τÞ / jΩtj
nt=2exp � 1

2
trðStΩtÞ

h iYp

j¼1

1
2
lt expð�

1

2
lto

t
jjÞ IðΩt � 0Þ

� exp

(

�
1

2

X

j1<j2

½ðot
j1 j2
Þ

2
ðAtÞj1 j2 � 2

X

j1<j2

ot
j1 j2
ðBtÞj1 j2 �

)

;

ð5Þ

in which At and Bt are zero-diagonal and symmetric matrices with off-diagonal entries

ðAtÞj1 j2 ¼
1

ttj1j2
þ
X

t0 6¼t

1

tt
0

j1 j2

and ðBtÞj1 j2 ¼
X

t0 6¼t

ot0
j1 j2

tt
0

j1 j2

: ð6Þ

From this we derive the column-(and row-)wise posterior of the matrix Ot. Without loss of

generality we illustrate this for the last column (row). Hereto denote the 2 × 2 block partition

of a matrix X by

X ¼
X11 x12

x>
12

x22

 !

; ð7Þ

with X11 and x12 a (p − 1) × (p − 1) and (p − 1) × 1 dimensional matrix respectively, while x22 a

scalar. Applying this notation to the matrices involved in the posterior (5), using that by the

Schur decomposition it holds that

jΩtj ¼ jΩ
t
11
jjot

22
� ωt

12
>ðΩt

11
Þ
� 1
ot

12
j;
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and using the identity

trðStΩtÞ ¼ trðSt
11
Ωt

11
Þ þ 2ðst

12
>ωt

12
Þ þ tt

22
ot

22
;

we obtain that under the assumption that Ωt
11

is (temporarily) known, the posterior for the last

column (row) of the t-th precision matrix, pðot
12
;ot

22
jYt; Ωt

11
; fΩg� t; Λ; τÞ, is proportional

to

½ot
22
� ðωt

12
Þ
>
ðΩt

11
Þ
� 1ωt

12
�
nt=2

� expf� 1

2
½ωt

12
>Dat

12
ot

12
þ 2ðst

12

>
� bt

12

>
Þot

12
þ st

22
þ lt

� �
ot

22
�g;

where Dat
12

is the diagonal matrix with at
12

on its diagonal. When followed by the change-of-

variables

gt ¼ ot
22
� ðωt

12
Þ
>
ðΩt

11
Þ
� 1
ot

12
;

δt ¼ ot
12
;

ð8Þ

the conditional joint distribution of δt and γt, it can easily be seen that

gt jY
t; Ωt

11
; Λ; τ � G 1

2
nt þ 1; 1

2
ðst

22
þ ltÞ

� �
;

dt jY
t; Ωt

11
; fΩg

� t; Λ; τ � N p� 1ð� Σdt ½ðs
t
12
Þ
>
� ðbt

12
Þ
>
�;ΣdtÞ;

ð9Þ

where Σdt ¼ ½Dat
12
þ ðst

22
þ ltÞðΩ

t
11
Þ
� 1
�
� 1

. Note that the positive definiteness of Ot is guaran-

teed due to that of Ωt
11

and the fact that gt ¼ o
t
22
� ωt0

12ðΩ
t
11
Þ
� 1ωt

12
> 0 (cf. [2]).

Next we turn to the scale mixture parameters τt corresponding to the priors on the elements

of the t-th group precision matrix. Gathering terms involving the ttj1 ;j2s we find that, condition-

ally on Ot and Λ, they follow an inverse Gaussian distribution for all j1 < j2:

1=ttj1 j2 jΩt;Λ � inv-Gaussfl2

t ðo
t
j1 j2
Þ
� 2
�
1=2
; l

2

t g;

1=tt
0

j1 j2
jΩt; Ωt0 ; Λ � inv-Gaussf½l2

t0 ;tðo
t
j1 j2
� ot0

j1 j2
Þ
� 2
�
1=2
; l

2

t0 ;tg; t
0 6¼ t;

ð10Þ

in which the inverse Gaussian distribution parametrization of [19] is used.

In a similar fashion the posterior conditional distributions of the λt and λt0, t can be derived.

Based on their gamma priors given in the hierarchical model (4), their full conditional distri-

butions are gamma distributions as well:

lt jΩt � Gðr þ 1

2
pðpþ 1Þ; sþ

X

j1�j2

jot
j1 j2
jÞ;

lt0 ;t jΩt0 ;Ωt � Gðr þ 1

2
pðpþ 1Þ; sþ

X

j1�j2

jot0
j1 j2
� ot

j1 j2
jÞ; t0 6¼ t:

ð11Þ

2.1.1 Sampling from the posteriors. The posterior densities derived above facilitate sam-

pling from the joint posterior of the precision matrices. This is achieved as described in Box 1.

The algorithm then re-iterates. After a burn-in period, when the samples are seen to be rep-

resentative for the desired posterior, point estimates for the parameters are obtained from

these samples through appropriate summary statistics.

Notice that the above presented Bayesian fused graphical lasso estimation procedure

shrinks the elements of the precision matrices towards zero but does not actually set them to
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zero. Sparsity is achieved by post-hoc estimation via selection based on (quantile-based) Bayes-

ian credible intervals.

2.2 Mixture models for multi-group data

The Bayesian fused graphical lasso algorithm presented above can be used to jointly recover

graphical networks for multiple data sets. In this subsection we extend the method to the case

where the data not only come from multiple groups, but also within each group there may

exist multiple sub-populations.

The data stored in the n × pmatrix Y, stem from T independent known groups as before.

Additionally, it is assumed that within each group the sample originates from a heterogeneous

population. The population of group t, t = 1, . . ., T, comprises Kt independent unknown sub-

groups. Let, Zi denote the latent random variable that indicates the i-th individual’s subgroup

membership, i = n<t + 1, . . ., n<t + nt, t = 1, . . ., T. In other words, for individual i belonging to

group t we would have Zi = kt if this individual would be a member of subgroup kt. With the

subgroup information unavailable, the random variable Yi is assumed to follow the mixture

model

Yi �
XKt

kt¼1

pt;ktN pðμt;kt ;Ω
� 1

t;kt
Þ; i ¼ n<t þ 1; . . . ; n<t þ nt; t ¼ 1; . . . ;T ð12Þ

with pt;kt ¼ pðZi ¼ ktÞ being the probability that individual i belonging to group t is a member

of subgroup kt. Hence, these mixing proportions pt;kt sum to one group-wise:
PKt

kt¼1
pt;kt ¼ 1.

Moreover, given the component memberships Zi, the data from each mixture component, cor-

responding to the subgroup×group-combinations, follow a multivariate Gaussian distribution:

Yi jZi ¼ kt � N pðμt;kt ;Ω
� 1

t;kt
Þ:

Box 1: Bayesian fused graphical lasso algorithm

• Initialise Λ, τ and O from their priors (4).

• For t = 1, ‥, T do:

• Calculate At and Bt from (6) using the current values of τ and O.

• For column (row) i = 1, ‥, p,

1. Block partition At, Bt,Ot and St.

2. Sample δt and γt from their posteriors (9).

3. Update the corresponding column and row of Ot using the change of variables

(8).

• Sample τ from the posteriors (10).

• Sample the tuning parameters Λ from the posteriors (11).
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Since data within and across groups are independent, the likelihood L for this situation is

given by

LðYjZ;XÞ ¼
YT

t¼1

Yn<tþnt

i¼n<tþ1

XKt

kt¼1

pt;kt�μt;kt ;Ω
� 1
t;kt
ðYiÞ: ð13Þ

Here Z = (Z1, . . ., Zn), X ¼ fpt;kt ;μt;kt ;Ω
� 1

t;kt
: i ¼ n<t þ 1; . . . ; n<t þ nt; t ¼ 1; . . . ;Tg, the set

of all model parameters, and ϕa,B denotes the density function of the multivariate normal dis-

tribution with mean vector a and covariance matrix B.

Estimation of the mixture model (13) is carried out by first clustering the data points within

each group. This is achieved by adopting the Bayesian clustering scheme that assigns informa-

tive priors on the component memberships as proposed in [16], and briefly described in Sec-

tion 2.2.1. Next, the mixture parameters are estimated component-wise. The estimation

procedure for the component-wise estimation of the mean parameters is described in Section

2.2.2. The precision matrices are estimated in either of the following two ways:

(a). Bayesian stage-wise (BS), this is separately in a group-wise manner by Gibbs sampling

for a single Bayesian graphical lasso as in [7], if there is no reason to assume that the data

across groups have a common structure;

(b). jointly with the Bayesian fused (BF) estimation procedure described in Section 2.1 above,

if the data across groups are likely to have a common structure.

The corresponding mixture models are called Bayesian stage-wise mixture model (BSM)

and Bayesian fused mixture model (BFM), respectively.

2.2.1 Estimation of component memberships. Data clustering is an important step in

estimation of mixture models. To improve the estimation procedure, one may consider mak-

ing use of available additional information such as cluster information or similarity measure-

ments from other data sources. The proposed data allocation strategy, Data Integrative

Chinese Restaurant Process (DI-CRP), is a generalization of the Chinese restaurant process

(CRP) with additional flexibility that facilitates incorporating external sample-level informa-

tion in mixture modeling with an unknown number of components [16]. Like CRP, DI-CRP

is a data allocation strategy that explores the conditional distribution of the component mem-

bership of one data point given that of the rest of data points. This allows the number of mix-

ture components to be determined adaptively. Let St
¼ ðstii0 Þ

nt
i�i0¼1

represent the additional

information on similarity of data points in group t.
As the data allocation is independently carried out for every group, we will now drop the

group index t in the notation and denote the index of the kt-th mixture component simply by

k. We assume the following conditional probabilities for the component membership vari-

ables:

PðZi ¼ kjZ� i; a;SÞ /

n�
� i;khiðkÞ if k is an existing component

a if k is a new component

8
>>><

>>>:

ð14Þ

where hi(k) is a function that indicates the overall similarity of the data point i with all other

data points in component k. This function can appear in different forms. Here we use the
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simple form

hiðkÞ ¼ 1þ
X

i6¼i0
sii0 IfZi0 ¼kg;

and

n�
� i;k ¼

X

i6¼i0
Ifsii0 �TigIfZi0 ¼kg

with I{sii0 � Ti} as the factor that indicates when a data point is considered to be similar to the

rest of data points in a certain component. For example, in our application Ti is assumed to be

the third quantile of the similarity values between data point i and the rest of the group-specific

data points. The reason to introduce n�
� i;k is to diminish the influence of a minority of data

points in a cluster that have possibly very large similarity values with a new data point. In other

words, this criterion is to direct the clustering in such a way that a new data point becomes

more likely to end up being clustered in a component of which the majority of the data points

shares high similarities with the new data point.

Multiplying the likelihood (12) and the prior (14) we see that the posterior of the latent vari-

ables satisfies

PðZi ¼ kjYi;Z� i; μk;Ωk; a;SÞ

/

n�
� i;khðci; kÞ pðYi jμk; ΩkÞ; if k is an already existing component;

a
R
pðYi j μk; ΩkÞpðμk;ΩkÞdμkdΩk; if k is a new component:

8
<

:

ð15Þ

As the integral in (15) is not analytically tractable, it can be approximated by Monte Carlo sam-

ples as described in [16].

The number of mixture components K is largely controlled by the choice of α, in that larger

values lead to more components. Following [20], we assume a gamma prior with mean a and

rate parameter b for the concentration parameter α. The full conditional distribution can be

derived given the number of components K—which is implied by the fact that Z is given—fol-

lowing the hierarchy

ajz;K � rz G ðaþ K; b � logðzÞÞ þ ð1 � rzÞG ðaþ K � 1; b � logðzÞÞ;

zja � Bðaþ 1; nÞ;
ð16Þ

where
rz

1 � rz
¼

aþ K � 1

nðb � logðzÞÞ
.

The data allocation probabilities above form the basis for building a clustering algorithm

that functions through sampling from posterior probabilities of component memberships.

2.2.2 Estimation of component means. Once the data in all groups are clustered, i.e. Z is

known, the component-specific parameters are to be updated. In contrast to the previous sec-

tions, here the component-specific mean parameters are assumed unknown with a conditional

prior distribution (again dropping group indices)

μkjΩk � N pðμ0; k
� 1
0 ΩkÞ; k ¼ 1; . . . ;K; ð17Þ

with μk and Ok the k-th component mixture mean and precision parameters. In this prior dis-

tribution μ0 and κ0 are hyperparameters of vector and scalar type, respectively, and they are

the same for all subgroups over all groups. The prior distribution (17) is conjugate and,
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combined with the data likelihood, yields the posterior

μk jY;Ωk � N pðmk; ðnk þ k0Þ
� 1ΩkÞ; k ¼ 1; . . . ;K; ð18Þ

with nk the number of data points assigned to mixture component k and

mk ¼
nk

nk þ k0

�Yk þ
k0

nk þ k0
μ0; ð19Þ

where �Yk is the p-dimensional mean of the data vectors assigned to the k-th group. We note

that we do not enforce sparsity on the component mean parameters. With a different prior set-

ting, this could also be established.

2.2.3 Algorithm. The algorithm for computing component memberships is given in

Box 2. Note that for simplicity the component indices are denoted by k or k0, instead of t, kt or

t, k0t.
To initialize clustering, we fix the maximum number of mixture components to Kmax (�n).

The first component is created by sampling parameter values from their prior distributions.

Next, a data point having the largest normal density value among all data points is assigned to

this component. The second component is created in the same way as the first one, but, the

second data point can be assigned to either the first component or to the second one based on

the maximum value of the generated density values. This continues until all data points are

assigned to a finite number K (�Kmax) of components.

One sweep of the algorithm updates the number of components, the component member-

ships and the component-wise parameters. At each iteration of the Metropolis algorithm the

updated component memberships are the basis of the clustering, followed by inference of the

component-specific mean and precision parameters. We use the posterior means to estimate

the component specific parameters. As the estimate for the number of components K, we use

the final number of components after the algorithm has converged.

Notice that in general the MCMC algorithm starts with multiple (known) groups and

explores the structure of data within each group in order to further cluster them into smaller

sub-groups (i.e. steps 1–2). Also notice the difference between step 1 and step 2 of the algo-

rithm. While step 1 of the algorithm controls the birth of a new component or death of an

existing component, step 2 attempts to update the clustering by exchanging data points.

3 Results

3.1 Simulation

The performance of the proposed methods was assessed via a simulation analysis with three

objectives: i) evaluation of the performances of the two approaches BS and BF in recovering

graphical networks corresponding to multiple data sets, ii) comparison of the performance of

BSM and BFM in the proposed mixture context, and iii) assessment of the accuracy of the clus-

ter assignment scheme DICRP and its comparison to that of the original CRP in the present

context. Two simulation studies were conducted as described below.

The hyper-parameter values were assigned mainly based on previous studies and partly

based on independent simulations. Firstly, the rate parameter s controlling the tuning parame-

ters has to be sufficiently larger than zero to avoid computational issues, therefore it was set to

unity (see [17] for a substantiation of this choice). We took the shape parameter r = 0.001

based on a simulation study. Fig 1 illustrates the impact of the shape parameter on the empiri-

cal posterior density of zero and non-zero elements of the precision matrix. Secondly, hyper-

parameters of the concentration parameter α were set to a = b = 1 as recommended in [21]

and [22]. Lastly, the hyperparameters corresponding to the mixture means μ0, κ0 were set to a
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Box 2: MCMC algorithm for Bayesian groupwise mixture (BSM) and
Bayesian fused mixture (BFM) methods

1. Update number of components:

for i = n<t−1 + 1, . . ., n<t−1 + nt, given a current clustering Zi = k, if i is not a singleton

data point, create a new component k0 by sampling from the prior distributions of μ and

O, and update Zi = k0 with probability

min 1;
a

ðnt � 1Þ
�
�μk0 ;Ω

� 1

k0
ðYiÞ

�μk;Ω� 1
k
ðYiÞ

( )

;

and if i is the only data point in component k (singleton), propose k0 among already

existing components with a probability proportional to n?
� i;k0 , and update zi = k0 with

probability

min 1;
nt � 1

a
�
hiðk0Þ�μk0 ;Ω

� 1

k0
ðYiÞ

hiðkÞ�μk;Ω� 1
k
ðYiÞ

( )

:

2. Update component memberships:

for i = n<t−1+ 1, . . ., n<t−1 + nt, if data point i belongs to a component with more than

one occupant, update its component membership with probability equal to

n?
� i;khiðkÞ�μk ;Ω� 1

k
ðYiÞ

PK
k¼1
n?� i;khiðkÞ�μk ;Ω� 1

k
ðYiÞ;

otherwise do nothing.

3. Update mixture parameters:

3.1. update mixture means from posterior (18) and (19).

3.2. based on the application choose either BMS or BFM and

BSM: update precision matrices corresponding to the current group by Gibbs sam-

pling for a single Bayesian graphical lasso as in [7].

BFM: repeat steps 1–2 and 3.1 for all groups, then jointly update all precision matrices

from all sub-groups by the Gibbs sampling procedure in Box 1 of Section 2.1.1.

4. Iteration:

repeat steps 1–4 until convergence.

The software package that implements the algorithm and illustrative examples are pub-

licly available from https://github.com/mehranaflak/IMLR_TextGGN
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zero vector of dimension p and a scalar equal to unity, respectively. The reason for assigning a

less informative prior to the mixture means is that our main objective of this study which is to

focus on the estimation of the precision matrices.

The MCMC algorithm used 1000 Gibbs iterations and a burn-in period of 100 iterations.

These numbers of iteration were motivated from preliminary simulation studies (not shown)

in which we noticed that the MCMC algorithm for a similar problem appeared to have reached

convergence for significantly fewer (�50) iterations. In our applications, after a burn-in period

of 100 iterations the samples were seen to be representative for the desired posterior, see Fig 2

which shows one example of posterior sample traces from zero and non-zero elements of the

ground-truth inverse covariance parameters as an illustration that there was a good mixing

around the true parameter values with no particular pattern.

Point estimates of the parameters were obtained by posterior mean calculation over the iter-

ations. Sparsification was carried out through construction of the 95% two-sided Bayesian

credible intervals. Then, the presence of an edge was inferred when the corresponding credible

interval did not contain zero. The performance of the estimation of the model parameters was

measured by Frobenius loss, for both the mean vector and the iprecision matrices. The ability

to reconstruct the underling conditional independence graph was evaluated by means of the

F-score (i.e. the harmonic mean of precision and sensitivity).

Several settings were fixed for both simulation studies. In the first simulation study the BS

and BF methods were compared with respect to their ability to estimate various (six) precision

matrices. These matrices either had conditional independence graphs with similar structures

as depicted in Fig 3, or were randomly generated positive definite matrices without any

imposed similarity constraints. Both cases defined six p-variate Gaussian graphical models. All

models had zero mean vectors. For each case 100 data sets of size n were generated from each

of the six p-variate Gaussian models. This amounted to 600 simulated data vectors in each

case. This was repeated for several combinations of sample sizes and dimensions, n 2 {50, 100,

500} and p 2 {5, 10, 20, 30}. The simulated data were analyzed by both BF and BS methods in

order to derive estimates of the precision matrices.

The performance of BS and BF was measured based on average squared estimation errors

over the 100 simulated data vectors and over all 6 precision matrices. Figs 4 and 5 present box-

plots of the estimation errors for the different combinations of sample sizes and dimensions.

From Fig 4 it is evident that the BF procedure yields smaller Frobenius error than the BS pro-

cedure for precision matrices with similar conditional independence graphs. For the randomly

Fig 1. Element-wise empirical posterior distribution ofprecision matrices. Empirical posterior density by varying

tuning parameter for zero (left) and non-zero (right) element ofO for p = 10.

https://doi.org/10.1371/journal.pone.0235596.g001

PLOS ONE Analysis of Twitter data with the Bayesian fused graphical lasso

PLOS ONE | https://doi.org/10.1371/journal.pone.0235596 July 27, 2020 12 / 28

https://doi.org/10.1371/journal.pone.0235596.g001
https://doi.org/10.1371/journal.pone.0235596


generated networks without similarity structure, the two methods produce similar results, see

Fig 5.

In the second simulation study the performance of the BSM and BFM procedures for the

estimation of a mixture of Gaussian graphical models, as given by (12), were assessed. The

hyper-parameters regarding the precision matrices were selected as above, and we set μ0 = 0

and κ0 = 1 for the sake of simplicity. The simulation study considered three consecutive time

periods. For each period data were generated from (12) such that the data exhibited more het-

erogeneity in subsequent periods: the data in the first period were homogeneous, whereas data

of the second and third period stemmed from two and three sub-populations, respectively.

The conditional independence graphs associated with the precision matrices were topologi-

cally related to mimic a simple evolution as in Fig 3. The data were generated according to the

parameter settings in the Supporting Information with varying sample sizes n 2 {100, 200, 300,

400, 500, 1000} and dimensions p 2 {10, 20, 30, 40} with 50 independent data sets for each (n,

p) combination. We employed BSM and BFM methods on all data sets to fit mixture models.

Fig 2. Mixing of MCMC samples. Trace of Gibbs samples of zero(a) and non-zero (b) element of precision matrix,

mixture mean (c), and the number of components (d).

https://doi.org/10.1371/journal.pone.0235596.g002
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The performance of the BSM and BFM methods for the estimation of the mixture means

and precision matrices, as well as the quality of the edge presence/absence classification as

obtained from this simulation study is summarized in Figs 6 and 7. Each point in these plots

represents an average taken over 50 independent results. From these Figs we conclude that a

larger sample size generally tends to increase the accuracy of the estimation and to alleviate

estimation errors. Larger data dimensions, on the other hand, have a reverse influence on

accuracy of the results. With respect to precision matrix estimation Fig 7 suggests a slightly

better performance for the BFM method over the BSM one, especially for higher dimensions.

But for mixture mean estimation or graph recovery there is no strong evidence of superiority

for any of the two methods, see Figs 6 and 8.

The influence of the proposed component membership priors, as specified in (15), on the

cluster assignment was assessed. The clustering approaches were compared for BSM only, as

the clustering in both the BSM and BFM procedures is carried out for each period separately.

The data comprising six subgroups were drawn from the mixture model (12) with the settings

as specified in the Supporting Information, assuming various sample sizes and dimensions: n
2 {50, 100, 300} and p 2 {5, 10, 16, 20}. For each (n, p) combination 50 independent data sets

were generated. For the assessment two different scenarios were considered: a) no additional

information on the samples is available: BSM-CRP, and b) external evidence on the samples’

similarity is available: BSM-DICRP. In scenario a) the priors (15) were equivalent to those of

CRP as S ¼ 0. In scenario b) priors (15) were used with a non-zero similarity matrix. For the

data in each stage, the similarity matrix S was generated based on the true clustering of the

data points, where sij = 1 if data point i lies in the same cluster as data point j, and sij = 0 other-

wise. These methods were applied to all of the simulated data sets to measure the performance

of the clustering scheme when additional clustering information is available.

Fig 3. Structure of precision matrices. Graphical network structure for a dataset with 3 stages that was used for data

generation.

https://doi.org/10.1371/journal.pone.0235596.g003
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Next, the clustering performance is measured by the proportion of correctly identified

ground-truth mixture clusters. The results are summarized in Fig 9 where CRP or DICRP are

compared. For example, the top row of this figure shows that in 100% of the simulations the

estimated number of components is equal to the ground-truth number of components (= 1).

Generally, these results show that, when additional clustering information is available, BSM

combined with DICRP yields a better (clustering) performance than BSM combined with the

CRP prior on the component memberships.

Finally, we measured the computational time of the algorithm in order to illustrate the scal-

ability of our approach. The results are shown only for the BFM approach using the abovemen-

tioned simulation settings for varying data dimension and sample size. In summary, as

depicted in Fig 10, despite using an efficient block sampling technique the scalabilty becomes

an issue for higher dimensions, while this is not the case for increasing number of samples.

3.2 Analysis of Twitter data

In this section, we illustrate an example on how to summarize Twitter data into networks of

terms or ‘words’, using the BSM and BSF methods. The inferred conditional independence

Fig 4. Prediction loss of precision matrices. Frobenuis errors for estimation of precision matrices with a defined shared
structure by BF and BS methods.

https://doi.org/10.1371/journal.pone.0235596.g004

PLOS ONE Analysis of Twitter data with the Bayesian fused graphical lasso

PLOS ONE | https://doi.org/10.1371/journal.pone.0235596 July 27, 2020 15 / 28

https://doi.org/10.1371/journal.pone.0235596.g004
https://doi.org/10.1371/journal.pone.0235596


graphs are then studied to signify topics and their evolution through time. To this end, we ana-

lyzed tweets regarding the Iranian 2009 presidential election.

3.2.1 Context. The two main candidates of the Iranian presidential election of June 2009

were Mir-Hossein Mousavi of the reformist “Green Movement” and president Mahmoud

Ahmadi-Nejad, running for a new term. The latter won the election, but the result was dis-

puted by alleged voting irregularities and fraud. These allegations gave rise to mass protests by

supportors of Mir-Hossein Mousavi’s “Green Movement” against the president-elect.

A time line of events crucial to the 2009 Iranian presidential election is summarized below

for three consecutive periods. Words in italic are most frequently used in the tweets of the

three time periods.

Period I

2009-05-12 Election day.

2009-05-15 First mass rally to protest against the election results with demonstrators chanting

words like ‘Allaho Akbar’.

2009-05-19 Speech by Khamenei, the supreme leader, on Friday’s (weekend day in Iran)

prayer.

Fig 5. Prediction loss of precision parameter estimation. Frobenuis errors for estimation of precision matrices with

random structure by BF and BS methods.

https://doi.org/10.1371/journal.pone.0235596.g005
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Fig 6. Prediction loss of component-wise mean parameterestimation. Frobenuis errors of mixture mean estimation

averaged over 50 independent simulated datasets by BSM and BFM methods.

https://doi.org/10.1371/journal.pone.0235596.g006
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Fig 7. Prediction loss of component-wise precision parameter estimation. Frobenuis errors of precision parameter

estimation averaged over 50 independent simulated datasets by BSM and BFM methods.

https://doi.org/10.1371/journal.pone.0235596.g007
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Fig 8. Classification accuracy. F-scores corresponding to estimation of sparsified precision matrices averaged over 50

independent simulated datasets by BSM and BFM.

https://doi.org/10.1371/journal.pone.0235596.g008
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Fig 9. Mixture clustering accuracy. Estimation of number of components in a 3-stage simulated dataset with number of

components K1 = 1, K2 = 2 and K3 = 3.

https://doi.org/10.1371/journal.pone.0235596.g009

Fig 10. Computational time. Computational time to estimate mixture graphical networks as a function of (a) the data

dimension with a fixed sample size of 100 and (b) the sample size with a fixed dimension of 10.

https://doi.org/10.1371/journal.pone.0235596.g010
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2009-05-20 Neda (a Mousavi-supporter was shot and many more supporters were imprisoned

at the Evin prison. human rights groups and the president of the United States issued state-

ments urging the end to violence against protesters.

2009-06-09Demonstrations on the tenth anniversary of the 18-Tir uprising. This refers to the

Iranian Student Protests of July 1999 (also known as 18th of Tir (7–13 July) and Kuye

Daneshgah Disaster in Iran) were the most widespread and violent public protests to occur

in Iran since the early years of the Iranian Revolution. During the 18-Tir uprising students

asked for greater freedom of speech, among others.

2009-06-17 Friday’s prayer sermon by Akbar Rafsanjani attended by� two million people,

including the leaders of the “Green Movement”. Among the people that were arrested and

taken to the Evin prison was Shadi Sadr, an Iranian women rights activist who featured

prominently in the news.

2009-08-01 Start of the trial against the people arrested in the protests. These trials were con-

demned by the protesters associated with the “Green Movement”.

2009-09-18On Friday Quds day, an annual event held on the last Friday of the Ramadan that

was initiated by the Islamic Republic of Iran in 1979, the second wave of major protests in

Tehran and other cities took place.

Period II

2009-11-04 Students’ day, which refers to the day that the USA embassy was conquered in Iran

(November 04, 1379), saw another large demonstration with people chanting among others

slogans like “Allaho Akbar”, “A green Iran doesn’t need nuclear weapons”, and “death to

dictator”, among others. On the same day the reformist candidate Mousavi was grounded

and could no longer leave house.

2009-12-07 Iranian scholar day, which is the anniversary of the murder of three students of

University of Tehran on December 7, 1953 by Iranian police., show thousands of students

protesting against the government and demanding a regime change. In a speach Akbar Raf-
sanjani criticized the strict measures taken by the Iranian government.

2009-12-19 Ayattollah AliMontazeri, an influential figure of the “Green Movement”, died.

2009-12-21 A rally took place on the occasion of the funeral ceremony for Ayatollah Monta-
zeri. Simultaneously, reports were published claiming torture and rape of prisoners associ-

ated with the “Green Movement”. The clashes between supporters of the ‘“Green Movement”
and the police continued for a few days in the cities of Isfahan and Qom.

2009-12-27 At the day of “Ashura” another big demonstration took place during which many

people were shot and killed, including Seyed AliMousavi, the nephew of Mir-Hossen Mou-

savi. Ashura is the tenth day of Muharram in the Islamic calendar, and commemorates the

death of Husayn ibn Ali, the grandson of Muhammad. For a majority of Shia’s Muslim

Ashura has become a ceremonial mourning day.

2009-12-28Western countries condemned the violations of the protesters’ human rights by the

Iranian government.

2010-02-17 Signing of a petition by supporters of the “Green Movement” against a law that

would limit women’s rights.
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Period III

2010-05-10 For fear of violence by the leaders of the “Green Movement”, the planned demon-

strations on the first anniversary of the disputed election was cancelled. Police violence

against women who allegedly were improperly clothed in public.

2010-05-11 Citizens were warned of the probable consequences of participation in the anniver-

sary of the election.

2010-05-12Minor demonstrations took place, but ended prematurely due to governmental

interference.

3.2.2 Data. The data consist of tweets pertaining to this presidential election and the fol-

low-up events that were previously collected and studied in [23]. This amounts to 1,532,289

tweets in total that were retrieved from one month before the elections until roughly 15

months after, to be precise: from 5 May 2009 until 8 August 2010. Duplicated and empty

tweets, e.g. tweets containing only website links, were removed, resulting in 1,004,428 remain-

ing tweets. We divided these 15 months into 3 periods of roughly 5 months each. Fig 11 pres-

ents the frequency of the tweets per day.

Next, the tweets in each period were divided into nt = 500, t = 1, 2, 3 ‘bags of words’ or so

called documents. These were subjected to standard text normalization techniques such as

stemming and space/stopword/punctuation removal. We first identified the most frequent

terms shared between the 3 periods and selected p = 30 co-occurring terms. Then, for each

period a term-document matrix with rows and columns representing documents and (shared)

terms, respectively, was created. Finally, the term-document matrices were mapped into con-

tinuous valued data matrix Y of the three periods t = 1, 2, 3 with, for i = n<t + 1, . . ., n<t + nt,

Fig 11. Tweets Frequency. Over time frequency of tweets regarding Iranian presidential election (2009). The whole

period is divided into three equal length periods. High peaks majorly refer to important events of the time such as mass

rallies and protests.

https://doi.org/10.1371/journal.pone.0235596.g011
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and t = 1, 2, 3,

Yi ¼ ftfiðw1Þ log½nt=df ðw1Þ�; . . . ; tfiðwpÞ log½nt=df ðwpÞ�g for

where tfi(wj) represents the term frequency of wj, this is the frequency with which the word wj
occurs in the i-th document, and df(wj) the document frequency of wj, this is number of docu-

ments in which wj appears.

We constructed the similarity matrix St
¼ ðstii0 Þ

nt
i�i0¼1

based on the number of days between

the posting dates of tweets. The impact of this measure on the clustering in mixture models is

studied in an earlier paper [24] where several similarity measures are compared.

3.2.3 Results. The primary purpose of this analysis was to reconstruct networks that sig-

nify important topics in each period through linking terms or words. Different versions of the

Bayesian fused graphical lasso estimation that were presented in the preceding sections, as well

as the Bayesian lasso, were applied to the data. For clarity these are briefly recapped:

non-mixture: Data of each period are assumed to follow a multivariate normal distribu-

tion and their precision matrices are estimated by the Bayesian graphical lasso [7].

BSM-CRP: To account for heterogeneity, data from each period are assumed to follow the

mixture model (12). The Bayesian stage-wise mixture (BSM) algorithm is used to estimate

the model parameters. This algorithm uses a data allocation scheme that is equivalent to the

CRP.

BSM-DICRP: Identical to the BSM-CRP approach but with DIRCP used for data allocation

in which the number of days between documents serves as external information (see Sec-

tion 2.2.1). The latter accommodates the possibility of documents contiguous in time to

entail more similar information than documents well-separated in time.

BFM-CRP: As before a mixture model per period is assumed to be a good description of the

data. In the estimation of these mixture models the precision matrices of the mixture com-

ponents may now inherit or share structure within or between time periods. This is

achieved by the Bayesian fused graphical (BFM) mixture approach (see Section 2.2.3). The

CRP is used for data allocation in the mixture estimation.

BFM-DICRP: As BFM-CRP: but with the DICRP used for data allocation in which the num-

ber of days between days serves as external information.

These methods are compared for the Twitter data and compared with respect to their pre-

dictive power established through a 5-fold cross-validation method. The hyperparameter val-

ues are equal to those described in the simulation section. The results of this comparison study

are summarized in Fig 12.

A first observation inferable from Fig 12 is the substantial difference between non-mixture

and mixture estimation methods. The heterogeneity assumption thus seems to be a crucial

one. Secondly, among the mixture estimation approaches those equipped with a DICRP data

allocation scheme reveal a slight estimation improvement compared to the approach with the

CRP scheme. This suggests that information of the number of days between tweets aids in the

mixture component assignment of individual terms. Finally, the BFM approaches show a slight

performance improvement, in terms of prediction accuracy, over their BSM counterparts.

Final results of the Twitter data are thus based on the BFM-DICRP analysis, which are con-

trasted to those originating from the non-mixture approach. The corresponding networks

are displayed in Fig 13. These are based on the partial correlation matrices obtained by

PLOS ONE Analysis of Twitter data with the Bayesian fused graphical lasso

PLOS ONE | https://doi.org/10.1371/journal.pone.0235596 July 27, 2020 23 / 28

https://doi.org/10.1371/journal.pone.0235596


standardization from the estimated precision matrices. The networks comprise 30 terms

(nodes) linked by edges whose 95% Bayesian credible interval does not contain zero.

The resulting networks of Fig 13 reveal groups of terms or words that are more frequently

linked within than between groups:

1. (Colored green.) The key words of speeches, open statements of political leaders, or

demands of protesters such as ‘human’, ‘right’, ‘change’, ‘support’, ‘green’ (for “Green

Movement”), ‘democracy’, ‘tweet’, ‘women rights’, ‘freedom’.

2. (Colored purple.) The key words that can either represent strict measures taken by the gov-

ernment to suppress the protests such as ‘torture’, ‘prison’, ‘Evin’ (name of a prison in Teh-

ran), ‘protest’, ‘shot’, ‘forces’, ‘arrest’, ‘trial’, or chanting words such as ‘Allah’, ‘Akbar’,

‘death’.

3. (Colored blue.) The names of significant political leaders or influential groups/individuals

such as ‘Ahmadi-Nejad’, ‘Khamenei’, ‘Montazeri’, ‘Mousavi’, ‘Neda’, ‘Rafsanjani’, ‘Shadi’,

‘student’, and ‘women’.

This grouping is best recognized by mixture estimation, particularly for the first and second

period. This may be due to the fact that most demonstrations and the subsequent reaction by

the police took place in the first two time periods.

The reconstructed networks of words across tweets reflect the evolution of the Iranian polit-

ical situation at the time. Several pairs of words, such as ‘human–right’, ‘Evin–prison”, ‘Allah–

Akbar’, ‘support–green (movement)’ are connected in the networks of all three periods. Both

words within each pair stem from the same semantic category, irrespective of the method

Fig 12. Performance of estimation approaches. Predictive log-likelihoods obtained by 5-fold cross-validation

corresponding to three stage twitter data analysis with a non-mixture estimation, mixture estimations without

additional similarity data (BSM-CRP and BFM-CRP), and mixture estimations taking into account external information

on similarity of consequent tweets (BSM-DICRP and BFM-DICRP).

https://doi.org/10.1371/journal.pone.0235596.g012
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used. Such a semantic grouping is, however, more prominent in the results of period I and II

from the mixture model. This is most likely due to the fact that these two periods saw most

demonstrations, with possible reaction of the state. More specifically, period-specific meaning-

ful, i.e., coinciding with the events listed in the above presented time line, links can be identi-

fied from the reconstructed networks. For example, the ‘Neda’-‘shot’ and ‘Shadi’-‘arrest’ link

appears only in the first time period. Further, the ‘Montazeri–death’ link in the period II net-

works reflect the death of Ayatollah Montazeri during this period. Finally, the word ‘student’

takes a more central place in the period II networks due to two student events, related arrests

and claimed torture of students that took place then.

The mixture modeling identifies two different groups of tweets for each period (see Fig 13).

These groups may be interpreted by means of the cohesion among words and their semantics.

For example, in period I the conditional independence graph of the first mixture component

reveals word clusters that broadly combine topics of “public tumult” and “political demands”,

while that of the other mixture component appears to connect words only if they relate to

actual events. As such the two groups may loosely represent tweets originating from twitter

accounts aliased with the protest and media, respectively. For period II a different contrast

Fig 13. Reconstructed networks of terms. Reconstructed term networks from tweets regarding Iranian presidential

elections 2009, using a BSM-DICRP and non-mixture estimation approaches.

https://doi.org/10.1371/journal.pone.0235596.g013
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between the cohesion of words within tweets becomes apparent. The first mixture component

is hard to interpret and may represent a mixed bag of tweets representing the general turmoil

of the period. The second mixture component, however, nicely shows two distinct clusters

each representing a different semantic category: tweets with a single uniform message filled

either with the protester’s demands or with an account of the negative events taking place.

4 Discussion

This paper transfers and extends the Bayesian graphical lasso for network reconstruction to

the field of (chronological) textual social media data analysis. Twitter data from several time

periods related to the 2009 Iranian presidential elections are used to show the potential of the

approach. The data are studied from a graphical network estimation perspective and identifies

the relation (and their variation over time) among topics. Statistically, the problem amounts to

simultaneous estimation of precision matrices which is solved by the Bayesian graphical lasso,

and which is extended here to i) account for heterogeneity in the data, ii) incorporate external

information in the unravelling of this heterogeneity, and iii) borrow network similarities

among identified groups. Extraction of summary information from one and a half million

tweets related to the aforementioned election shows promise. Moreover, the flexibility of this

Bayesian framework enables several approaches to address different assumptions on the data

structure.

A possible useful inroad for future research might be to address high-dimensionality. The

presented Twitter data analysis was limited to p = 30 terms. The proposed method is applica-

ble to larger p, but an increase of the dimension may prohibit the interpretation of the recon-

structed network. For comprehensive interpretation of large networks it might be crucial to

develop a complementary semantic analysis, possibly based on a community finding

method.
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1. Meinshausen N, Bühlmann P. High-dimensional graphs and variable selection with the lasso. The

annals of statistics. 2006; p. 1436–1462. https://doi.org/10.1214/009053606000000281

2. Yuan M, Lin Y. Model selection and estimation in the Gaussian graphical model. Biometrika. 2007;

94(1):19–35. https://doi.org/10.1093/biomet/asm018

3. Banerjee O, Ghaoui LE, d’Aspremont A. Model selection through sparse maximum likelihood estimation

for multivariate gaussian or binary data. Journal of Machine Learning Research. 2008; 9(Mar):485–516.

4. Friedman J, Hastie T, Tibshirani R. Sparse inverse covariance estimation with the graphical lasso. Bio-

statistics. 2008; 9(3):432–441. https://doi.org/10.1093/biostatistics/kxm045 PMID: 18079126

5. Rothman AJ, Bickel PJ, Levina E, Zhu J. Sparse permutation invariant covariance estimation. Electronic

Journal of Statistics. 2008; 2:494–515. https://doi.org/10.1214/08-EJS176

6. van Wieringen WN, Peeters CF. Ridge estimation of inverse covariance matrices from high-dimensional

data. Computational Statistics & Data Analysis. 2016. https://doi.org/10.1016/j.csda.2016.05.012

7. Hao W. Bayesian graphical lasso models and efficient posterior computation. Bayesian Analysis. 2012;

7(4):867–886. https://doi.org/10.1214/12-BA729

8. Guo J, Levina E, Michailidis G, Zhu J. Joint estimation of multiple graphical models. Biometrika. 2011;

98:1–15. https://doi.org/10.1093/biomet/asq060 PMID: 23049124

9. Danaher P, Wang P, Witten DM. The joint graphical lasso for inverse covariance estimation across mul-

tiple classes. Journal of the Royal Statistical Society: Series B (Statistical Methodology). 2014; 76

(2):373–397. https://doi.org/10.1111/rssb.12033

10. Zhu Y, Shen X, Pan W. Structural pursuit over multiple undirected graphs. Journal of the American Sta-

tistical Association. 2014; 109(508):1683–1696. https://doi.org/10.1080/01621459.2014.921182 PMID:

25642006

11. Bilgrau AE, Peeters CF, Eriksen PS, Bøgsted M, van Wieringen WN. Targeted Fused Ridge Estimation

of Inverse Covariance Matrices from Multiple High-Dimensional Data Classes. Journal of Machine

Learning Research. 2020; 21(26):1–52.

12. Peterson C, Stingo FC, Vannucci M. Bayesian inference of multiple Gaussian graphical models. Journal

of the American Statistical Association. 2015; 110(509):159–174. https://doi.org/10.1080/01621459.

2014.896806 PMID: 26078481

13. Shen X, Pan W, Zhu Y. Likelihood-based selection and sharp parameter estimation. Journal of the

American Statistical Association. 2012; 107(497):223–232. https://doi.org/10.1080/01621459.2011.

645783 PMID: 22736876

14. Yajima M, Telesca D, Ji Y, Muller P. Differential patterns of interaction and Gaussian graphical models.

Preprint. 2012.

15. Aflakparast M, de Gunst MC, van Wieringen WN. Reconstruction of molecular network evolution from

cross-sectional omics data. Biometrical Journal. 2018; 60(3):547–563. https://doi.org/10.1002/bimj.

201700102 PMID: 29320604

16. Aflakparast M, de Gunst M. Data integrative Bayesian inference for mixtures of regression models.

Journal of the Royal Statistical Society: Series C (Applied Statistics). 2019; 68(4):941–962. https://doi.

org/10.1111/rssc.12346

17. Park T, Casella G. The Bayesian lasso. Journal of the American Statistical Association. 2008; 103

(482):681–686. https://doi.org/10.1198/016214508000000337

18. Andrews DF, Mallows CL. Scale mixtures of normal distributions. Journal of the Royal Statistical Society

Series B (Methodological). 1974; p. 99–102. https://doi.org/10.1111/j.2517-6161.1974.tb00989.x

19. Chhikara R. The Inverse Gaussian Distribution: Theory: Methodology, and Applications. vol. 95. CRC

Press; 1988.

20. Escobar M, West M. Bayesian prediction and density estimation. J Amer Statist Assoc. 1995; 90:577–

588. https://doi.org/10.1080/01621459.1995.10476550

21. Rasmussen CE. The infinite Gaussian mixture model. In: Advances in neural information processing

systems; 2000. p. 554–560.

22. Rasmussen CE, Ghahramani Z. Infinite mixtures of Gaussian process experts. Advances in Neural

Information Processing Systems. 2002; 2:881–888.

PLOS ONE Analysis of Twitter data with the Bayesian fused graphical lasso

PLOS ONE | https://doi.org/10.1371/journal.pone.0235596 July 27, 2020 27 / 28

https://doi.org/10.1214/009053606000000281
https://doi.org/10.1093/biomet/asm018
https://doi.org/10.1093/biostatistics/kxm045
http://www.ncbi.nlm.nih.gov/pubmed/18079126
https://doi.org/10.1214/08-EJS176
https://doi.org/10.1016/j.csda.2016.05.012
https://doi.org/10.1214/12-BA729
https://doi.org/10.1093/biomet/asq060
http://www.ncbi.nlm.nih.gov/pubmed/23049124
https://doi.org/10.1111/rssb.12033
https://doi.org/10.1080/01621459.2014.921182
http://www.ncbi.nlm.nih.gov/pubmed/25642006
https://doi.org/10.1080/01621459.2014.896806
https://doi.org/10.1080/01621459.2014.896806
http://www.ncbi.nlm.nih.gov/pubmed/26078481
https://doi.org/10.1080/01621459.2011.645783
https://doi.org/10.1080/01621459.2011.645783
http://www.ncbi.nlm.nih.gov/pubmed/22736876
https://doi.org/10.1002/bimj.201700102
https://doi.org/10.1002/bimj.201700102
http://www.ncbi.nlm.nih.gov/pubmed/29320604
https://doi.org/10.1111/rssc.12346
https://doi.org/10.1111/rssc.12346
https://doi.org/10.1198/016214508000000337
https://doi.org/10.1111/j.2517-6161.1974.tb00989.x
https://doi.org/10.1080/01621459.1995.10476550
https://doi.org/10.1371/journal.pone.0235596


23. Tabatabaei SA, Asadpour M. Study of influential trends, communities, and websites on the post-election

events of Iranian presidential election in Twitter. In: Social Network Analysis-Community Detection and

Evolution. Springer; 2014. p. 71–87.

24. Aflakparast M, Geeven G, de Gunst MC. Bayesian mixture regression analysis for regulation of Pluripo-

tency in ES cells. BMC bioinformatics. 2020; 21(1):1–13.

PLOS ONE Analysis of Twitter data with the Bayesian fused graphical lasso

PLOS ONE | https://doi.org/10.1371/journal.pone.0235596 July 27, 2020 28 / 28

https://doi.org/10.1371/journal.pone.0235596

