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Abstract: Using the electrical spark discharge method, this study prepared a nano-Ag colloid using
self-developed, microelectrical discharge machining equipment. Requiring no additional surfactant,
the approach in question can be used at the ambient temperature and pressure. Moreover, this novel
physical method of preparation produced no chemical pollution. This study conducted an in-depth
investigation to establish the following electrical discharge conditions: gap electrical discharge,
short circuits, and open circuits. Short circuits affect system lifespan and cause electrode consumption,
resulting in large, non-nanoscale particles. Accordingly, in this study, research for and design of a
new logic judgment circuit set was used to determine the short-circuit rate. The Ziegler–Nichols
proportional–integral–derivative (PID) method was then adopted to find optimal PID values for
reducing the ratio between short-circuit and discharge rates of the system. The particle size,
zeta potential, and ultraviolet spectrum of the nano-Ag colloid prepared using the aforementioned
method were also analyzed with nanoanalysis equipment. Lastly, the characteristics of nanosized
particles were analyzed with a transmission electron microscope. This study found that the lowest
ratio between short-circuit rates was obtained (1.77%) when PID parameters were such that Kp

was 0.96, Ki was 5.760576, and Kd was 0.039996. For the nano-Ag colloid prepared using the
aforementioned PID parameters, the particle size was 3.409 nm, zeta potential was approximately
−46.8 mV, absorbance was approximately 0.26, and surface plasmon resonance was 390 nm. Therefore,
this study demonstrated that reducing the short-circuit rate can substantially enhance the effectiveness
of the preparation and produce an optimal nano-Ag colloid.

Keywords: electrical spark discharge method; nano-Ag colloid; Ziegler–Nichols method; electrical
discharge condition; short circuits

1. Introduction

Nanotechnology entails the science and technology that apply the physical and chemical
characteristics of substances smaller than 100 nm [1] to the design and production of new components
and systems. Because of the structural characteristics of increased surface area and a lack of periodic
regularity, as well as interactions between the shape and surface size of nanostructures [2], nanosized
substances display physical, chemical, and biological characteristics that are distinct from those of
other substances [3]. The techniques used to prepare nanoparticles can be classified into chemical
methods and physical methods. Nearly all the chemical methods require the addition of surfactants.
The physical methods include mechanical milling [4], thermal evaporation [5], the submerged arc
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nanoparticle synthesis system (SANSS) [6], and so on. Mechanical milling has the potential for
contamination from the balls and the atmosphere. Thermal evaporation has the drawback of containing
the carrier gas and catalytic particle in the grown nanostructure. The process of SANSS should occur
within a vacuum chamber. In this work, silver nanoparticles with good purity were prepared at a
normal temperature and pressure using the electrical spark discharge method (ESDM).

Electrical discharge machining (EDM) is used for a wide variety of materials because it uses
heat rather than mechanical principles. For example, the electric spark discharge method (ESDM)
has been applied on hard materials, small components, and components requiring high-precision
machining or a complex shape. Two primary targets of ESDM are precision and refinement, and the
major ESDM trends are powder-mixed EDM, precision wire EDM, and a hybrid of microelectrical
discharge machining (micro-EDM) and polishing [7].

Figure 1 depicts EDM [8]. Both the upper and lower electrodes were connected to the metal part
of the workpiece and immersed in a highly insulating dielectric liquid. In nanotechnology research,
deionized water is often used as the dielectric liquid. Application of direct current voltage enables the
upper electrode to be controlled by the servo control system and to move slowly toward the lower
electrode. Because the two ends of the workpiece are not in direct contact, no physical force, such as
contact or cutting, is involved. When the distance between the two electrodes reaches approximately
30 µm, a discharge column is formed between the two electrodes [9], generating the so-called spark.
The electric arc can reach temperatures as high as 5000–6000 K [10], causing atoms at the metal surface
to melt. This method is called the ESDM.
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Figure 1. Electrical discharge machining.

Applying ESDM in combination with EDM, the research team of this study successfully
prepared several kinds of nanocolloid, including nano-Au, nano-TiO2, nano-Al, and nanographene
colloids [11–14]. Because traditional EDM equipment is outdated and difficult to maintain, micro-EDM
equipment was developed. Micro-EDM works on the same principle as EDM. The analysis of
nano-Au and nano-Ag colloids prepared with this equipment, using high-precision instruments,
showed that all of the colloidal particles displayed nanoparticle characteristics [15]. Studies of
nanometal colloids prepared using micro-EDM have taken into account only the discharge success
rate. This study observed the conditions for currents flowing between electrodes, including gap
electrical discharge and electrode short circuits, and explored these phenomena in depth. Because the
short-circuit phenomenon may exert an adverse effect on equipment, this study designed a set of logic
judgment circuits to identify short circuits. The short-circuit rate was calculated by computer software
using the aforementioned circuit output signals. In addition, this study used the Ziegler–Nichols
classic proportional–integral–derivative (PID) method to determine optimal PID parameters to reduce
the short-circuit rate. Lastly, how short-circuit rate is related to particle analysis, zeta potential,
and absorbance was explored [16–19].
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2. Materials and Methods

2.1. Logic Circuit Design

The electrical discharge conditions of pulse width modulation (PWM), gap voltage (Vgap), and gap
current (Igap) during electrical discharge are shown in Figure 2. This comprises the transistor-on
time (Ton) and the transistor-off time (Toff). Tsuc represents the successful electrical discharge time.
T1 represents the time period for gap electrical discharge. The dielectric fluid was observed to exhibit
an insulation breakdown after the spark time lag (td); Vgap also decreased to Vsuc, and Igap increased
to Isuc. T2 is the time period for short circuits, indicating the time at which an electrode short circuit
occurred because the anode and the cathode were too close to each other. Vgap decreased to 0, and Igap

increased to Isc. The T2 time period is for the short-circuit condition. It indicates the time for open
circuits at which the electric field in the electrode gap was insufficiently strong to break the insulation of
the dielectric fluid. Vgap shows an open-circuit condition when the value for Igap remained at 0 A [20].
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This study’s major contribution is the identification of three electrical discharge conditions: gap
electrical discharge, short circuits, and open circuits. The logic circuits were designed to identify all
electrical discharge conditions. First, a set of logic circuits identifying and differentiating between gap
electrical discharge and short circuits was designed. The circuits first acquire Vgap and Igap, and these
signals are then processed by the comparator and the AND gate (The AND gate is a digital logic
gate that implements logical conjunction) to generate signals determining successful electrode gap
discharge. The successful discharge signals are then compared with the counter pulse signals from the
computer end to obtain the number of instances of successful electrical discharge. The short-circuit
rate is determined by directly comparing the counter pulse signal and the Igap signal output by the
computer. When the system’s electrical discharge is successful, Vgap decreases and Igap increases [21].
Details of the simulation process are presented as follows:

2.1.1. Vgap High/Low Levels and Igap Simulation

Figure 3 shows the measurement of electrode gap voltage conditions. T1 is the time period of
the electrical discharge condition. T2 is the short-circuit condition. T3 is the open-circuit condition.
Figure 3a illustrates the Vgap waveform. VL is the low-level voltage of Vgap for successful electrical
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discharge, whereas VH is the high-level voltage. Figure 3b is the simulated waveform of the comparison
between Vgap and VL by a comparator. When Vgap is greater than VL, the comparator output signal
VL(-) indicates a high potential. Figure 3c is the simulated waveform of the comparison between Vgap

and VH by a comparator. When Vgap is smaller than VH, the comparator output signal VH(+) indicates
a high potential. Figure 3d shows the logic operation result for VL(-) and VH(+) through the AND gate.
Output signals for Vgap and Vsuc are 1 only when both VL(-) and VH(+) are 1. Figure 4 illustrates the
identification of the electrode gap current conditions. Figure 4a is the Igap waveform. The low-level
current of Igap for successful electrical discharge is IL. Figure 4b shows the simulated waveform of the
comparison between Igap and IL by a comparator. When Igap is greater than IL, comparator output
signals Igap and Isuc indicate a high potential. Figure 5 indicates the logic operation result of Igap,suc

and Vgap,suc through the AND gate. The output signal for Vsuc is 1 only when both Igap,suc and Vgap,suc

are 1.
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2.1.2. Computation Simulation of Electrical Discharge Success Rate

Figure 6 shows the counter pulse signal VPWM output by the computer (with a frequency of 1 MHz
and a duty cycle of 0.5). This signal was generated by the RT-DAC4/PCI interface card controlled by
the software VisSim at the computer end. This signal constitutes the time base of the hardware circuits.
Figure 7 shows the counter waveform signal NSUC of successful electrical discharge. This waveform is
the result of the computation of the signals for Vsuc (Figure 5) and VPWM (Figure 6) passing through
the AND gate. Using the signal NSUC, the VisSim software at the computer end can count the number
of accumulated successful electrical discharges.
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2.1.3. Computation Simulation of Short-Circuit Rate

Figure 8a is the counter waveform of signal Ngap&short. This signal is the computation result for
the signals Igap,suc (Figure 4b and VPWM (Figure 7) passing through the AND gate. According to the
signal for NSUC, the VisSim software at the computer end can count the total numbers of gap electrical
discharge and short-circuit instances. Figure 8b shows the signal for Nshort, which indicates the number
of short circuits counted. This signal is the difference between the waveforms of NSUC (Figure 7) and
Ngap&short (Figure 8a). According to the aforementioned logic judgment simulation and the condition
judgment mechanism, a set of optimized logic judgment circuits was designed. The functions of this
circuit set encompass computation of the electrical discharge success rate, the short-circuit rate, and
the open-circuit rate.
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2.2. Electrical Discharge Process Optimization

This study primarily explored the application of PID closed-circuit controllers in EDM for
controlling electrical discharge gap voltage. The key objective is to determine the short-circuit rate
and to use the Ziegler–Nichols method PID to effectively reduce the short-circuit rate [22–24]. In this
study, an Ag wire of 99.9% purity with 1 mm and 2 mm diameter was used as the metallic material for
the anode and cathode electrode, respectively. The dielectric fluid was low-conductivity deionized
water. The electrical discharge voltage was 100 V, and Ton and Toff were set at 10 µs. The process time
was 120 s at ambient temperature (25 ◦C) and atmospheric pressure (1atm). The preparation capacity
was 150 mL. Table 1 shows the control parameters of the Ziegler–Nichols method. Table 2 shows the
process parameters. PID parameters were fine-tuned to reduce the short-circuit rate, and Ku was the
critical gain of the PID controller. The micro-EDM motor does not function when Ku < 1.25, whereas
the periodic waveforms are unstable and nonsine waves when Ku > 2.5, resulting in divergence.
To avoid said problems, Ku was set to between 1.25 and 2.5. On-machine fine-tuning was used, and the
short-circuit rate was recorded for selecting optimal PID parameters for the micro-EDM. Professional
instruments were used to analyze the absorbance, particle size, and zeta potential of the nano-Ag
colloid. The relationship between the characteristics of the colloid and the short-circuit rate was also
examined. Figure 9 shows the fine-tuning process for PID parameters.

Table 1. Control parameters of the Ziegler–Nichols method.

Kp Ti Td

Ziegler–Nichols method 0.6 × Ku Tu/2 Tu/8
Ku = critical gain, Tu = period of oscillation, Ki = Kp/Ti, Kd = Kp × Td
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Table 2. Process parameters.

Title Parameters Title Parameters

Ambient temperature 25 ◦C Atmospheric pressure 1 atm
Electrical Discharge voltage 100 V Electrical discharge current 4 A

Duty cycle Ton-Toff

10-10 (µs) Electrode material (purity) Ag (99.99%)

Process time 120 s Dielectric fluid Deionized water

Electrode diameter Anode 1 mm
Cathode 2 mm Preparation capacity 150 mL

Nanomaterials 2020, 10, x FOR PEER REVIEW 7 of 12 

 

  

Figure 9. Proportional–integral–derivative (PID) parameter fine-tuning flow chart. 

3. Results 

3.1. PID Fine-Tuning Optimization 

This study used the Ziegler–Nichols method for fine-tuning PID parameters to reduce the short-

circuit rate. One advantage of the method in question is that proper tuning can be achieved according 

to changes in the parameters. The PID fine-tuning process parameter Ku was between 1.25 and 2.5, 

and tuning was performed in an interval of 0.25. After tuning, the short-circuit rate, absorbance, 

particle size, zeta potential, and ratio between the short-circuit rate and the discharge success rate 

were analyzed and compared using professional instruments to determine the best parameters for 

micro-EDM. Figure 10 shows the curve describing the relationship between Ku and nanoparticle 

characteristics. Figure 10a shows the curve describing the relationship between Ku and the short-

circuit rate. Figure 10b shows the curve describing the relationship between Ku and the ratio between 

the short-circuit rate and the discharge success rate. Figure 10c shows the curve describing the 

relationship between Ku and absorbance. Figure 10d shows the curve describing the relationship 

between Ku and particle size. Figure 10 (e) shows the curve depicting the relationship between Ku and 

zeta potential. The curves demonstrate that when Ku was 1.6, the lowest short-circuit rate (1.77%) was 

obtained using PID parameters (i.e., Kp = 0.96; Ki = 5.760576; Kd = 0.039996), with the ratio between 

the short-circuit rate and the discharge success rate being 0.053. Moreover, the nano-Ag colloid had 

an absorbance of 0.26, a zeta potential of −46.8 mV, and a particle size of 3.41 nm. The values of these 

nanoparticle characteristics were optimal. The data demonstrated that all nanoparticle-related 

characteristics were optimal when the short-circuit rate was the lowest. Therefore, effectively 

reducing the short-circuit rate enhances the overall electrical discharge effect of micro-EDM. 

Figure 9. Proportional–integral–derivative (PID) parameter fine-tuning flow chart.

3. Results

3.1. PID Fine-Tuning Optimization

This study used the Ziegler–Nichols method for fine-tuning PID parameters to reduce the
short-circuit rate. One advantage of the method in question is that proper tuning can be achieved
according to changes in the parameters. The PID fine-tuning process parameter Ku was between 1.25
and 2.5, and tuning was performed in an interval of 0.25. After tuning, the short-circuit rate, absorbance,
particle size, zeta potential, and ratio between the short-circuit rate and the discharge success rate
were analyzed and compared using professional instruments to determine the best parameters for
micro-EDM. Figure 10 shows the curve describing the relationship between Ku and nanoparticle
characteristics. Figure 10a shows the curve describing the relationship between Ku and the short-circuit
rate. Figure 10b shows the curve describing the relationship between Ku and the ratio between the
short-circuit rate and the discharge success rate. Figure 10c shows the curve describing the relationship
between Ku and absorbance. Figure 10d shows the curve describing the relationship between Ku and
particle size. Figure 10e shows the curve depicting the relationship between Ku and zeta potential.
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The curves demonstrate that when Ku was 1.6, the lowest short-circuit rate (1.77%) was obtained using
PID parameters (i.e., Kp = 0.96; Ki = 5.760576; Kd = 0.039996), with the ratio between the short-circuit
rate and the discharge success rate being 0.053. Moreover, the nano-Ag colloid had an absorbance
of 0.26, a zeta potential of −46.8 mV, and a particle size of 3.41 nm. The values of these nanoparticle
characteristics were optimal. The data demonstrated that all nanoparticle-related characteristics were
optimal when the short-circuit rate was the lowest. Therefore, effectively reducing the short-circuit
rate enhances the overall electrical discharge effect of micro-EDM.Nanomaterials 2020, 10, x FOR PEER REVIEW 8 of 12 
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3.2. Nano-Ag Colloid Characteristics Analysis

Applying micro-EDM, this study prepared a nano-Ag colloid with a minimum short-circuit rate
using optimal PID parameters (Kp = 0.96, Ki = 5.760576, Kd = 0.039996, and therefore Ku = 1.6).
By analyzing the colloid with professional instruments, this study demonstrated that the specimen is
nanosized. Details are presented in the following.

3.2.1. UV-Vis and Zeta Potential Analysis

The nano-Ag colloid was analyzed with a spectrophotometer (UV-Vis), which demonstrates the
relationship between absorbance and wavelength. Various studies have defined the characteristic
wavelength of nano-Ag colloids to be between 380 and 410 nm (Figure 11a). The analysis here yielded
a characteristic wavelength of 390 nm for the nano-Ag colloid prepared using ESDM, a nanosized
characteristic. The absorbance of the nano-Ag colloid was 0.26, and the value of absorbance of the
colloid was mostly proportional to the concentration of the colloid. In this study, the zeta potential of
nanoparticles was measured with a Zetasizer. When the absolute value of the potential was greater
than 30 mV, the metal particles in the colloid exhibited high suspension stability. The analysis result
for zeta potential is shown in Figure 11b. The average value for zeta potential measured was −46.8 mV,
indicating that the nanocolloid prepared here exhibited desirable suspension stability.
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3.2.2. Transmission Electron Microscopy and Energy-Dispersive X-ray Spectroscopy

For the nano-Ag colloid prepared using ESDM, nano-Ag particles were observed microscopically
with a transmission electron microscope. Figure 12a shows a nano-Ag colloidal structure at a scale
of 200 nm. Figure 12b is the enlarged image (at a scale of 20 nm) of the image inside the box in
Figure 12a. Figure 12c is the enlarged image (at a scale of 5 nm) of the image inside the box in Figure 12b.
The spacing between lattice lines (d-spacing) was 0.219 nm. Figure 12d is obtained from the results of
TEM (Figure 12b), which shows the size distribution of nano-Ag participles. According to the figure,
0–5 nm nano-Ag particles accounted for 24% of all nano-Ag particles, 6–10 nm for 34%, 11–15 nm for
24%, 16–20 nm for 16%, and 21 nm or more for 2%. This finding showed that most of the nano-Ag
particles had sizes of 6–10 nm. Energy-dispersive X-ray spectroscopy (EDS) is a type of analytical
technology which uses the characteristic X-rays of electron beams to analyze the chemical composition
of specimens when each element has distinct spectral characteristics. Figure 13 shows the graph of
EDS analysis of the nano-Ag colloid. The result indicates that the nano-Ag colloid prepared using
ESDM contained only two elements: oxygen (O) and silver (Ag).
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4. Conclusions

Using real-time micro-EDM monitoring, this study designed a logic judgment circuit set to
determine all EDM conditions, including gap electrical discharge, open circuits, and short circuits of
the EDM equipment. Signals were sent to the software end to determine the probability for each of the
aforementioned conditions. The result demonstrated that short circuits may adversely affect equipment,
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and reducing the short-circuit rate by PID tuning therefore improves the overall electrical discharge
effect. Lastly, the results of an analysis using high-precision instruments, including UV-Vis and the
Zetasizer, indicated the existence of nano-Ag particles in the deionized water. Moreover, when the
short-circuit rate was the lowest, all nanoparticle characteristics were most optimal. This study makes
the following contributions:

1. In this study, a nano-Ag colloid was prepared using the electric spark discharge method (ESDM)
with electrode material (Ag with 99.9% purity) in 150 mL of deionized water. The diameter of
the anode electrode was 1 mm, and the diameter of the cathode electrode was 2 mm. With the
electrical discharge voltage = 100 V, duty cycle (Ton-Toff) = 10-10 µs, and a process time of 120 s,
silver nanoparticles with an absorbance of 0.26 could be prepared.

2. The study used self-developed micro-EDM and ESDM to prepare a nano-Ag colloid. This method
requires no additional surfactant or other chemical materials and can be used at the ambient
temperature and pressure. Moreover, this novel physical method for preparing nano-Ag colloids
results in no chemical pollution.

3. When using ESDM to prepare a nano-Ag colloid, the electrical discharge conditions were
observed to comprise gap electrical discharge, short circuits, and open circuits. The short-circuit
phenomenon was explored in depth in this study, and a self-developed logic judgment circuit
set was applied to identify short circuits. Signals were then sent to computer software for
computation of the rate. Short circuits may have exerted an adverse effect on the equipment.

4. This study showed that PID parameters such that Kp was 0.96, Ki was 5.760576, and Kd was
0.039996 (and, as a result, Ku was 1.6) produced optimal values for absorbance (0.26), surface
plasmon resonance (390 nm), zeta potential (−46.8 mV), particle size (3.41 nm), short-circuit rate
(1.77%), and the ratio between the short-circuit rate and the discharge success rate (0.053).
Therefore, this study demonstrated that the lower the short-circuit rate is, the more the
nanocharacteristics are optimized.
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