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Abstract
Spike trains are rich in information that can be extracted to guide behaviors at millisecond time resolution or
across longer time intervals. In sensory systems, the information usually is defined with respect to the stimulus.
Especially in motor systems, however, it is equally critical to understand how spike trains predict behavior. Thus,
our goal was to compare systematically spike trains in the oculomotor system with eye movement behavior on
single movements. We analyzed the discharge of Purkinje cells in the floccular complex of the cerebellum,
floccular target neurons in the brainstem, other vestibular neurons, and abducens neurons. We find that an extra
spike in a brief analysis window predicts a substantial fraction of the trial-by-trial variation in the initiation of
smooth pursuit eye movements. For Purkinje cells, a single extra spike in a 40 ms analysis window predicts, on
average, 0.5 SDs of the variation in behavior. An optimal linear estimator predicts behavioral variation slightly
better than do spike counts in brief windows. Simulations reveal that the ability of single spikes to predict a
fraction of behavior also emerges from model spike trains that have the same statistics as the real spike trains,
as long as they are driven by shared sensory inputs. We think that the shared sensory estimates in their inputs
create correlations in neural spiking across time and across each population. As a result, one or a small number
of spikes in a brief time interval can predict a substantial fraction of behavioral variation.

Key words: abducen; floccular complex; population coding; rate code; smooth pursuit eye movements; tem-
poral code

Significance Statement

Our paper evaluates the nature of the neural code under conditions where we can understand the details
of trial-by-trial neural variation and its relationship to behavior. We demonstrate that a single extra spike in
the activity of a neuron can predict impending motor behavior. This occurs in a system where motor
variation is driven primarily by correlated noise in sensory processing, so that neurons in the motor
pathways and the behavior itself share a common noise source. As a result, correlations occur between
neurons with similar response properties. Further, in the motor system, the common noise source is much
stronger than any local noise and dominates the trial-by-trial fluctuations in the spike trains. As a result,
single spikes are meaningful.
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Introduction
Neurons code information with action potentials, or
“spikes”. Certain features of the pattern or number of
spikes across a population of neurons determine percep-
tual or motor behavior. Given that a collection of spikes
across neurons and/or time drives behavior, it follows that
single spikes in single neurons contribute to behavior. The
only question is the size of the contribution of a single
extra spike in a single neuron, and whether we can mea-
sure the contribution. By analogy to how thinking has
evolved about the relationship between single neurons
and behavior, it seems plausible that we can.

Long ago, we accepted that a single neuron has an
effect on behavior. Because large numbers of neurons
drive behavior in the mammalian brain, however, we have
assumed that the impact of a single neuron would be too
small to measure. Now we know that noise in a sensory-
motor system can originate in sensory processing and be
distributed in parallel to many neurons in the downstream
circuits (Osborne et al., 2005). As a result, spike trains are
correlated across neurons within the sensory-motor path-
ways and fluctuations in the firing of a single neuron can
predict fluctuations in other neurons, as well as percep-
tual or motor behavior (Britten et al, 1996; Shadlen et al.,
1996; Medina and Lisberger, 2007; Schoppik et al., 2008;
Hohl et al., 2013; Joshua and Lisberger, 2014). It follows
that information may be contained in the presence or
absence of a single spike at a given time in one neuron
(Bialek et al., 1991) or in the fine-grained pattern of spikes
and silences across small populations of similar neurons
(Osborne et al., 2008).

Several prior examples confirm the possible importance
of one or a few spikes in single neurons. In the human
somatosensory system, perception correlates with single
spikes in sensory afferent neurons (Valbo, 1995). In the
visual system, arrival at the retina of a very small number
of photons can be perceived (Barlow 1956) and single
photons cause measurable responses in retinal ganglion
cells (Barlow et al., 1971). We can infer, therefore, that one
or a few spikes leaving the retina can correlate with
perception. Finally, a series of experiments and analyses
on the motion sensitive neurons of the fly visual system
attest to the sensory information that is carried by single
spikes even when inputs have the complex, dynamic

character found in the natural setting (de Ruyter van
Steveninck and Bialek, 1988; Bialek and Zee, 1990; Bialek
et al., 1991). Thus, it seems worthwhile to investigate
whether single spikes can predict something about the
impending behavior in a working motor system.

Here, we work with published neural recordings from a
small, manageable neural system, namely the smooth
pursuit eye movements of monkeys. The anatomy of the
essential circuit and the transformations of neural signals
at different levels of the circuit are already understood
(Lisberger, 2010). The sensory inputs for pursuit encode
visual motion and are represented in extrastriate area MT
(Newsome et al., 1985). Correlated noise in the population
of MT neurons (Huang and Lisberger, 2009) leads to
errors in sensory estimates of target speed and direction
(Osborne et al., 2005). These errors propagate through the
motor system to cause variation in eye speed and direc-
tion at the initiation of pursuit. The relevant groups of
neurons in the pursuit motor system include Purkinje cells
in the cerebellar floccular complex, floccular target neu-
rons (FTNs) in the vestibular nucleus, other neurons in the
vestibular nucleus that are not FTNs, and motoneurons in
the abducens nucleus. In the present paper, we analyze
the spike trains in published recordings from these neu-
rons to ask whether or not a single spike can make
meaningful predictions about the impending movement,
and why (or why not).

Our main finding is that a single extra spike can be quite
informative about the impending behavioral output from
the system. We find the same effects in simulated spike
trains that have the same probability of spiking as do the
real neurons and that mimic the firing statistics for each of
the classes of neurons we have studied. The informative
nature of a single spike results from the fact that the
dominant source of variation in the sensory-motor behav-
ior is the noise in sensory representations of motion.
Sensory noise is distributed widely to downstream neu-
rons. This leads to neuron�neuron correlations and tem-
poral correlations in the spiking patterns of a population of
neurons, which in turn render a single spike informative.
Thus, neurons can transmit information based on the
timing of single spikes, and single spikes could be a
meaningful part of the neural code.

Materials and Methods
Experimental data
We have reanalyzed data reported in published studies
(Medina and Lisberger, 2007, 2008, 2009; Joshua and
Lisberger, 2014). The database comprised simultaneous
recordings of eye movements and single-unit activity from
51 Purkinje cells in the floccular complex of the cerebel-
lum, 31 FTNs in the brainstem, 88 non-FTN neurons in the
region of the vestibular nucleus, and 54 neurons in the
abducens nucleus. Methods for recording eye move-
ments and neural responses, and for identifying the neu-
rons, appear in the papers cited above.

We analyzed data obtained during pursuit tracking of
step-ramp target motions (Rashbass, 1961) presented in
discrete trials. Each trial began with the appearance of a
stationary target that the monkey fixated for a random
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interval of 500 � 1000 ms. The target then underwent a
step in one direction and began ramp motion in the
opposite direction. At the end of each trial, the target
stopped and the monkey was required to fixate it for an
additional 500 � 800 ms. Each recording session con-
tained many repetitions (�50 � 200) of one or a few
target motions. We analyzed the trials that presented
target motion at 10, 20, or 30 deg/s in the preferred
direction of the neuron under study. The database in-
cluded different blends of target speeds in different mon-
keys and structures, but we found no evidence that our
results depended on target speed. In instances where we
were given data for a single neuron for multiple speeds of
target motion, there was a strong correlation in the results
across target speeds.

Reducing the dimensionality of behavioral variation
We analyzed the trajectory of eye velocity from 50 to 200
ms after the onset of target motion for each pursuit eye
movement. This comprises the interval before visual feed-
back can affect eye motion, and therefore our analysis
considers only the open-loop interval that is driven by
sensory estimates of target speed and velocity (Lisberger
and Westbrook, 1985). To focus on the relationship be-
tween variation in neural spiking and eye speed, we ana-
lyzed eye velocity projected onto the direction of target
motion. As shown previously (Osborne et al., 2005), the
eye velocity during the open-loop interval varies from trial
to trial. Our goal was to analyze whether variation in eye
velocity is predicted by variation in the spike timing and
patterns of cerebellar neurons, brainstem premotor neu-
rons, and motoneurons.

To make the problem tractable, we reduced the 150-
dimensional eye speed vector to a small number of prin-
cipal components and described each eye movement
response by the amplitudes of the first two principal
components. We denote the eye velocity vector in each
trial j by Ej(t) and the mean eye velocity vector over
repeated presentations of the same target motion by E�
�t�. We then computed the behavioral variation vectors ej

�t� � Ej�t� � E� �t� and used them to calculate the
150 � 150 covariance matrix of behavioral variation Ce.
Finally, we extracted the eigenvectors Pk(t) of the covari-
ance matrix and used them to represent the trial-by-trial
variation in pursuit eye speed:

ej�t� � �
k�1

150

AjkPk�t� (1)

Here, the coefficient Ajk is the amplitude of the kth

eigenvector for the eye speed in the jth trial. For further
analysis, we normalized the coefficients Ajk to have unit
variance.

For pursuit initiation, the first principal component de-
scribed �85% of the total behavioral variation in the data
(Fig. 2D), depending on the monkey and the data set. The
low dimensional nature of pursuit is in good agreement
with the �90% value reported by Osborne et al. (2005) for
the first three principal components. Note a subtle differ-
ence between our analysis and that of Osborne et al.

(2005): we are considering only target motions along a
single axis. We calculated the first two principal compo-
nents of eye speed along the axis of target motion,
whereas they performed principal component analysis on
the two-dimensional trajectories of eye velocity. By reduc-
ing the dimensionality of the eye velocity and character-
izing each movement according to the magnitude of the
first two principle components, we characterized the
overall variation in pursuit strength, but not the
millisecond-by-millisecond fluctuations.

Linear estimators of behavioral variation
For each behavioral trial j, we represented the spikes as
binary vectors in bins, x→j. To establish the relationship be-
tween behavioral and neural variation for a single neuron, we
subtracted the mean spike count across trials in each bin to
obtain � x→j. We then asked how well � x→j can predict the
amplitudes of the top two principal components of behav-
ioral variation in the same trial. We used linear estimators

with weights
→
W to estimate Aj as a function of the variation

of each spike train, �x→j:

Âj �
→
W·� x→j (2)

We performed the analysis separately for the first and

second principal components. We optimized
→
W by minimiz-

ing the sum over trials j of the squared difference between
the actual and predicted values of Aj: �

j
�Âj � Aj�2. We

performed the optimization a number of times, determined
by the number of trials in each dataset. For each run of the
optimization, we left one trial out and assessed the quality of
the prediction by applying the best linear estimator to the
single trial that was not used for the optimization. Perfor-
mance was estimated by computing R2 between the actual
Aj and the predicted Âj on the omitted trial across all runs of
the optimization. This linear reconstruction strategy parallels
that originally used by Bialek et al. (1991) for time-dependent
sensory signals; here we are trying to estimate just one
component of the time-dependent motor output, so the
analysis is simpler.

Creation of simulated spike trains with authentic
statistics
We created a model of the responses of Purkinje cells and
brainstem neurons by calculating simulated spike trains
with essentially the same statistics as the real spike trains
recorded in the monkeys. The model was a useful way to
explore the limitations of our data analysis approach and
to test hypotheses about the nature of the neural code for
movement.

For each neuron, we fitted the mean firing rate during
pursuit of step-ramp target motion with a linear model:

F�t� � C0 � C1E(t � �t) � C2Ė(t � �t) � C3Ë(t � �t)
(3)

where F, t, �t, E, Ė, and Ë are the firing rate of a single
neuron; time; a fixed latency between firing rate and eye
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movement; and eye position, velocity, and acceleration
along the on-direction of the neuron, respectively. This
procedure resulted in a set of coefficients for each neuron
we studied: C0 is baseline firing rate with the eyes sta-
tionary at straight-ahead gaze; the values of C1-3 denote
regression coefficients. As reported in the papers that
included the original data, Equation 3 describes �90% of
the variance in the mean responses of floccular Purkinje
cells (Shidara et al., 1993; Medina and Lisberger, 2009)
and brainstem neurons (Joshua and Lisberger, 2014) in
terms of the parameters of the mean eye movements they
drive. We next used the regression equation to predict the
probability of spiking at different times during each trial of
pursuit eye movements. We took advantage of the fact
that the same regression equation used to fit the mean
responses can account for a substantial traction of the
trial-by-trial variation in neural responses (Medina and
Lisberger, 2007; Joshua and Lisberger, 2014). For each
behavioral trial, we computed the time-varying probability
of spiking by applying the parameters of the fit between
the average firing rate and eye kinematics (Eq. 5) to the
actual eye kinematics in that trial. This is equivalent to
the hypothesis that variability in motor output E(t) is
dominated by sources of noise that are “upstream” of
the neurons we are studying, and hence these neurons
have access to a signal that is almost perfectly corre-
lated with the eye movements that the neurons ulti-
mately drive.We generated spikes for each model
behavioral trial using a procedure that mimicked the
(sub-Poisson) coefficient of variation (CV) for each
model neuron. We set the times of simulated spikes for
each behavioral trial in a model neuron for each actual
neuron. We started by placing a spike at a random time
shortly after the end of the trial. Then we placed spikes
iteratively one at a time at the next earlier time corre-
sponding to the inverse of firing rate. We chose to start
at the end of the trial so that spikes would tend to be
placed before, rather than after, the behavior they drive,
and to maximally desynchronize the spike trains by the
time we had reached the interval used for most of our
analyses, namely the initiation of pursuit. After placing
each simulated spike, we randomly jittered its time by
multiplying the interspike interval by a random sample
from a gamma distribution with a standard deviation
equal to the CV of the neuron being simulated. We
created a refractory period by requiring each interspike
interval to endure at least 2.5 ms. We verified that we
obtained the same results with the variation in inter-
spike intervals simulated by either a normal distribution
or a nonhomogeneous gamma process. Finally, we
subjected the simulated spike trains to the same anal-
yses outlined above for the real spike trains. The use of
the regression model and actual CV for each real neu-
ron guaranteed that each model neuron would mimic
the trial-by-trial neuron�behavior correlations (Medina
and Lisberger, 2007; Joshua and Lisberger, 2014) in the
real neuron whose parameters were used to create the
simulated spike trains.

Results
The meaning of a single extra spike in cerebellar
Purkinje cells
We analyzed recordings made from floccular Purkinje
cells (and brainstem neurons) while monkeys tracked
many repetitions of the same “step-ramp” target motion
(Rashbass, 1961). The combination of a step and ramp of
target position (Fig. 1A, downward arrow) allows the mon-
key to initiate smooth pursuit eye movement without an
early saccadic eye movement and creates data where the
responses to pursuit can be studied in isolation. Eye
velocity records (Fig. 1D) show that the monkey initiated a
brisk increase in smooth eye velocity �100 ms after the
onset of target motion, and tracked accurately for �500
ms. Towards the end of the records, smooth eye velocity
showed a gradual reduction as a prescient prediction that
the target would stop. At the end of the target motion, the
monkey fixated the stationary target accurately so that he
could receive a reward for successful completion of the
trial. We analyzed the eye movements and spikes in the
interval from 50 to 200 ms after the onset of target motion.

Both the eye velocity of pursuit (Fig. 1B) and the spike
trains of neurons in the cerebellum (Fig. 1C) and brains-
tem varied considerably from trial-to-trial, even though
the target motion always was the same (Osborne et al.,
2005; Medina and Lisberger, 2007; Joshua and Lisberger,
2014). Our premise is that understanding the neural basis
for the variation might be broadly informative about the
relationship between spike trains and behavior, and might
reveal the nature of the neural code in these premotor
neurons.

We started by using principal component analysis to
reduce the dimension of the eye speed variation in the
initiation of smooth pursuit (Fig. 1B). The first and second
principal components of eye speed (Fig. 1G) accounted
for more than 85% and 10% of the variation in the speed
of pursuit initiation, respectively (Fig. 1H). Thus, the coef-
ficients of the first and second principal components
provided a nearly full account of the variation in the be-
havioral responses, in agreement with Osborne et al.
(2005). We quantified the spike train x→j with much greater
temporal resolution. We represented x→j according to the
presence or absence of spikes in bins 5 ms in width. Thus,
we started by evaluating the relationship between a high-
dimensional representation of the neural responses and a
one- or two-dimensional representation of the behavior.

We related the variation in each neuron’s spiking activ-
ity (Fig. 1C) to the variation in the animal’s behavior (Fig.
1B) in two steps. First, we computed the best linear
estimator (Eq. 2) of the magnitude of the first or second
principal component. Then, we correlated the amplitudes
of the principal components predicted by the best linear
estimator with the amplitudes of the principal compo-
nents measured from the data. For floccular Purkinje cells
studied during pursuit of target motion at 10, 20, or 30
deg/s, the distributions of correlations were strongly pos-
itive for both the first and second principal components
(Fig. 1E,F). The results were similar for all target speeds.
Further, if a Purkinje cell’s spike train predicted behavioral
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variation well in movements at one target speed, then its
spike trains also predicted behavioral variation in move-
ments at other target speeds (data not shown).

The weights that worked best for the linear estimator

(
→
W in Eq. 2) comprise a time-varying vector that indicates

Figure 1 Example of an experimental trial and of neural and behavioral variation. A, Superimposed eye and target position for a
step-ramp target motion. Dashed and continuous traces show target and eye motion. B, Eye velocity responses during the initiation
of pursuit for recordings from a Purkinje cell. Gray and black traces show individual trial responses and the mean response. C, Raster
from a typical Purkinje cell during pursuit initiation. Each line shows the response in one behavioral trial, and each tick shows the time
of one simple-spike. D, Superimposed eye and target velocity for a step-ramp target motion. Dashed and continuous traces show eye
and target motion. E, F, Distributions across the full sample of Purkinje cells of the correlation between actual and predicted
magnitudes of the first (E) or second (F) principal component (PC1 and PC2, respectively) of the behavior. G, First two principal
components resulting from dimension reduction of the variation in eye velocity at the initiation of pursuit. H, The amount of total
behavioral variance explained by leading principal components for the variation in eye speed at the initiation of pursuit. I, J, Each trace

shows the weights for an optimized linear estimator (
→
W�t� in Eq. 2) relating the presence of an extra spike at time t on the horizontal

axis to the amplitude of the first (I) or second (J) principal component of eye movement variation. Different colors show results for a
single Purkinje cell during pursuit at three different target speeds. All times are relative to the onset of target motion.

Figure 2 Prediction of eye speed by a single extra spike in four groups of cerebellar and brainstem neurons. A, B, Superimposed means
of eye and target velocity for a typical recording session (A) and average firing rates (B) for the different brainstem neurons. Different colors
show the mean firing rate across the different populations, and the gray ribbons show the SEM. C, Distributions across the full samples of
different neuron classes of the correlation between actual and predicted magnitudes of the first principal component (PC1) of the pursuit behavior.
D, Weight of spikes as a function of time for the best linear estimator. In B, C, and D, black, red, green, and blue show data for floccular Purkinje
cells, FTNs, non-FTN vestibular neurons, and abducens neurons. The traces in B were taken from a figure in an earlier paper (Joshua et al., 2013).
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the relative contribution of spikes at different times to our
best estimate of the value of one of the principal compo-
nents of the behavior. The shape of the weight functions
was similar across target speeds for Purkinje cells (differ-
ent colored traces in Fig. 1I,J), but different between the
two top principal components (Fig. 1, I vs J). The weight
functions did not follow the shapes of the principal com-
ponents (or derivatives thereof). In general, spikes that
occurred 120 � 160 ms after the onset of target motion
were weighted most strongly by the linear estimator.

The weights in the optimal linear estimator have a scale,
as in Figure 1I, peaking at �0.5. Referring to Equation 2,
and keeping in mind that the amplitudes of principal
components have been normalized, this scale means that
one extra spike predicts a fluctuation in the component of
the behavior up to one half of the standard deviation in the
behavior. We found a few examples of floccular Purkinje
cells where a single extra spike predicted a full standard
deviation of the behavioral variation. Thus, the presence
or absence of a few spikes in a 100 ms interval in floccular
Purkinje cells is sufficient to predict nearly the full range of
the behavioral variation.

The meaning of a single extra spike in brainstem
premotor neurons and motoneurons
Some neurons in the brainstem showed quite large cor-
relations between the actual magnitude of the first princi-
pal component of the behavior and the magnitude
predicted by the linear estimator (Eq. 2). Among brains-
tem neurons, floccular target neurons receive monosyn-
aptic inhibition from the floccular complex of the
cerebellum and were identified by single-shock stimula-
tion in the floccular complex (Lisberger et al., 1994). The
sample of abducens neurons we analyzed probably in-
cluded mainly motoneurons that innervate the lateral rec-
tus muscle. The distributions of correlations (Fig. 2C) were
shifted toward higher values in FTNs and abducens neu-
rons compared to Purkinje cells or non-FTN vestibular
neurons. Average correlations for Purkinje cells, FTNs,
non-FTN vestibular neurons, and abducens neurons were
0.32, 0.61, 0.27, and 0.51, respectively.

In the rest of our paper, we describe spikes as having
predictive value when the activity of a neuron allows us,
as observers, to predict a quantifiable fraction of motor
variation. We regard the degree of prediction as a contin-
uum, and in no sense are we implying that any single
neuron or spike causes behavior by itself, in isolation from
other, correlated neurons and spikes. The difference in
predictive value of a single spike across neuron types was
not tightly linked to the time-varying profile of firing rates
(Fig. 2B). Purkinje cells and FTNs both had early transients
and steady sustained firing rate, but differed in the pre-
dictive values of their spikes. Non-FTN vestibular neurons
and abducens neurons both showed ramp increases in
firing rate throughout the duration of pursuit, but differed
in the predictive values of their spikes. Single spikes had
the highest predictive values in FTNs and abducens neu-
rons, but these neurons have quite different time-varying
profiles of firing rate. Finally, the shapes of the average
linear weighting functions were similar across the neuron

populations (Fig. 2D), even though the functions differed
in amplitude. The time of the peak weight shifted slightly
later as signals moved downstream from floccular Pur-
kinje cells to FTNs to abducens neurons.

Similar predictive value of single spikes in real and
simulated spike trains
Why does a single extra spike convey information about
the impending movement? Is it a natural consequence of
the sensory origin of motor noise and the nature of the
code for movement in premotor pathways and motoneu-
rons? What properties of neuronal spiking or responses
create a situation where a single extra spike is informa-
tive?

The current understanding of the pursuit system is that
vision estimates the relevant parameters of target motion
(e.g., speed, direction, and time of motion onset) and
passes those estimates to the neurons we are studying
here (Osborne et al., 2005). Estimation errors are passed
along as well, and will generate trial-by-trial variations in
neural firing (and behavior), even if the neurons are com-
pletely deterministic and follow their sensory inputs per-
fectly. The presence of trial-by-trial correlations between
neural responses and eye-movement behavior in the pur-
suit system (Medina and Lisberger, 2007; Schoppik et al.,
2008; Hohl et al., 2013; Joshua and Lisberger, 2014)
implies that variation in the sensory estimates is distrib-
uted fairly uniformly to all downstream neurons, so that
the responses of neurons within a particular population
are correlated with each other (Medina and Lisberger,
2007; Schoppik et al., 2008; Huang and Lisberger, 2009).

The trial-by-trial correlations with motor behavior occur
because the neurons in question are driving smooth eye
movement, rather than vice versa. But the quantitative
relationship to the eye movements provides a convenient
tool for understanding the firing rate of the neurons. In
addition, each neuron’s spike trains fluctuate due to local
noise that is independent in each neuron. The local, inde-
pendent noise reduces the size of neuron�behavior cor-
relations, but can be eliminated by averaging across a
population and therefore does not contribute materially to
variation in pursuit. Thus, the situation for premotor neu-
rons in the oculomotor brainstem and cerebellum is ho-
mologous to that for MT neurons: their spike trains reflect
a combination of systematic trial-by-trial top-down fluc-
tuations that may be applied to all neurons and local noise
(Goris et al., 2014).

We next use simulated spike trains to show that the
sensory-induced variation in neural responses supports
the informative nature of single spikes. Local noise in the
timing of individual spikes, on the other hand, tends to
defeat the informative nature of single spikes. We find that
simulated spike trains (see Materials and Methods,
above) have as much predictive value for the behavioral
variation as did the real spike trains. For example, the
example Purkinje cell and FTN in Figure 3, A and D,
showed correlations of 0.74 and 0.88 between the actual
magnitude of the first principal component of eye speed
and the prediction of the optimal linear estimator (i.e., Eq.
2). Identical analysis of the simulated spike trains for the
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same two neurons revealed correlations of 0.67 and 0.88
(Fig. 3B,E). Further, the weights in the linear estimators
were very similar for the real and simulated spike trains of
both neurons (Fig. 3C,F).

Across the full samples of floccular Purkinje cells, FTNs,
non-FTN vestibular neurons, and abducens neurons,
there was a close relationship between the correlations

for real versus simulated single spikes. The scatter plots in
Figure 4, A and B, show that neurons with strongly versus
weakly predictive single spikes in the real spike trains had
similarly predictive single spikes in the simulated spike
trains. In addition, for all four groups of neurons, the
average linear estimators from the simulated data fol-
lowed the same time course as the average linear estima-

Figure 3 Comparison of the predictive value of a single extra spike in real versus simulated spike trains for a floccular Purkinje cell
and an FTN. Results for Purkinje cells are in black and FTNs are in red. A, D, Predicted versus actual amplitude of the first principal
component (PC) of pursuit behavior based on the optimal linear estimator from the real spike trains. B, E, Predicted versus actual
amplitude of the first principal component of pursuit behavior based on the optimal linear estimator from the simulated spike trains.
In all four graphs, each symbol shows the results from a single behavioral trial. C, F, Each trace shows the weights for an optimized

linear decoder (
→
W�t� in Eq. 2) relating the presence of an extra cell spike at time t on the horizontal axis to the amplitude of the first

principal component of eye movement variation. Dark and light curves show results for real data versus simulated spike trains.

Figure 4 Similarity of the predictive value of a single extra spike for real and simulated spike trains across all neurons in our sample.
A, B, Each symbol summarizes the results for a single neuron and plots the correlation between the optimal predictor based on
simulated spike trains against the correlation based on real spike trains. C, D, Average weights in the optimal linear estimators for the
four groups of neurons, plotted as a function of the time of a spike. Continuous and dashed curves show weights based on the real
and simulated spike trains, respectively. Throughout the figure, black, red, green, and blue indicate analyses for floccular Purkinje
cells, FTNs, non-FTN vestibular neurons, and abducens neurons, respectively.
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tors from the real data (Fig. 4C,D). There is one subtle
difference between Figures 3 and 4 in the linear estima-
tors for the simulated data. In Figure 3, C and F, the linear
estimators for the simulated data do not have the early
negative component found in the estimators for the real
data, in the interval from 50 to 100 ms after target motion
onset. In Figure 4, C and D, we have modified the proce-
dure for creating the simulated spike trains slightly so that
the linear estimators now include the early negative lobe.
We did so by measuring the magnitude of slow fluctua-
tions in spike count across trials during fixation in the real
neurons, and including those fluctuations in the calcula-
tions for the simulated spike trains.

The analysis of simulated spike trains emphasizes that
the single spikes are informative about the impending
pursuit eye speed because of the organization of the
sensory-motor system. Available data imply that sensory
estimation errors are distributed fairly uniformly to all
floccular Purkinje cells. The resulting shared trial-by-trial
variation among Purkinje cells leads to sensory-driven
variation in pursuit initiation, and a strong trial-by-trial
correlation between Purkinje cell firing rate and eye move-
ment (Medina and Lisberger, 2007). We take advantage of
that trial-by-trial correlation to simulate the spike trains of
Purkinje cells on the basis of the eye movement in each
behavioral trial. Eye movement does not cause Purkinje
cell firing in real life, but this procedure yields spike trains
that are equivalent to those produced by the shared
sensory drive. The match between the statistics of the real
and simulated spike trains in relation to motor variation
implies that the smallness of local noise and the wide
distribution of trial-by-trial sensory estimation errors to the
Purkinje cell population are responsible for the predictive
power of a single spike. The same logic explains the
agreement of the analyses of real and simulated spike
trains for neurons that lie between the cerebellum and the
eye muscles.

Conditions that allow single spikes to be informative
The observation that we can emulate the predictive value
of a single spike with simulated spike trains opens up an
approach to understand the properties of a neuron’s spik-
ing that render a single extra spike informative. For a
representative FTN and a representative abducens neu-
ron, we used simulated spike trains based on different
parameters to assess how the predictive value of single
spikes varied as a function of signal and noise, defined as
the magnitude of the neural response and the value of the
CV of the simulated spike trains. In the data, the values of
CV during the period of fixation before target motion
varied systematically across neuron populations. It aver-
aged 0.35, 0.20, 0.14, and 0.05 for floccular Purkinje cells,
FTNs, non-FTN vestibular neurons, and abducens neu-
rons, respectively.

For each model neuron, we simulated the time-varying
probability of spikes using the regression coefficients
from the best-fitting kinematic model (Eq. 3), defining that
as a gain of one. We then systematically varied both the
CV and a gain factor that multiplied the probability of
spiking for a given trial. We than generated 10 sets of

simulated spikes for each gain and CV, where a set of
simulated spikes included all the trials in the dataset. For
each set of simulated spikes, we computed the best linear
estimator (Eq. 2) of the first principal component of the
eye velocity behavior. We averaged across the 10 sets to
estimate the mean and standard deviation of the correla-
tion between the actual and predicted magnitude of the
first principle component. Finally, we plotted the results as
a function of gain and CV (Fig. 5A,B).

The analysis of both the simulations and the data from
neurons implies that a neuron’s signal-to-noise ratio is the
major determinant of how informative its single spikes are
about trial-by-trial variations in behavior. For models
based on both representative neurons in Figure 5, in-
creasing the value of CV caused large decreases in the
correlation between actual and predicted magnitude of
the first principal component (Fig. 5A). Conversely, de-
creasing CV to zero caused the correlation to increase,
reaching a value close to one for the FTN and of 0.75 for
the abducens neuron. For reference, the actual CV of
these two neurons was 0.158 for the FTN and 0.058
for the abducens neuron and the values of the correlation
for the data were 0.88 and 0.65. Scaling the gain of the
spiking probability for every trial at the CV from the data
had the opposite effect. Higher gains led to higher values
of correlation coefficient (Fig. 5B), and both neurons
achieved correlations of 1.0 when the gain was high
enough. We conclude that single spikes are likely to be
most informative in neurons that respond strongly to a
stimulus or movement, or that have very regular firing.

It is noteworthy that the abducens neuron achieved a
correlation coefficient of one for high gain, but not for zero
CV. The reason is that some noise is added through the
aliasing caused by binning the spikes, and the binning
noise is a much larger fraction of the total variance of
spiking for the abducens neuron versus the FTN. We were
able to demonstrate the larger noise due to binning in
model spike trains with CV of zero and no trial-by-trial
variation in behavioral output (results not shown).

Analysis of the real data from cerebellar and brains-
tem neurons confirms and extends the predictions
based on simulated spike trains with different gains and
coefficients of variation. The CV of each individual neu-
ron during fixation did not predict the correlation be-
tween the real and predicted magnitudes of the first
principal component of the behavioral variation, either
within or between populations of neurons (Fig. 5D). The
amplitude of the neural signals, defined as the peak of
the average firing rate during the initiation of pursuit
minus the baseline firing rate during fixation, predicted
the correlation somewhat within some of the neural
populations, but did not predict the differences be-
tween populations (Fig. 5E). In contrast, the signal-to-
noise ratio, defined as the amplitude of the neural signal
divided by the CV, was quite predictive. Data from all
four neuron populations followed approximately a sin-
gle relationship, where higher signal-to-noise ratios
were accompanied by a larger correlations between the
real and predicted magnitudes of the first principal
component of the behavioral variation (Fig. 5C,F). Thus,
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the signal-to-noise ratio of a neuron’s spiking during
the initiation of pursuit defines the degree to which a
single spike can be informative about variations in the
impending behavior (see also Schoppik et al., 2008).

Finite datasets underestimate the predictive value of
a spike train
The average weight functions across neurons within a
population are quite smooth (Fig. 2D), but the functions
for individual neurons were quite noisy. The noisiness gave
us some concern about whether our fitting procedure was
limited by the small size of the datasets. For some neurons,
the datasets provided only �50 trials of data and the weight-
ing functions had 30 parameters. Our concern was that our
“leave one out” strategy might be leading to underestimates
of how well a linear estimator could predict the variation in
pursuit eye speed. Our logic was that the optimization pro-
cedure might be degrading the weighting functions by trying
to fit noise in the timing of spikes. The resulting weighting
functions would be suboptimal for the test trial that was left
out of the optimization.

We tested the effects of finite datasets by simulating the
spike trains (see Materials and Methods, above) for
larger numbers of trials. We reused the same eye velocity
traces multiple times but added noise to calculate the
spike trains independently each time. For all groups of
neurons, both the mean weighting functions and the in-
dividual traces were much less noisy when we used more
trials (compare second and third column of Fig. 6). The

correlations between real and predicted amplitudes of the
first principle component were higher for almost all neu-
rons when the analysis used 1000 trials versus for the real
data (first column of Fig. 6), and were still higher when the
analysis used 10,000 trials (not shown). We showed al-
ready (Fig. 4A,B) that we obtained the same correlation
from simulated trials as we did with the real trials, as long
as trial numbers were equated. Thus, the correlations
between the real and predicted amplitude of the first
principle component in the analysis of the actual data
provide lower bounds on the actual correlations that
would have been obtained from the linear weighting func-
tion if we had acquired much larger datasets.

Linear weighting functions versus spike counts
The shapes of the linear estimators for the first principal
component of eye speed (Figs. 1I, 2D, 3C,F, 4C,D) predict
that spikes are more informative about the first principal
component of eye movement variations if they occur near
the center of the analysis window versus at the start or the
end. Thus, the analysis with the linear estimator predicts
that the time of a neuron’s spikes can be important;
simply counting spikes might be less informative than a
linear weighting. However, the weighting function has a
smooth envelope, so that small variations in spike timing
may not have much effect. To resolve this, we next used
a rectangular weighting function to test directly, by count-
ing spikes in different time windows, how much the loca-
tion or duration of the analysis window matters.

Figure 5 Effect of discharge variability and overall signal magnitude on the predictive value of a spike train. A, B, Each graph plots
the mean and standard deviation of the correlation between the real and predicted magnitude of the first principal component of eye
speed based on simulated spike trains. Data are plotted as a function of the coefficient of variation (A) or the gain (B) of the artificial
spike train. Red and blue symbols indicate analysis of simulations based on a representative FTN or abducens neuron. C�F, Scatter
plots, where each symbol shows the results of analyzing the data of a single neuron, and the different plots show the correlation
between the real and predicted magnitude of the first principal component as a function of the coefficient of variation of the spike
trains (D), the amplitude of the neural signal (E), and the ratio of the signal amplitude divided by the coefficient of variation (C, F).
Different colors show results for different classes of neurons.
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Spike counts in brief windows centered 125 ms after
the onset of target motion predicted the magnitude of
the first principal component almost as well as did the
linear weighting function. For each neuron type, the
correlation between the predicted and actual magni-
tude of the first principal component increased as a
function of the duration of the counting interval, and
reached an asymptote for intervals of duration 40 to
100 ms (Fig. 7). For Purkinje cells, windows as short as
40 ms provided nearly asymptotic correlations, mean-

ing that a good account of the variation in motor be-
havior can emerge from just a few spikes (0.04 s � 100
spikes/s � 4 spikes). The asymptotic correlation in
Purkinje cells matched the correlation provided by the
linear estimator for the actual data, while for the other
neurons the asymptotic correlation was somewhat
smaller than that provided by the linear estimator. In-
terestingly, counting spikes is the least informative for
abducens neurons, probably because of edge effects
created by their very regular spiking pattern.

Figure 6 Demonstration that computing the best linear estimator with finite datasets causes over-fitting and underestimates the
predictive value of a spike train. Each row shows data for a different set of neurons. Left, Each graph contains one symbol for each
neuron and shows scatter plots of the correlation of actual and predicted magnitude of the first principal component of the data. Each
point plots the correlation obtained using the same number of trials available in the real data on the y-axis and the correlation obtained
using 1000 trials of simulated data on the x-axis. Middle and right, Each graph plots the time course of the optimal linear estimator
when we used the actual data (middle) or 1000 simulated trials (right). The black curve in each graph shows the average across all
neurons and the gray and colored traces show the individual neurons.
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Recall that the performance of the optimal linear esti-
mator might be worse than that of the spike counting
model simply because these models differ in their com-
plexity. Taking account of the problems of over-fitting
(Fig. 6) improves performance relative to what we can
infer from the limited number of trials in our experiments.
With a dataset of 1000 trials, the linear estimator predicts
performance that is slightly better than the asymptotic
performance of spike counting in windows up to 100 ms
in duration (horizontal red lines in Fig. 7). Thus, counting
spikes in an appropriate small time window predicts the
first component of behavioral variation only slightly less
well than does an optimal linear estimator.

Estimation based on Purkinje cells’ spike counts in
sliding windows of different durations confirmed that
counts were most informative if they occurred in the
middle of the initiation of pursuit, �140 ms after the onset
of target motion (Fig. 8A). The peak correlation between
the actual and predicted magnitude of the first principal
component of eye speed increased as a function of the
duration of the analysis interval. For an analysis interval of
41 ms, the correlation from counting spikes matched that
from the linear estimator, but remained less than we
expected from the linear estimator with larger dataset (red
line labeled “1000 trials”).

The number of spikes in a 41 ms analysis window has a
clear relationship to the eye velocity at the initiation of
pursuit. In Figure 8D, the average trajectory of eye velocity
as a function of time shows a more rapid rise as the
number of spikes in the analysis window increased from
three to six. The correlation between spike count and the
magnitude of the first principle component of the variation
in eye speed is clearly visible in a scatter plot of all trials
from a single Purkinje cell (Fig. 8E). By normalizing the
y-axis of graphs like Figure 8E for the standard deviation
of the magnitude of the first principle component, we can
use the slope of the regression line to estimate the impact
of a single spike on the variation in eye speed, in units of
standard deviations per spike. The distributions of sensi-
tivity for the populations deviated significantly from zero
for Purkinje cells, FTNs, and abducens neurons (p � 10�5

for all populations, signed rank test), with average values
of 0.31, 0.70, and 0.66, respectively (Fig. 8F).

Finally, the data from the 5 ms analysis window are
particularly intriguing because the firing rate of 125 spikes/s
at the peak of the correlation (gray shading in Fig. 8B)
corresponds to either one or zero spikes in the analysis
window on most trials (Fig. 8C). Two spikes occurred very
rarely and three spikes almost never occurred. Thus, the
peak correlation of almost 0.1 shows that one spike in one
Purkinje cell at the right time is informative about 1% of the
variance in the eye speed. The predictive power of spikes
seems to accumulate across time, however. The presence
or absence of a single spike is substantially less informative
than is the number of spikes in a larger window, or the spike
train convolved with an optimal linear estimator.

Counting spikes across time versus counting spikes
across neurons
The similarity of the statistics of the real and simulated
spike trains opens up the possibility of using the simu-
lated spike trains to ask questions about the neural code
that are not accessible given the current size of datasets.
Because the responses of different neurons are linked
through their trial-by-trial correlation with behavior, we
can generate simulated population responses for many
variants of the behavior with confidence that the simu-
lated populations will accurately represent the statistics of
real populations, if we could record them.

We compared the predictions from counting spikes
across a population of neurons versus counting spikes
across time in a single neuron. In each case, we asked
how well the spike count predicted the magnitude of the
first principal component of eye speed. As before, we
created a population of N neurons with M trials of target
motion. For the M trials, we used the different trajectories
of the initiation of pursuit taken from the data and the
approach outlined in Materials and Methods, above, to
generate N � M spike trains. An example of the results
appears in Figure 9, which plots the magnitude of the
correlation as a function of the time of the center of the
counting interval. We obtained better correlations be-
tween the first principal component of eye speed and
spikes counts in a 40 ms window in individual neurons
(Fig. 9, blue traces), versus counts from 40 different neu-
rons in a 1 ms window (Fig. 9, green traces). The differ-
ence was present in all four groups of neurons we studied.

Figure 7 Prediction of eye speed by spike counts in windows of different duration. Each graph plots the correlation between the
output of different estimators and the amplitude of the first principal component of eye speed. Pink swatches are the lower bounds
for the best linear estimator (Eq. 2). Black lines are from the spike count in windows of different duration centered 125 ms after the
onset of target motion. The red line labeled “1000 trials” is the estimate of the upper bound of the results from the best linear estimator.
Different graphs show data for different neuron types.
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To be more systematic, we next evaluated the correla-
tions between the actual and predicted magnitudes of the
first component of eye speed for spike counts in bins of
width ranging from 1 to 96 ms and for populations of 96 to
1 model neurons. The colored images in Figure 10 show
the correlations between actual and predicted magnitude
of the first principal component of eye speed for each
combination. The graphs include superimposed iso-
correlation contours to show the tradeoff between popu-
lation size and duration of the analysis window. The
contours have slopes that range from �2 to �4 in their
steep negative regions, indicating that decreases in the
width of the analysis window had to be compensated by
at least a doubling of the population size to maintain the
predictive value of spike counts.

The results in Figures 9 and 10 depend on the degree of
variation in the interspike intervals. For Poisson spike
trains, it did not matter whether we counted spikes in a N
millisecond window for one neuron versus a 1 ms window
for N neurons (data not shown). However, for the sub-
Poisson spike trains of neurons in the oculomotor cere-
bellum and brainstem, it was better to count across a
larger window in a smaller number of neurons. Thus,
under the circumstances that exist in the oculomotor
cerebellum and brainstem, the spike train in a brief win-

dow for a single neuron predicts behavior better than
does a population average with high-temporal resolution.

Discussion
Our goal was to use detailed analyses of spike trains on a
fine temporal scale during individual movements to un-
derstand the neural code for motor control. We studied
neurons whose firing rate, defined as the inverse of the
interspike interval, encodes trial-by-trial variation in the
impending motor behavior (Medina and Lisberger, 2007;
Joshua and Lisberger, 2014). Our analysis reveals that the
presence and timing of a single extra spike in a single
behavioral trial is informative about the impending eye
movement in many classes of neurons in the oculomotor
system. They include Purkinje cells in the cerebellar floc-
cular complex, FTNs in the brainstem that are last-order
interneurons, other premotor neurons in the region of the
vestibular nucleus, and neurons in the abducens nucleus.

Possible neural codes in the motor system
Our analysis reveals the features of spike trains that could
constitute the neural code in the final motor pathways for
pursuit eye movements. Variation in a spike train of the order
of a single extra spike is informative about the variation in
behavior. The time of the extra spike matters. Spikes are

Figure 8 Prediction of eye speed by spike counts in floccular Purkinje cells. A, Correlation between actual and predicted amplitude
of the first principal component of eye speed as a function of the duration and time of the analysis interval. Different colored traces
show results for analysis intervals of different durations. Pink band labeled “Linear” shows the correlation obtained with the best linear
estimator. Red line labeled “1000 trials” shows the expected correlation for the best linear estimator if we had acquired 1000
repetitions of the target motion. B, Average firing rate of the population of Purkinje cells as a function of time. Gray bar shows a 20
ms analysis window centered at 140 ms. The gray bar indicates the time of the peak correlation with the first principal component
(PC1) in A. C, Number of spike counts in a 5 ms analysis interval as a function of the center of the interval. Different color traces show
numbers for different spike counts. D, Averages of eye velocity as a function of the time from onset of target motion for trials in one
example Purkinje cell. Different colors show eye velocities for trials with three, four, five, or six spikes in the 41 ms interval centered
140 ms after the onset of target motion. E, Scatter plot showing the z-scored amplitude of the first principle component of eye speed
as a function of the number of spikes in the same interval as D. Each symbol shows data from one trial. The regression line defines
the sensitivity in units of standard deviations per spike. R � 0.53 for the symbols and the regression equation was y � 0.72x � 3.18.
F, Distributions of sensitivity for populations of floccular Purkinje cells, FTN, and abducens neurons.
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more informative if they occur around the center of the 100
ms time interval during which pursuit initiation occurs, ver-
sus at the start or the end of the interval. Simply counting
spikes is almost as informative as the optimal linear filter, but
only if the analysis window is centered near the middle of the
initiation of pursuit. Thus, simple counting of spikes and the
weighted spike counting provided by the linear estimator
agree about the amount of information in spike counts and
the importance of the time of the spikes. We suspect that the
importance of the time of spikes does not indicate a feature
of the decoder used to convert neural spikes into eye move-
ments. Instead, we think that the failure of time�translation
invariance is a by-product of our analysis of behavioral
variation. If we are trying to map spikes into the amplitude of
the first mode of behavioral variation, the mapping may not
be invariant to time translations.

The ideal duration of the window for counting spikes in
our data was related to the discharge regularity of the
particular group of neurons. For Purkinje cells, which are
approximately half-Poisson, counting spikes beyond a 40
ms window increases the predictive power for variation in
the behavior only slightly. Even counts of zero or one
spike in a 5 ms window were (slightly) informative about
the variation in eye speed. Spike counts in vestibular and
abducens neurons predicted variation in the first principle
component of eye speed in a way that improved more
gradually as window size increased up to 60 or 150 ms.
The need for longer windows in the latter neurons may be
due to aliasing noise created by their more regular dis-

charge: FTNs are approximately one-quarter-Poisson
while abducens neurons are �1/20th-Poisson. Purkinje
cells and FTNs are second-to-last-order and last-order
interneurons. Thus, even for neurons that are close to the
end of a sensory-motor pathway, spike counts in very
brief windows provide asymptotic information about vari-
ation in behavior, and the time of the center of the count-
ing window matters. For such short windows, the
difference between spike counting and temporal codes
starts to blur.

In the brainstem and cerebellum, it has been typical to
characterize the neural code by calculating firing rate. In
practice, firing rate is difficult to assess from a single in-
stance of a spike train from a single neuron. Therefore, the
preferred approach has been to average across repeated
movements, something the nervous system cannot do. The
field takes refuge in the notion that the nervous system can
reconstruct firing rate in real time by counting spikes in small
bins across single spike trains from many neurons in a neural
population. Our analysis of simulated spike trains suggests
that refuge may be insubstantial. Counting spikes of an
individual Purkinje cell across a properly positioned 40 ms
window is considerably more informative than counting
spikes of 40 Purkinje cells in a 1 ms window. This difference
results from the sub-Poisson nature of the firing, but may
have general implications because few neurons in the brain
are Poisson on all time scales. We note that synaptic poten-
tials with a long time constant would take advantage of the

Figure 9 Comparison of predictions made by spike counts over 40 ms in time versus space. Each panel shows data for a different
group of neurons. Within each panel, the traces show the correlation between the actual and predicted amplitude of the first principal
component of eye speed as a function of the time at the center of the analysis window. Blue traces show the results for counting
spikes in a 40 ms window; the traces end at 180 ms because of the width of the analysis window. Green traces show the result for
counting spikes in a 1 ms window across the simulated spike trains of 40 different neurons.
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informative nature of accumulating spikes across time ver-
sus across neurons.

The filter that creates firing rate from a single spike train
is nonlinear, messy, and difficult for a nervous system to
implement. If the firing rate cannot be reconstructed op-
timally by counting spikes across neurons, then perhaps
we should consider the neural code in terms of the oc-
currence of small numbers of spikes in restricted time
windows. This view is supported by the analysis of real
spike trains in our paper. It also agrees with the finding
that information about target direction asymptotes in
short time windows after MT neurons fire just a few spikes
(Osborne et al., 2004), and with an analysis showing that
the pattern of spikes and silences across small popu-
lations of MT neurons is more informative than simple
spike counts (Osborne et al., 2008). It is worth noting
that the original example of linear decoding of spike
trains (Bialek et al., 1991) also was in a situation where
the encoding of signals is nonlinear: decoding can be
simpler than encoding.

What makes a single spike informative?
Our analysis of simulated spike trains implies that the
strong neuron�behavior correlations of brainstem and
cerebellar neurons (Medina and Lisberger, 2007; Joshua
and Lisberger, 2014) are linked tightly to the predictive
value of a single extra spike. We simulated the spike trains
by assuming that the variation in both the spike trains of
neurons and the eye movement behavior on a given trial
result from a single source, namely variation in sensory
estimates of target speed. Because the neural and motor

responses share a noise source, they are correlated. The
correlation allows us to use the eye movement to create
realistic model spike trains on each simulated trial, even
though the real cause-and-effect relationship is in the oppo-
site direction: trial-by-trial variations in the neural spike trains
cause the trial-by-trial variations in eye movement.

The proposed correlations across the Purkinje cell pop-
ulation could, in principle, arise from local circuit proper-
ties in the cerebellar cortex. However, three facts argue
for a sensory origin in terms of estimates of target velocity
that are shared across the full population of Purkinje cells.
First, more than 90% of the trial-by-trial variation in the
initiation of pursuit projects onto the parameters of target
motion: speed, direction, and time of onset (Osborne
et al., 2005). Second, many individual neurons in area MT
and in the smooth eye movement region of the frontal eye
fields show trial-by-trial correlations between firing rate
and the eye velocity at the initiation of pursuit (Hohl et al.,
2013; Schoppik et al., 2008). If trial-by-trial variation in
pursuit behavior arose downstream from MT, then trial-
by-trial correlations between cortical neuron activity and
pursuit velocity would not be expected (Schoppik et al.,
2008). Third, we do not see evidence in the brainstem of
separate, parallel noise sources from the two sides of the
cerebellum (Joshua and Lisberger, 2014), as we would
expect to if motor variation arose locally in the cerebellum.

The presence of a shared noise source to all neurons in a
population, and its propagation all the way to the motor
output, means that the probability of spiking as a function of
time should follow highly correlated trajectories in all the
model neurons in a given population. The spike trains of the

Figure 10 Trade-offs between the duration of the spike counting bin and the size of the population of model neurons. Different color
plots show results based on different populations of neurons. Each pixel uses color to indicate the correlation between actual and
predicted magnitude of the first principle component of eye speed, for the population size and bin width on the y- and x-axes. The
black lines show iso-probability contours.
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entire population should covary. The predictive value of a
small number of spikes in a specific time window results
from the dominance of the upstream sensory noise source
over more local or private sources of noise in the individual
neurons; a necessary corollary of this is that variations in the
different neurons must be correlated. Thus, the organization
of the sensory-motor system for pursuit allows small num-
bers of spikes to be a critical symbol in the neural code for
motor control, even without any explicit mechanism for con-
trolling spike timing or synchronizing spiking across neurons
in a population. The predictive value of a single extra spike
for the motor output really is a report of small errors in
sensory estimation.

Our results align with the earlier analysis of the motion-
sensitive neurons of the fly visual system during the com-
plex, dynamic stimuli found in natural settings. In this
system, de Ruyter van Steveninck and Bialek (1988)
showed that single spikes and short spike sequences
point to distinguishable brief motion trajectories. Bialek
and Zee (1990) showed that the same finding emerges
even for model neurons with Poisson spiking modulated
by time-dependent signals. Bialek et al. (1991) showed
that the information carried by each spike could be added
up to give a running estimate of a velocity waveform with
a precision close to the limits set by noise in the sensory
periphery. More abstractly, Strong et al. (1998) measured
the information carried by the spike trains of fly motion
neurons, and Brenner et al. (2000) decomposed the spike
trains into contributions from single spikes and intervals.
We do not think it is fair to dismiss the results from the fly
motion system because flies use a relatively small number
of neurons to represent visual motion. The wide-field
motion sensors in large blowflies take inputs from thou-
sands of other neurons, as do neurons in the mammalian
cortex. Importantly, Strong et al (1998) did the same
analyses for data on the response of primate MT neurons
to repeated presentations of a dynamic random dot stim-
ulus (Britten et al., 1993). Under these dynamic condi-
tions, MT neurons carry essentially the same number of
bits per spike as do the fly neurons.

The dynamic nature of the stimulus/response situation is
a critical piece of the informativeness of single spikes. In-
deed, with quasi-static stimuli or movements, it is hard to
imagine single spikes being very important. The work in flies
pushes us away from thinking about static inputs and fo-
cuses attention on dynamic stimuli and short time scales.
The initiation of smooth pursuit in monkeys is again a dy-
namic behavior that occurs over a brief time interval. In both
cases, the relevant neurons generate only handful of spikes
over the relevant time interval, so it seems hard to escape
the conclusion that single spikes could be predictive.

Generalization to other neural systems?
To what extent can we expect that a single extra spike will
be meaningful in neurons in other brain areas and
sensory-motor systems? Churchland et al. (2006) showed
neuron�behavior correlations in the premotor cortex,
raising the possibility that a single spike might be infor-
mative in the most responsive of premotor cortex neu-
rons. Manette and Maier (2004) performed an analysis

related to ours on motor cortex neurons and came to
similar, but slightly less specific, conclusions about a
code based on the timing of small numbers of spikes. A
clear example of the importance of single spikes is pro-
vided by the temporally sparse responses related to spe-
cific syllables in one group of neurons in an area of the
songbird telencephalon called HVC (Hahnloser et al.,
2002). The climbing fiber input to the cerebellum is widely
viewed as an event detector, where a single spike is
informative, even with recent evidence that the climbing
fiber input can provide a graded signal (Najafi and Medina,
2013; Yang and Lisberger, 2014). There is evidence for a
temporal code based on synchrony in the whisker sensa-
tion system (Jadhav et al., 2009; Bruno, 2011). Finally,
there are multiple examples where the timing of single
spikes is informative about the properties of a visual
stimulus (Victor and Purpura, 1996; de Ruyter van Steve-
ninck and Bialek, 1988). Still, there also are some coun-
terexamples (Miura et al., 2012).

Our simulations suggest that single spikes will predict
the impending behavior best in neurons with either large
response magnitudes or low interspike interval variability.
For a single spike train to account for 9% of the variance
in motor activity (r � 0.3), the ratio of response magnitude
to the coefficient of variation will have to be �150 (Fig.
7C,F). A cortical neuron with a CV of 1.0 would need to
have a response magnitude of 150 spikes/s. On this basis
alone, we would expect a single spike train to be infor-
mative about the impending smooth eye movement for
the most responsive of MT neurons, if the neuron also has
strong neuron�neuron correlations with its neighbors,
which many MT neurons do (Huang and Lisberger, 2009;
Hohl et al., 2013; Lee and Lisberger, 2013).

We have shown that a few spikes in small temporal
windows could provide a meaningful code for motor be-
havior in neurons that are close to the final motor output.
Still, the neural code will be identified by knowing how the
response of a population of neurons actually is decoded,
not just how it could be decoded. The answer will be in the
timing of the barrage of spikes in a neural population,
processed through potentially nonlinear mechanisms that
determine the magnitude, time course, and spatiotempo-
ral integration of postsynaptic potentials. For example,
Chaisanguanthum and Lisberger (2011) used a model that
was based on the timing of spike arrivals at a neural
decoder to solve a problem that had been formulated
previously in terms of the firing rates of neurons. Their
model performed the same decoding of target speed as
any number of traditional decoders that are based on
firing rate, including maximum likelihood decoders (De-
neve et al., 1999; Jazayeri and Movshon, 2006) and sim-
ple vector averagers (Salinas and Abbott, 1997; Groh,
2001; Churchland and Lisberger, 2001; Hohl et al., 2013).
We imagine that similar solutions based on the timing of
small numbers of spikes are likely to be possible for many
coding and decoding problems in the brain.
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