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White matter degeneration is a pathological hallmark of neurodegenerative diseases including Alzheimer's. Age
remains the greatest risk factor for Alzheimer's and the prevalence of age-related late onset Alzheimer's is
greatest in females. We investigated mechanisms underlying white matter degeneration in an animal model
consistent with the sex at greatest Alzheimer's risk. Results of these analyses demonstrated decline inmitochon-
drial respiration, increased mitochondrial hydrogen peroxide production and cytosolic-phospholipase-A2

sphingomyelinase pathway activation during female brain aging. Electron microscopic and lipidomic analyses
confirmed myelin degeneration. An increase in fatty acids and mitochondrial fatty acid metabolism machinery
was coincident with a rise in brain ketone bodies and decline in plasma ketone bodies. Thismechanistic pathway
and its chronologically phased activation, links mitochondrial dysfunction early in aging with later age develop-
ment of whitematter degeneration. The catabolism ofmyelin lipids to generate ketone bodies can be viewed as a
systems level adaptive response to address brain fuel and energy demand. Elucidation of the initiating factors and
the mechanistic pathway leading to white matter catabolism in the aging female brain provides potential thera-
peutic targets to prevent and treat demyelinating diseases such as Alzheimer's and multiple sclerosis. Targeting
stages of disease and associated mechanisms will be critical.

© 2015 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Age-related myelin breakdown occurs during normal aging and in
major neurodegenerative diseases including Alzheimer's (Bartzokis,
disease; MTL, medial temporal
lipase A2; CC, corpus callosum;
xy-D-glucose; CMRglu, cerebral
yruvate dehydrogenase; COX,
-alcohol-dehydrogenase; BBB,
;WT,wild type;MIB,mitochon-
respiratory control ratio; GFAP,
A, TaqMan low density array;

rotein; HADHA, hydroxyacyl-
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id chromatography mass spec-
lkaline ceramidase; MAG, mye-
te glycoprotein; Erbb3, Erb-B2
dendrocyte transcription factor;
cosahexaesnoic acid; ROS, reac-
BACE1, beta-secretase 1; HK,

. This is an open access article under
2004; DeCarli et al., 1995; Erten-Lyons et al., 2013; Ge et al., 2002; Lu
et al., 2013; Lebel et al., 2012; Zhang et al., 2007; Tang et al., 1997).
White matter degeneration in Alzheimer's disease (AD) worsens with
progression of disease and is predictive of cognitive decline (Bartzokis,
2004; DeCarli et al., 1995; Erten-Lyons et al., 2013; Ge et al., 2002; Lu
et al., 2013; Lebel et al., 2012; Zhang et al., 2007; Tang et al., 1997).
Brain regions that myelinate late in brain development and which are
populated by small, thinly myelinated are most vulnerable to break-
down and degeneration in AD. Late-myelinating regions include cortical
association areas such as fronto-parietal tracts, the genu of the corpus
callosum (CC), the uncinate fasiculus, and the superior longitudinal
fasiculus (Brickman et al., 2012; Marner et al., 2003). Further, the affer-
ent targets of these fiber systems, which include the hippocampus and
subiculum, also show white matter (WM) hyperintensities (Di Paola
et al., 2010; Brickman et al., 2012; Marner et al., 2003). Many of these
vulnerable fiber tracts, such as the superior longitudinal fasiculus, the
CC, internal capsule, corona radiata, and parahippocampal WM also
have a high degree of heritability (Sprooten et al., 2014; Jahanshad
et al., 2013). Myelin breakdown manifests earlier in apolipoprotein ε4
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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(APO-ε4) carriers, a major genetic risk factor for AD (Bartzokis et al.,
2006). Regionsmost vulnerable to WM degeneration map onto regions
preferentially affected in the pathological trajectory of AD (Bartzokis,
2004), suggesting a possible link betweenmechanistic pathways affect-
ed early in AD progression, and late stageWM degeneration and cogni-
tive deficits.

The bioenergetic system of the brain is compromised early in the pro-
gression of AD and is evident during the prodromal (preclinical) stage of
the disease (Mosconi, 2005; Mosconi et al., 2006, 2009b; Reiman et al.,
1996, 2004; Yao et al., 2009, 2011b; Brinton et al., 2015; Moreira et al.,
2006; Lin and Beal, 2006). Glucose hypometabolism (Mosconi, 2005;
Mosconi et al., 2006, 2009b; Reiman et al., 1996, 2004) and a compensa-
tory shift to an alternative fuel substrate, ketone bodies, have been
established as a metabolic phenotype characteristic of the AD brain in
both clinical and preclinical studies (Yao et al., 2009; Ding et al., 2013;
Brinton et al., 2015). Reduction in cerebral metabolic rate of glucose utili-
zation, particularly in the entorhinal cortex and hippocampus, correlate
with cognitive deficits over time and most accurately predict future cog-
nitive decline in normal individuals as well as conversion to mild cogni-
tive impairment (de Leon et al., 2001; Herholz, 2010; Jagust et al., 2007;
Mosconi, 2005). Multiple clinical studies have identified cerebral glucose
hypometabolism in persons with AD as well as in those at increased risk
for AD, such as APO-ε4 carriers and women (Mosconi, 2005; Mosconi
et al., 2005, 2006, 2008a,b,c, 2009a,b, 2010, 2011; Reiman et al., 1996,
2004; Silverman et al., 2011; Herholz, 2010; Vlassenko et al., 2010;
Brinton et al., 2015). Further, persons with incipient AD exhibit a utiliza-
tion ratio of 2:1 glucose to alternative fuel,whereas comparably aged con-
trols exhibit a ratio of 29:1, whereas young controls exclusively use
glucose as with a ratio of 100:0 (Hoyer et al., 1991).

Loss of estrogenic control of glucose metabolism in brain during
menopause can lead to decreased glucose utilization, diminished aero-
bic glycolysis and altered oxidative phosphorylation, which together
generate a hypometabolic phenotype (Yao et al., 2009, 2010, 2012;
Ding et al., 2013; Nilsen et al., 2007; Yin et al., 2015). Clinical positron
emission tomography with 2-[18F]fluoro-2-deoxy-D-glucose (FDG-
PET) analyses indicate a significant decline in cerebral glucosemetabolic
rate (CMRglu) in the posterior cingulate (PCC) in postmenopausal
women (Rasgon et al., 2005) and a decline in cognition during themen-
opausal transition (Weber et al., 2014;Weber et al., 2013). These clinical
findings are recapitulated in studies from animal models of female en-
docrine aging and AD, which demonstrate a decline in mitochondrial
bioenergetics and generalized shift from glycolytic energy production
toward use of an alternative fuel, ketone bodies, during the transition
to reproductive senescence and early in AD pathology progression
(Yao et al., 2009, 2010, 2012; Nilsen et al., 2007). Development of
Alzheimer's pathology is accompanied by a decrease in expression and
activity of enzymes involved inmitochondrial bioenergetics and glucose
metabolism, including pyruvate dehydrogenase (PDH) and complex IV
cytochrome c oxidase (COX) (Blass et al., 2000; Federico et al.,
2012; Gibson et al., 1998, 2005; Gibson and Huang, 2005; Yao et al.,
2009, 2010, 2012; Nilsen et al., 2007). Mitochondrial dysfunction
leads to decreased mitochondrial respiration, increased oxidative
stress, and increased mitochondrial Aβ load and Aβ-binding-alcohol-
dehydrogenase (ABAD) expression (Chou et al., 2011; Du et al., 2010;
Yao et al., 2009). Basic science discovery analyses indicate that glucose
hypometabolism and decline in bioenergetic capacity in brain is associated
with generation of hallmark pathologies of AD (Yao et al., 2009, 2011b;
Ding et al., 2013; Kadish et al., 2009; Blalock et al., 2003).

Under conditions of diminished glucose availability, the brain will
progressively utilize circulating fatty acids as a ketogenic energy source
(Morris, 2005; Guzman and Blazquez, 2004). Utilization of liver-derived
ketone bodies by brain is well established under two conditions: during
breast feeding of high lipid diet and during periods of starvation
(Morris, 2005). During these states, the ketone bodies acetoacetate
and β-hydroxybutyrate supply up to 60% of the human brain's energy
requirements (Veech et al., 2001; Cahill, 2006). Ketone bodies derived
from liver metabolism of lipids cross the blood brain barrier (BBB)
through the monocarboxylic acid transporter (MCT1) (Ding et al.,
2013; Morris, 2005). However, as with glucose transporters, MCT1 ex-
pression can decline with age and AD (Ding et al., 2013). A potential
compensatory response todecline in peripherally derived ketonebodies
is the utilization of brain-derived sources of fatty acids to generate ke-
tone bodies (Yao et al., 2011b). Herein, we provide evidence from the
aging female brain indicating that endogenous brain lipids can serve
as a source of ketone bodies. Specifically, we provide a mechanistic
pathway for myelin catabolism initiated by mitochondrial H2O2 activa-
tion of the cPLA2-acid sphingomyelinase pathway that leads to loss of
myelin integrity, lipid droplet accumulation, fatty acid metabolism,
and ketone body generation.

2. Materials and Methods

2.1. Animals

Animal studies were performed following National Institutes of
Health guidelines on use of laboratory animals; protocols were ap-
proved by the University of Southern California Institutional Animal
Care and Use Committee. Five cohorts of female aged (3, 6, 9, 12, 15
and 18 months) wild type (WT) mice were used to investigate the
H2O2 induced PLA2-sphingomyelinase pathway for the catabolism of
the myelin sheath. Female mice were used to interrogate the effects of
the menopausal transition on WM degeneration in brain due to
the translational comparability of the reproductively aging female ro-
dent to the reproductively aging female human. Age changes in repro-
ductive cycles begin relatively early in the lifespan of all mammals
because of ovarian senescence (Finch et al., 1984). In lab rodents, cycle
regularity and fertility decline begin after 6 months, the age of ‘retired
breeders’. The human perimenopause is characterized by the meno-
pausal transition as a ‘regularly irregular’ process, with marked cycle-
to-cycle variability (Prior, 1998; Santoro, 2005; Burger et al., 2007;
Burger et al., 2008). This feature of the perimenopause is closely
matched in laboratory rodents. Increasing cycle irregularity is character-
istic of laboratory rodents of most genotypes after 8 months and
presents a convenientmodel for the irregular cycles of human perimen-
opause (Yin et al. 2015). By age 12months, some mice have fewer than
the minimum 100 follicles required to maintain cyclicity (Gosden et al.,
1983). Therefore four groups in varying stages of reproductive function-
ality were defined for this study: 3–6 month old mice were designated
reproductively competent, 9 months reproductively irregular, 12
months reproductively incompetent and 15–18 months mice were
termed aged.

The number of animals included inmitochondrial, genomic, electron
microscopy and lipidomics analyses was determined based on the
95% chance to detect changes in 30–50% of animals. Variance in
the number of animals per group was due to three variables: 1.) the
number ofmice available per age group in themouse colony, 2.) techni-
cal mishap e.g. tubes cracking during ultra-centrifugation, and 3.) limi-
tation in assay format e.g. number of wells per plate. Animal
randomizationwas not possible because agewas the variable determin-
ing group assignment. Micewithin each age groupwere assigned a ran-
domization number to ensure that analyses were conducted blind to
age group.

2.2. Replicates

This program of research was designed to sequentially investigate
activation of the mechanistic pathway underlying mitochondrial dys-
function to WM degeneration. Key aspects of the hypothesized mecha-
nistic pathway leading to WM degeneration were confirmed i.e.
replicated through multiple analytic strategies. For example, cPLA2 ac-
tivity was determined by enzyme activity assay, immunohistochemical
detection and by arachidonic acid production.
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2.3. Inclusion and Exclusion Criteria

Data were not eliminated. Standard errors are indicative of the full
range of data. In some instances data exhibited high variability and
thus did not reach significance.

2.4. Statistics

All statistical analyses were conducted using One-way ANOVA and
were corrected for multiple comparisons followed by a Holmes–Sidak
post hoc analysis. All statistical computations were carried out using
Prism (Graphpad Software). Center and dispersion were defined as
the mean and standard of the mean respectively.

2.5. Brain Tissue Preparation and Mitochondrial Isolation

Micewere anesthetized and sedated, followed by perfusionwith PBS
and formalin for immunohistochemistry (Tiwari-Woodruff et al., 2007).
Prior to cryostat slicing and staining whole brains were embedded in a
7.5% gelatin and 15% sucrose solution in water. The gelatin block was
then fixed and placed in a 20% sucrose solution for 2 days or until
ready to slice.

For biochemical, genetic and mitochondrial isolation mice were eu-
thanized and the brains were rapidly dissected on ice. Cerebellum and
brain stemwere excluded. Both cortex and hippocampus were harvest-
ed and frozen in−80 °C for subsequent biochemical and genetic analy-
ses, while mitochondria were isolated from whole brain. During
mitochondrial isolation mitochondria, cytosol and tissue homogenate
were collected. Whole brain mitochondria were isolated as previously
described (Yao et al., 2009, 2010) Briefly, the brain was rapidly minced
and homogenized at 4 °C in mitochondrial isolation buffer (MIB)
(pH 7.4), containing sucrose (320 mM), EDTA (1 mM), Tris–HCl
(10 mM), and Calbiochem's Protease Inhibitor Cocktail Set I (AEBSF-
HCl 500 μM, aprotonin 150 nM, E-64 1 μM, EDTA disodium 500 μM,
leupeptin hemisulfate 1 μM). Single-brain homogenates were then cen-
trifuged at 1500 g for 5 min. The pellet was re-suspended in MIB, re-
homogenized, and centrifuged again at 1500 g for 5 min. The post-
nuclear supernatants from both centrifugations were combined, and
crude mitochondria were pelleted by centrifugation at 21,000 g for
10 min. The resulting mitochondrial pellet was re-suspended in 15%
Percoll made in MIB, layered over a preformed 23% and 40% Percoll dis-
continuous gradient, and centrifuged at 31,000 g for 10 min. The puri-
fied mitochondria were collected at the 23% and 40% interface and
washed with 10 ml MIB by centrifugation at 16,700 g for 13 min. The
loose pellet was collected and transferred to a micro-centrifuge tube
and washed in MIB by centrifugation at 9000 g for 8 min. The resulting
mitochondria samples were used immediately for respiratory measure-
ments and hydrogen peroxide production or stored at−80 °C for later
protein and enzymatic assays. During mitochondrial purification, ali-
quots were collected for confirmation of mitochondrial purity and in-
tegrity following a previously established protocol (Irwin et al., 2008).

2.6. Respiratory Measurement

Mitochondrial respirationwas determined using the Seahorse XF-96
metabolic analyzer following established protocol (Rogers et al., 2011).
Briefly, 4 μg ofmitochondrial samples in 25 μl 1×MASbufferwere seed-
ed into each assay well. Mitochondrial samples were spun down at
2000 g for 10 min and then supplemented with 75 μl 1× MAS buffer
with substrate (glutamate and malate 5 mM). Metabolic flux cartridges
were loaded with the following reagents in 1× MAS: port A: ADP
(20 mM); port B: Oligomycin (30 μg/ml); port C FCCP (28 μM; and
port D: Rotenone (16 μM)+Antimycin (70 μM).Mitochondrial respira-
tionwas determined sequentially in a coupled statewith substrate pres-
ent (basal respiration, state 4 respiration), followed by ADP stimulated
state 3 respiration after port A injection, (phosphorylating respiration
in the presence of ADP and substrates). Injection of oligomycin in port
B induced state 40 respiration and the subsequent injection of FCCP in
port C induced uncoupler-stimulated respiration state 3u while the
final injection of rotenone and antimycin in port D resulted in non-
oxidative phosphorylation related residual oxygen consumption
OCRresidual. Respiratory control ratio value was calculated as the ratio
of oxygen consumption rate (OCR) at state 3 respiration over OCR at
state 4 respiration:respiratory control ratio (RCR)=OCRstate 4/OCRstate 3.

2.7. Hydrogen Peroxide (H2O2) Production, Enzyme Activity Assays and β-
Hydroxybutyrate (Ketone Body) Measurements

The rate of hydrogen peroxide production by isolated mitochondria
(20 μg), was determined by the Amplex Red Hydrogen Peroxide or Per-
oxidase Assay kit (Invitrogen) following themanufacturer's instructions
with the presence of 5 mMglutamate andmalate but not ADP (state 4).
cPLA2 activity was determined in tissue homogenate obtained during
the mitochondrial isolation and hippocampal tissue homogenate using
the arachidonoyol thio-PC substrate method for determining cPLA2 ac-
tivity (Cayman Chemical). A coupled enzymatic reaction was used to
monitor sphingomyelinase activity (Cayman chemical). Brain ketone
body level was determined using the Liquid Color β-Hydroxybutyrate
assay kit (Cayman Chemical) following the manufacturer's instruction.

2.8. Arachidonic Acid Production

Lipids were extracted from thawed tissue homogenate (1 ml) using
a modified Bligh and Dyer procedure as previously described (Fonteh
et al., 2014; Bligh and Dyer, 1959). The lipid extract in CHCl3 was
dried under a stream of N2 and free arachidonic acid and [2H8]-arachi-
donic acid internal standard were converted to pentafluorobenzyl es-
ters (Quehenberger et al., 2008). Derivatized arachidonic acid was re-
dissolved in 50 μl dodecane and then transferred into GC–MS vials. Car-
boxylate arachidonic acid ions (m/z = 303) and deuterated internal
standard (2H8-AA, m/z = 311) were detected by injecting 1 μl
derivatized extracts onto a 7890A GC System coupled to a 7000 MS Tri-
ple Quad (Agilent Technologies). Gas chromatography was performed
using a Phenomenex Zebron ZB-1MS Capillary GC Column (30m length,
0.25 mm I.D., 0.50 μm film thickness) as previously described (please
reference Fonteh et al., 2014). The temperature of the ion source was
200 °C, and the temperature of the quadrupoles was 300 °C. Single ion
monitoring was used to determinem/z for arachidonic acid and deuter-
ated internal standards in all samples. An AgilentMassHunterWorksta-
tion Software was used to analyze GC–MS data. A calibration curve was
acquired prior to sample analysis and quality control standards were
analyzed for calibration and retention time reference. Data for arachi-
donic acid analyzed in triplicates had a consistent QC Accuracy within
80–120% of expected concentrations. Peak integration was automatic
and manual integration was used for selected cases when the arachi-
donic acid peaks were too broad.

2.9. Immunohistochemistry

Frozen, embedded brains were sliced 30 μm thick and then proc-
essed for immunohistochemistry using a standard protocol (Tiwari-
Woodruff et al., 2007). Sections were immunostained using antibodies
directed against astrocytes and PLA2 (glial fibrillary acidic protein
(GFAP), 1:1000 4 °C overnight, Millipore; PLA2, 1:200 4 °C overnight)
followed by secondary antibody fluorescein goat anti-mouse and fluo-
rescein goat anti-rabbit (1:500, 1 h at room temperature; Life Technol-
ogies). Myelin area was assessed using the BrainStain™ Imaging Kit
from (Invitrogen) according to themanufacturer's instructions. Sections
were mounted with anti-fade mounting medium with DAPI (Vector
Laboratories). Fluorescent imageswere takenusing a fluorescentmicro-
scope, normalized, and analyzed with the slide book software (Intelli-
gent Imaging Innovations). Masks were created over the CC, anterior
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commissure and hippocampal fimbria using the slide book software to
determine astrocyte reactivity and myelin area.

2.10. Neuron and Enriched Astrocyte Culture, and H2O2 Treatment

Primary neuron and enriched astrocyte cultures were prepared ac-
cording to a previously established protocol (Yao et al., 2011a;
Gilmore et al., 2007). Briefly hippocampal neurons and glia from day
18 (E18) embryos of female Sprague–Dawley rats were cultured in
60 × 15 mm polystyrene petri dishes and T75 flasks respectively. Neu-
rons were grown in Neurobasal Medium +B27 supplement for
10 days prior to H2O2 treatment. Mixed glia were grown in growth
media (DMEM:F12 (1:1) + 10% FBS) for 14 days or until confluent.
24 h prior to the experiment themixed glia were placed onto an orbital
shaker for 4 h to shake off the majority of microglia and yield enriched
astrocyte cultures. Astrocytes were then plated on polystyrene petri
dishes coated with polyethyleneimine (PEI) and allowed to grow over-
night. Neurons and enriched astrocytes were treated with doses of
H2O2. Media and cells were collected and stored at −80 °C to be later
analyzed for cPLA2 activity.

2.11. CustomWM Gene Array

Low density gene expression array was performed as previously de-
scribed (Zhao et al., 2012). Custom 384-well TaqMan® low density
array (TLDA) cards were designed with the help of Dr. Liqin Zhao and
was used to investigate the WM degeneration profile. Total mRNA
from mouse hippocampus was extracted with TRIzol reagent (Gibco
BRL) according to manufacturer's instructions. Total RNA (1–5 μg) was
used to create the first strand cDNA using reverse transcriptase super-
script III (Invitrogen). cDNAwas amplifiedby polymerase chain reaction
(PCR) using SYBERGreen PCR master mix (BioRad) on an iCycler real-
time PCR machine (Bio-RAD).

Data were analyzed using the RQ Manager Version 1.2 and
DataAssist Version 2.0 (Applied Biosystems). Relative gene expression
levels or fold changes relative to the reference group were calculated
by the comparative Ct (ΔΔCt) method using iCycler software (BioRad),
with Ct denoting threshold cycle (Schmittgen and Livak, 2008).
Selection of the endogenous control gene for normalization was based
on the control stability measure (M), which was calculated using
the geNom algorithm; genes with the lowest M values have the
most stable expression. Four samples per group were included in the
analysis. For each sample, average Ct for each target genewas calculated
as the mean of 2 technical replicates; ΔCt was calculated as the differ-
ence in average Ct of the target gene and the endogenous control
gene. Fold change was then calculated as mean 2−ΔCt (comparison
group)/mean 2

−ΔCt (reference group). The 2
−ΔCt values for each target gene were

statistically analyzed by ANOVA followed by pairwise comparisons
using Student's t-test. The statistical significance was indicated by
p ≤ 0.05; p-values were not adjusted for multiple testing as discussed
previously (Zhao et al., 2012).

2.12. Western Blot Analysis

Protein concentrations were determined using the BCA protein
assay kit (Pierce). For Western blot analysis, equal amounts of protein
(25–40 μg/well) was loaded in a 12% SDS-PAGE gel, electrophoresed
with a Tris glycine running buffer, and transferred to a polyvinylidine
difluoride membrane. Blots were probed overnight at 4 °C with myelin
basic protein (MBP, Millipore 1:200), hydroxyacyl-CoA dehydrogenase
3-ketoacyl-CoA thiolase enoyl-CoA hydratase (trifunctional protein)
alpha subunit (HADHA, Abcam1:5000), Aβ-binding alcohol dehydroge-
nase (ABAD, Abcam 1:500), and carnitine palmitoyltransferase (CPT-1,
Abcam 1:1000) followed by incubation with an HRP-conjugated
secondary antibody. Antigen–antibody complexes were visualized
with enhanced chemiluminescence. Band intensities were determined
using the VersaDoc System and software (Bio-Rad). All band intensities
were quantified using Un-Scan-it.
2.13. Electron Microscopy

Mice were anesthetized and sedated with a single I.P. dose of keta-
mine (80 mg/kg)/xylazine (10 mg/kg) prior to surgery. An incision
was made up the midline through the abdomen and chest cavity to ex-
pose the heart. A small incision was made in the right atrium of the
heart so mice can be transcardially perfused with PBS for 5 min.
Whole brainswere harvested and fixed using Trump's fixative (4% para-
formaldehyde with 1% glutaraldehyde in phosphate buffered saline,
pH 7.2). Whole brains were then sent to the Mayo Clinic, Rochester,
MN, to be processed for EM analysis.

Tissue prepared for EM was cut into flat slices approximately
2 × 4 × 2 mm (keeping the slices flat helped to maintain correct
orientation during processing). Tissue was immersed in Trump's
fixative (4% paraformaldehyde with 1% glutaraldehyde in phosphate
buffered saline, pH 7.2) and stored at 4 °C until processed (12 h mini-
mum). Further processing steps were performed using a laboratory
microwave oven (Pelco Biowave 3450, Ted Pella, Inc., Redding, CA). Tis-
sue was rinsed with 0.1 M phosphate buffer (PB) and secondarily fixed
in 1% osmium tetroxide followed by 2% aqueous uranyl acetate. Dehy-
dration was performed in a sequential ethanol series followed by
100% acetone. Tissue was embedded in Embed 812 Araldite epoxy
resin and polymerized 24 h at 60 °C. Ultrathin sections (0.1 μM) were
post-stained with 2% lead citrate. Micrographs were obtained using a
JEOL 1400 TEM at 80 kV.
2.14. Metabolomics (Trushina et al., 2013)

Mice were sacrificed using cervical dislocation. Brains were rapidly
removed and flash frozen in liquid nitrogen and tissue pulverized
under liquid nitrogen. Pulverized tissuewas then sent to theMayo Clin-
ic, Rochester, MN, to undergo targeted lipidomic analysis. Brain tissue
was homogenized in 1× PBS after adding 5 ml of PBS to 1 mg of tissue
and prior to dividing into 4 different aliquots for various the following
measurements.

Ceramides: Ceramides were extracted from 25ml of tissue homoge-
nate after the addition of internal standards and sonication. The extracts
were measured against a standard curve on the Thermo TSQ Quantum
Ultra mass spectrometer (West Palm Beach, FL) coupled with a Waters
Acquity UPLC system (Milford, MA) as previously described (Blachnio-
Zabielska et al., 2012).

Non-esterified free fatty acids (NEFA): Fatty acids were measured
against a standard curve on an Agilent 6460 triple quadrupole liquid
chromatography mass spectrometer (LC MS) as previously described
(Persson et al., 2010). Briefly, 50ml of homogenate was spiked with in-
ternal standard prior to extraction. The extracts were dried down and
brought up in running buffer prior to injecting on the LCMS. Data acqui-
sition was performed under negative electrospray ionization condition.

TCA: TCA analytes were quantitated via GC–MS as previously
published with a few modifications (Koek et al., 2006). Briefly, 100 ml
of internal standard solution containing 10 ng/ml each of 13C2-lactate,
13C4-fumarate, 13C4-succinate, 13C4-malate, 13C5-ketoglutarate, and
13C6-citrate was added to 100 ml of homogenate. The samples were
quenched by adding 400 μl of chilled methanol and acetonitrile (1:1)
solution and kept at−20 °C for 2 h prior to spinning down in a centri-
fuge. The supernatant was dried down in the speed vac before
derivatizing for GC–MS analysis. Concentrations of lactic acid (m/z
261.2), fumaric acid (m/z 287.1), succinic acid (m/z 289.1), ketoglutaric
acid (m/z 360.2), malic acid (m/z 419.3), citric acid (m/z 591.4), and
isocitric acid (m/z 591.4) were measured against 12-point calibration
curves that underwent the same derivatization.
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3. Results

3.1. Pathway of Mitochondrial Deficits, H2O2 Production and cPLA2 Activa-
tion in the Aging Female Brain

Three key initiating elements required for activation of the proposed
cPLA2- sphingomyelinase pathway for WM catabolism are: 1) dysregu-
lated mitochondrial respiration, 2) a source for and generation of H2O2

and 3) activation of cPLA2. If there is a direct relationship betweenmito-
chondrial generated H2O2 and subsequent cPLA2 activation then an in-
crease in cPLA2 activity should be coincident with mitochondrial
dysfunction and H2O2 generation.
Fig. 1.Mitochondrial function and cytoplasmic phospholipase A2 activity in reproductively
aging female mice: A. Respiratory control ratio (RCR = OCRstate 4/OCRstate 3) and B. H2O2

production in isolated whole brain mitochondria from reproductively aging female mice.
C. cPLA2 enzyme activity inwhole brain tissuehomogenate obtained duringmitochondrial
isolation preparation. (A. N = 6–8; B. N = 6–7; C. N = 5–7.) (*p b 0.05, **p b 0.005 and
***p b 0.0005).
To investigate the impact of female brain aging on mitochondrial
function and subsequent activation of the cPLA2, whole forebrain
mitochondria were isolated from female mice at three ages associated
with endocrine aging: 1) reproductively competent; 2) reproductively
irregular and 3) reproductively incompetent to aged. Results ob-
tained from reproductively incompetent and aged mice were indistin-
guishable in magnitude and were not statistically different (Fig. 1, A.
p = 0.67, B. p = 0.72, C. p = 0.56) and were therefore pooled. Res-
piration was determined using the respiratory control ratio (RCR =
OCRstate 4/OCRstate 3).

Age-related decline in mitochondrial respiration was first evident in
reproductively irregular mice and declined significantly in reproduc-
tively incompetent-aged mice (Fig. 1A; F (3, 18) = 2.772, p =
0.0714). Decline in mitochondrial respiratory efficiency would predict
a rise in oxidative stress and the generation of H2O2. H2O2 production
was determined in the same preparation of isolated mitochondria
using the Amplex Red H2O2 assay. An inverse relationship was evident
in H2O2 production relative to mitochondrial respiration such that an
age-related increase in H2O2 production paralleled the decline in mito-
chondrial respiration (Fig. 1B; F (3, 16) = 7.031, p = 0.0031). A
statistically significant increase in H2O2 production was evident in
reproductively incompetent and aged mice when compared to
reproductively competent animals (Fig. 1B). Further a statistically
significant increase in H2O2 production occurred in the reproductively
incompetent-aged mice relative to the reproductively irregular.
H2O2 production levels during aging ranged from 300 nM/min/mg to
1 μM/min/mg. To investigate H2O2 dependent activation of the cPLA2,
cPLA2 enzyme activitywas determined in brain tissue homogenate gen-
erated from the same preparation used for mitochondrial isolation. Rel-
ative to reproductively competent mice, a significant increase in cPLA2

activity was evident in reproductively irregular animals and remained
significantly elevated in reproductively incompetent-aged (Fig. 1C;
F (3, 15) = 7.726, p = 0.0024).

Collectively these data indicate that decline in mitochondrial respi-
ration was associated with a concomitant rise in H2O2 production
which was coincident with a sustained activation of cPLA2 enzyme ac-
tivity in the aging mammalian female brain. These findings indicate an
association between the decline in mitochondrial respiration, an in-
crease in mitochondrial H2O2 production and cPLA2 activation.

3.2. cPLA2-sphingomyelinase Pathway Activation in White Matter Astro-
cytes During Reproductive Senescence

If decline in mitochondrial respiration, H2O2 over-production and
cPLA2 activation are precipitating events in myelin degeneration, then
activation of the cPLA2-sphingomyelinase pathway should be evident.
Three critical components of the cPLA2-sphingomyelinase pathway are
cPLA2, arachidonic acid and acid sphingomyelinase. To investigate acti-
vation of this pathway during the most critical transition in reproduc-
tive aging—perimenopause, cPLA2 and acid sphingomyelinase enzyme
activity, and arachidonic acid production were investigated in female
brains from reproductively competent, reproductively irregular and re-
productively incompetent animals in hippocampal lysates and tissue
homogenate from the same cohort of mice used in mitochondria analy-
ses. cPLA2 and sphingomyelinase activity were determined using
enzyme activity assays and arachidonic acid measurements were
determined by GC–MS. A significant increase in cPLA2 activity (Fig. 2A;
F (2, 10) = 25.99, p b 0.0001) and arachidonic acid production
(Fig. 2B; p = 0.02) occurred in reproductively incompetent mice rela-
tive to reproductively irregular. In tandem, a trend toward an increase
in acid sphingomyelinase activity was evident in the reproductively in-
competent mice (Fig. 2C; F (2, 25) = 0.5370, p = 0.5911).

Because age is the greatest risk factor for AD (Alzheimer's, 2015) and
because cPLA2 immunoreactivity is well documented to be elevated in
astrocytes of AD brain (Stephenson et al., 1996), brain slices from the
aging mouse model containing anterior commissure, fimbria, cingulum



Fig. 2. Cytoplasmic phospholipase A2-sphingomyelinase pathway activation during
reproductive senescence: A. cPLA2 enzyme activity in hippocampal tissue homogenate.
B. Arachidonic acid production determined by GC-MS in tissue homogenate obtained
during mitochondrial isolation preparation. B. Acid sphingomyelinase enzyme activity in
hippocampal tissue homogenate. (A. N = 4–11; B. N = 3,-4; C. N = 7–12.) (*p b 0.05,
***p b 0.0005, ****p b 0.00005).
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and Schaffer collateral WM tracts were co-labeled for GFAP and
cPLA2. Four sections per group per brain region were quantitatively
analyzed blind to group identifiers for astrocyte reactivity and cPLA2 lo-
calization. Outcomes of these analyses indicated that reproductive incom-
petence was accompanied by a statistically significant increase in
quantitative immuno-fluorescent astrocyte reactivity in multiple WM
tracts in brain. Immunoreactivity for astrocyte reactivity was statically
significant in the fimbria and cingulum (Fig. 3A; F (2, 9) = 21.58, p =
0.0004 and B; F (2, 8) = 9.541, p = 0.0076). Astrocyte reactivity was
greatest in thefimbria andwas unique in its aging profile of increasing re-
activitywith each stage of aging. This is in contrast to the cingulumprofile
where astrocyte reactivity is greatest during the transition to reproduc-
tive incompetence with a return to the reactivity of the reproductively
competent animals in the aged population (Fig. 3B). The profile of the
Schaffer collateral pathway (Fig. 3C; F (2, 9) = 4.417, p = 0.0461) is
consistentwith an onset of elevated astrocyte reactivity during reproduc-
tive incompetence that is sustained during later aging. The astrocytes of
the anterior commissure (Fig. 3D; F (2, 8) = 2.57, p = 0.1374) were
the least reactive and maintain a steady low level of reactivity across
the ages we investigated. The reactive astrocyte phenotype co-localized
with cPLA2 immunofluorescence (Fig. 3E). The pattern of astrocyte reac-
tivity and coexpression of cPLA2 predicts that the afferent and efferent
white matter tracts of the hippocampus are most vulnerable to catabo-
lism which would contribute to disconnecting the hippocampus from
the frontal and association cortices, the limbic system and sensory inte-
grative pathways.

To investigate cPLA2-sphingomyelinase pathway activation in astro-
cytes, primary hippocampal neurons and astrocytes in culture were
treated with H2O2 (50 μM, 100 μM and 200 μM) for 30 min and cPLA2

activity determined (Fig. 4). Hippocampal neurons exhibited no change
in cPLA2 activity in response to pharmacological concentrations of H2O2,
consistent with previous reports (Fig. 4B) (Sun et al., 2004). In contrast,
astrocytes exhibited a steep dose dependent increase in cPLA2 activity,
reaching maximal activation at 200 μM H2O2 (Fig. 4A). To investigate
whether H2O2 concentrations produced by mitochondria derived from
reproductively senescent female brains increased cPLA2 activity,
cultured astrocytes were treated with 100 nM, 1 μM and 5 μM H2O2

(Table 1). A dose dependent increase in cPLA2 activity was observed
in response tomitochondrial relevant doses of H2O2, with approximate-
ly a 50% increase in cPLA2 activity at 1 μM(0.0378 nmol/min/ml/μg pro-
tein) and 5 μM (0.0370 nmol/min/ml/μg protein) compared to control
(0.0214 nmol/min/ml/μg protein) (Fig. 4C). Collectively these data dem-
onstrate that elevations in astrocyte reactivity appear to be preferential-
ly localized toWM tracts surrounding the para-hippocampal formation,
consistent with earliest development of AD pathology in the medial
temporal lobe (MTL). In vitro data confirm that H2O2 induced cPLA2 ac-
tivation is astrocyte mediated.

3.3. Investigation of White Matter Gene Expression Profile During Repro-
ductive Senescence

To determine whether enzymatic activation of the cPLA2-
sphingomyelinase pathway observed at the protein level was coinci-
dent with associated gene expression and to gain a systems level view
of adaptive responses, we developed a hypothesis driven targeted cus-
tom gene array to assess the impact of reproductive senescence on
WM degeneration. Consistent with findings from biochemical assays,
gene expression analyses indicated upregulation of genes associated
with the cPLA2-sphingomyelinase myelin degradation pathway during
the transition to reproductive senescence between the reproductively
irregular and reproductively incompetent stages (Fig. 5). Significant
upregulation of arachidonic acid epoxygenase (Cyp2j6) (p = 0.004) is
consistent with an increase in arachidonic acid generation. Alkaline
ceramidase (Acer3), the gene encoding the enzyme required for
the breakdown of ceramide into sphingosine and fatty acids, was signif-
icantly up-regulated in reproductively incompetent animals (p=0.01).
Further, up-regulation of the gene encoding the tri-functional protein
hydroxyacyl-CoA dehydrogenase (Hadha) occurred in reproductively
incompetentmice (p=0.06), consistentwith an increase in themetab-
olism of very long and long chain fatty acids. Upregulation of genes in-
volved in myelin synthesis included myelin-associated glycoprotein
(Mag),myelin oligodendrocyte glycoprotein (Mog), Erb-B2 receptor ty-
rosine kinase 3 (Erbb3), claudin 11 (Cldn11) and oligodendrocyte tran-
scription factor (Olig2) in reproductively irregular mice. These genes
were subsequently down-regulated in reproductively incompetent
mice. Analysis of gene expression in aged mice indicated a pattern of
down regulation of myelin synthesis genes, while myelin degradation
genes remained up-regulated, suggestive of long-term activation of
pathways involved in WM degeneration. An endocrine aging-related
upregulation in inflammatory genes was also observed, consistent
with previously published data in the perimenopausal rat model (Yin

Image of Fig. 2


Fig. 3.Co-localization of immunoreactivity of reactive astrocytes and cytoplasmic phospholipase A2 in brain slices from the aging femalemousemodel:whitematter tractswere co-labeled
with GFAP (FITC) and cPLA2 (CY3) antibodies, and assessed for astrocyte reactivity and cPLA2 cellular localization in the A. fimbria, B. cingulum, C. the Schaffer collateral pathway, and D.
anterior commissure during reproductive aging. E. Representative images depicting GFAP (FITC) and cPLA2 (CY3) labeling in the cingulum of reproductively incompetent female mice.
(A, B, C, D. N = 4 per group) (*p b 0.05, and ***p b 0.0005).
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et al., 2015). The gene expression profile of reproductively senescent
mice favors WM degeneration, exhibiting up-regulation in genes
associated with the cPLA2-sphingomyelinase pathway and fatty acid
metabolism.

3.4. Ultra Structural Analysis of Myelin Sheath During Reproductive
Senescence

Based on biochemical and genomic evidence supporting activation
of an astrocyte mediated myelin degradation pathway; immunohisto-
chemistry, MBP protein expression analysis and electron microscopy
were conducted to determine age-related ultra-structural changes
of myelin sheath in the anterior commissure, CC and hippocampus.
Initial immunohistochemical mapping of MBP fluorescence indicated
an unexpected increase in total WM area in the corpus callosum
(Fig. 6A) between 9 (reproductively irregular) and 12 (reproductively
incompetent) months, followed by a precipitous decline between 12
(reproductively incompetent) and 15 (aged) months of age which
was also evident in anterior commissure and hippocampal fimbria
(data not shown). Overall, myelin basic protein declined across repro-
ductive status and age (Fig. 6C; F (3, 15) = 3.5, p = 0.04). Myelin
basic protein (MBP) expression did not differ between reproductively
competent (6 months of age), and reproductively irregular (9 months
of age). A statistically significant decline occurred between reproduc-
tively competent MBP expression and reproductively incompetent and
aged mice (Fig. 6C; p = 0.004 and 0.01 respectively). MBP expression
in hippocampus of reproductively incompetent and aged females
were both decreased to the same magnitude (Fig. 6C). While the area
and protein expression data were consistent for the aged 15–
18 month old females, the MBP area and protein expression data were
not consistent between reproductively irregular and reproductively
competent. We therefore conducted analyses to investigate myelin in-
tegrity at the electron microscopic level of analysis.

Two possibilities could account for the increase inWMarea between
reproductively irregular and reproductively incompetent: 1) an in-
crease inWMvolume; or, alternatively 2) expansion of thewhitematter
zone due to a loss in compactness of myelin integrity. To investigate
these two possibilities, electron microscopy was performed to assess

Image of Fig. 3


Fig. 4.Cytoplasmic phospholipase A2 enzyme activity in cultured astrocytes andneurons followingH2O2 exposure: embryonic hippocampal neurons and astrocytes in culturewere treated
with H2O2 and assessed for cPLA2 activation using an enzyme activity assay. cPLA2 enzyme activity normalized to untreated cells in cultured A. astrocytes and B. neurons. C. cPLA2 enzyme
activity normalized to untreated cells in cultured astrocytes following exposure to physiologically relevant concentrations of H2O2. H2O2 concentrations were determined by the levels of
H2O2 produced bywhole brain mitochondria isolated from reproductively incompetent femalemice. D. Levels of cPLA2 enzyme activation in astrocytes and neurons (nmol/min/ml/mg of
protein).

1895L.P. Klosinski et al. / EBioMedicine 2 (2015) 1888–1904
WMstructural organization at critical transition ages, reproductively ir-
regular (9 months of age), reproductively incompetent (12 months of
age) and aged (15–18months of age) (Fig. 7A, B, C). Electronmicroscop-
ic imaging of the anterior commissure revealed that at reproductively
irregular stage (9 months of age) myelin integrity is compact with no
detectable signs of irregularity (Fig. 7A). At the reproductively incompe-
tent stage (12 months of age) expansion of myelin area, disintegration
of myelin compactness, unraveling of the myelin sheath and abnormal
structural integrity were evident (Fig. 7B). These same indicators
of myelin disintegration were greater in magnitude in aged females
(15months of age) andwere compounded by a severe decline inmyelin
sheath density (Fig. 7C). Comparable patterns of myelin disintegration
were also observed in the Schaffer collateral pathway and corpus
callosumwhitematter tracks (Fig. 7D and F). Electronmicroscopic anal-
yses indicate that the increased white matter area detected by myelin
histochemistry (Fig. 6), is due to an expansion of the white matter
zone induced by disintegration of myelin integrity and compactness of
myelin sheaths.

Qualitative observations ofmyelin integritywere quantitatively con-
firmed by calculating the percentage of compromised axons in a given
WM tract (number of compromised axons/number of total axons).
Table 1
H2O2 production across endocrine aging in female mouse brain mitochondria. Values are
presented as nm/min/mg of mitochondrial protein. Range of values across all endocrine
states spanned from 300 to 1500. (N = 5–8 per group).

Age group Average H2O2 production by group
(nM/min/mg)

Range
(nM/min/mg)

Reproductively competent 434 ≅300–1500
Reproductively irregular 515
Reproductively incompetent 760
Aged 810
Axons of the Schaffer collateral pathway, anterior commissure and CC
had 63% (244/387 axons; Fig. 7D), 71% (266/440 axons; Fig. 7E) and
55% (348/616 axons; Fig. 7F) compromised axons respectively in repro-
ductively incompetent animals, and 61% (247/403 axons; Fig. 7D), 83%
(253/305 axons; Fig. 7E) and 61% (259/418 axons; Fig. 7F) respectively
in aged animals (Fig. 7A, B, C).

If myelin is being catabolized for ketone body generation, then evi-
dence indicating accumulation of lipids should be present. Analysis of
EM images for lipid droplets revealed the presence of lipid droplets
throughout multiple WM tracks (Fig. 8A, B, C). A statistically significant
increase of intracellular lipid droplets was evident in the anterior com-
missure (Fig. 8D) and CC (Fig. 8E) of reproductively incompetent ani-
mals. The increase in lipid droplets was time limited. A decline in lipid
droplets was evident in aged animals indicative of a release of myelin
fatty acids from temporary storage in lipid droplets (Fig. 8D, E). These
observations made at the EM level of analysis are consistent with MBP
protein expression indicating a decline in MBP expression in reproduc-
tively incompetent and aged animals (Fig. 6A, C). The rise in lipid drop-
lets is consistent with an increase in free fatty acid storage for ketone
body generation (Cabodevilla et al., 2013).

3.5. Analysis of the Lipid Profile of Brain During the Transition to Reproduc-
tive Senescence

Biochemical, genomic and ultra structural analyses provide evidence
indicative of metabolism of myelin following reproductive senescence.
If myelin metabolism is occurring then there should be evidence of
lipid byproducts of myelin breakdown. The myelin sheath is composed
of two main lipids, sphingomyelin and galactocerebroside. A series of
enzymatic reactions catabolize sphingomyelin into ceramide, and sub-
sequently into sphingosine and fatty acids (Fig. 9A). To investigate the
impact of reproductive aging on the lipid profile of brain tissue, a

Image of Fig. 4


Fig. 5.Myelin and fatty acidmetabolism, myelin generation and repair, and inflammation related gene expression in reproductively aging femalemice: A. Table depicting the fold change
and p-value differences in expression of white matter related genes between reproductively irregular and reproductively incompetent female mice. Red p-value is indicative of upregu-
lation while a green p-value indicates down regulation. Boxes outlined in red reached statistical significance. B. Heatmaps of gene expression organized by function:myelin and fatty acid
metabolism,myelin generation and repair, and inflammation. Each genewasnormalized and colored based on its relative expression level across 4 reproductive aging groups. Thismethod
allows genes that have different magnitude of signal intensity but which belong to the same functional group and share similar expression patterns to be displayed on the same heatmap.
(N = 5 per group.)

1896 L.P. Klosinski et al. / EBioMedicine 2 (2015) 1888–1904
targeted metabolomic analysis was conducted in whole brain minus
cerebellum and olfactory bulb. Lipidomics panels included ceramides
and nonesterified free fatty acids (NEFA). Metabolites in the TCA cycle
were also assessed as indicators of mitochondrial function.

Lipidomic analysis indicated that levels of ceramides were greatest
in reproductively incompetent animals with peak ceramide levels oc-
curring within reproductively incompetent and aged groups. The rise
in ceramide levels was followed by a global age-related increase in
NEFA levels in aged brain, specifically docosahexaesnoic acid (DHA)
(p = 0.052), arachidonic acid (p = 0.023), palmitic acid (p = 0.009)
and oleic acid (p = 0.031) (Fig. 9 B). The pattern of lipid metabolism
is consistentwith breakdown ofmyelin at age of reproductive incompe-
tence (Fig. 9B Ceremide Panel) followed by metabolism into fatty acids
in aged brain (Fig. 9B NEFA Panel). These data derived from lipidomic
analyses are consistent with electron micrographs showing loss in
structural integrity and density of myelin first evident at the reproduc-
tively incompetent stage and greatly increased in the aging brain
(Fig. 7A–F).

Metabolomic analysis of the TCA cycle indicated few age-associated
alterations, with only two metabolites exhibiting significant changes:
succinate (p = 0.043) and citrate (p = 0.001) (Fig. 9B TCA panel).
Peak levels of TCA metabolites were greatest in the aged brain (Fig. 9B
TCA Panel) consistent with an increased level of acetyl-CoA availability.
Further, the rise in TCA metabolites indicates that in the aged brain the
catalytic machinery for mitochondrial energy production was largely
preserved. These data are consistent with an activated mitochondrial
beta-oxidation pathway, required to utilize fatty acids to generate TCA
metabolites and elevated mitochondrial H2O2 production. Neurons are
incapable of beta-oxidation whereas astrocytes are capable of beta-
oxidation of fatty acids. The endocrine age-dependent alterations in
the lipidomic profile of the reproductively senescent female brain are
consistent with biochemical, genomic and structural data demonstrat-
ing activation of the cPLA2-sphingomyelinase pathway and degenera-
tion of WM in reproductively incompetent mice. The release of myelin
lipids in aged animals creates an environment in which fatty acids can
readily be used as a substrate in ketogenesis.

3.6. Fatty AcidMetabolism and Ketone Generation Following the Transition
to Reproductive Senescence

Data derived from lipidomic and mitochondrial metabolic analyses
indicated the generation of fatty acids derived from myelin lipids and
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Fig. 6. Immunohistochemical andWestern blot analysis of white matter integrity in the aging female mouse model: A. Immunohistochemical mapping of myelin basic protein area in the
corpus callosum of the aging female mouse model. B. Representative immunohistochemical images mapping myelin basic protein area in the anterior commissure and corpus callosum.
Mask of corpus callosum generated via slide book software is highlighted in purple. C. Myelin basic protein expression during reproductive aging in the female mouse. (C. N = 4–10 per
group). (*p b 0.05).
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a mitochondrial phenotype consistent with beta-oxidation of fatty
acids. A critical link in the pathway to utilize fatty acids is their transport
into mitochondria and subsequent enzymatic generation of medium
and short chain fatty acids to ultimately generate ketone bodies. We
therefore investigated the expression of: 1) CPT I, the key enzyme in
the carnitine-dependent transport of long-chain fatty acids across the
mitochondrial inner membrane, 2) hydroxyacyl-CoA dehydrogenase/
3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (aka trifunctional pro-
tein; HADHA) which catalyzes the last three steps of mitochondrial
beta-oxidation of long chain fatty acids; and 3) Amyloid β-peptide-
binding alcohol dehydrogenase (ABAD) (aka hydroxysteroid (17-beta)
dehydrogenase 10; aka SCHAD, short-chain-3-hydroxyacyl-CoA
dehydrogenase) mitochondrial protein that catalyzes the oxidation of
a wide variety of fatty acids and steroids, and is a subunit of mitochon-
drial ribonuclease P, which is involved in tRNA maturation. In
mitochondria in which respiration declined and H2O2 production was
increased (Fig. 1A and B), CPT1, HADHA and ABAD protein expression
was significantly increased in aged female brain (Fig. 10A; F (3, 18) =
8.128, p = 0.0012, B; F (3, 18) = 8.779, p = 0.0008 and C; F (3,
18) = 7.892, p = 0.0014 respectively). These data indicate that within
the aged female brain key elements necessary to transport and metab-
olize fatty acids are significantly increased.

To determine whether fatty acids derived from myelin lipids and
metabolized within the mitochondrial would lead to a rise in ketone
bodies to fuel ATP generation, analysis of brain and plasma levels of
the principle ketone β-hydroxybutyrate was conducted. Within hippo-
campus an incremental rise in ketone body level occurred during the
course of reproductive aging with significant elevation the aged brain
(Fig. 11A; F (3, 12) = 9.185, p = 0.002). In cortex, the level of ketone
bodies was significantly elevated at the earliest stage of reproductive
aging (irregular) and was sustained at the significantly elevated level
thereafter (Fig. 11B; F (3, 20) = 6.416, p = 0.0032). In parallel to the
rise in brain level of ketone bodies, plasma level of ketone bodies
underwent a precipitous decline at age of reproductive incompetence
and remained at a low level thereafter (Fig. 11C; F (3, 16) = 5.982,
p = 0.0062). These data are consistent with elevation in brain ketone
bodies due to brain derived ketone body generation and not with ke-
tone bodies derived from the periphery.

Biochemical, genomic, ultra structural and lipidomic data indicated
metabolism of the myelin sheath and release of myelin lipids in repro-
ductively senescent females. Findings indicated that the aging female
brain undergoes an alteration in lipid profile of brain followingWM de-
generation that is concomitant with an increase in fatty acid transport
and metabolic capabilities. This is paralleled by an increase in ketone
body generation indicating that myelin derived lipids can ultimately
be used in ketogenesis to fuel ATP demands of the bioenergetically com-
promised brain.

4. Discussion

Age remains the greatest risk factor for developing AD (Hansson
et al., 2006; Alzheimer's, 2015). Thus, investigation of transitions in
the aging brain is a reasoned strategy for elucidating mechanisms and
pathways of vulnerability for developing AD. Aging, while typically per-
ceived as a linear process, is likely composed of dynamic transition
states, which can protect against or exacerbate vulnerability to AD
(Brinton et al., 2015). An aging transition unique to the female is
the perimenopausal to menopausal conversion (Brinton et al., 2015).
The bioenergetic similarities between the menopausal transition in
women and the early appearance of hypometabolism in persons at
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Fig. 7. Electronmicroscopic analysis of the structural integrity of white matter in reproductively aging femalemice: representative electronmicroscopy images of myelinated axons in the
anterior commissure of A. reproductively irregular, B. reproductively incompetent and C. aged femalemice. Quantitative analysis of the percentage of compromised axons in theD. Schaffer
collateral pathway, E. anterior commissure and F. corpus callosum in reproductively aging female mice. (A, B, C. N = 3–4; D. N = 4; E. N = 4; F. N = 3). (*p b 0.05) and **p b 0.005).
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risk for ADmake the aging female a rational model to investigatemech-
anisms underlying risk of late onset AD.

Findings from this study replicate our earlier findings that age of re-
productive senescence is associated with decline in mitochondrial res-
piration, increased H2O2 production and shift to ketogenic metabolism
in brain (Yao et al., 2010; Ding et al., 2013; Yin et al., 2015). These
well established early age-related changes in mitochondrial function
and shift to ketone body utilization in brain, are now linked to a mech-
anistic pathway that connects early decline inmitochondrial respiration
andH2O2 production to activation of the cPLA2-sphingomyelinase path-
way to catabolize myelin lipids resulting in WM degeneration (Fig. 12).
These lipids are sequestered in lipid droplets for subsequent use as a
local source of ketone body generation via astrocyte mediated beta-
oxidation of fatty acids. Astrocyte derived ketone bodies can then be
transported to neurons where they undergo ketolysis to generate
acetyl-CoA for TCA derived ATP generation required for synaptic and
cell function (Fig. 12).

Biochemical evidence obtained from isolatedwhole brainmitochon-
dria confirms that during reproductive senescence and in response to
estrogen deprivation brain mitochondria decline in respiratory capacity
(Yao et al., 2009, 2010; Brinton, 2008a,b; Swerdlow and Khan, 2009). A
well-documented consequence of mitochondrial dysfunction is in-
creased production of reactive oxygen species (ROS), specifically H2O2

(Boveris and Chance, 1973; Beal, 2005; Yin et al., 2014; Yap et al.,
2009). While most research focuses on the damage generated by free
radicals, in this case H2O2 functions as a signaling molecule to activate
cPLA2, the initiating enzyme in the cPLA2-sphingomyelinase pathway
(Farooqui and Horrocks, 2006; Han et al., 2003; Sun et al., 2004).
In AD brain, increased cPLA2 immunoreactivity is detected almost
exclusively in astrocytes suggesting that activation of the cPLA2-
sphingomyelinase pathway is localized to astrocytes in AD, as opposed
to the neuronal or oligodendroglial localization that is observed during
apoptosis (Sun et al., 2004; Malaplate-Armand et al., 2006; Di Paolo and
Kim, 2011; Stephenson et al., 1996, 1999). In our analysis, cPLA2

(Sanchez-Mejia and Mucke, 2010) activation followed the age-
dependent rise in H2O2 production and was sustained at an elevated
level.

Direct and robust activation of astrocytic cPLA2 by physiologically
relevant concentrations of H2O2 was confirmed in vitro. Astrocytic in-
volvement in the cPLA2-sphingomyelinase pathway was also indicated
by an increase in cPLA2 positive astrocyte reactivity in WM tracts of re-
productively incompetentmice. These data are consistent with findings
from brains of persons with AD that demonstrate the same striking lo-
calization of cPLA2 immunoreactivity within astrocytes, specifically in
the hippocampal formation (Farooqui and Horrocks, 2004). While neu-
rons and astrocytes contain endogenous levels of cPLA2, neuronal cPLA2

is activated by an influx of intracellular calcium, whereas astrocytic
cPLA2 is directly activated by excessive generation of H2O2 (Sun et al.,
2004; Xu et al., 2003; Tournier et al., 1997). Evidence of this cell type
specific activation was confirmed by the activation of cPLA2 in astro-
cytes by H2O2 and the lack of activation in neurons. These data support
that astrocytic, not neuronal, cPLA2 is the cellular mediator of the H2O2

dependent cPLA2-sphingomyelinase pathway activation and provide
associative evidence supporting a role of astrocytic mitochondrial
H2O2 in age-related WM catabolism.

The pattern of gene expression during the shift to reproductive se-
nescence in the female mouse hippocampus recapitulates key observa-
tions in human AD brain tissue, specifically elevation in cPLA2,
sphingomyelinase and ceramidase (Schaeffer et al., 2010; He et al.,
2010; Li et al., 2014). Further, up-regulation of myelin synthesis, lipid

Image of Fig. 7


Fig. 8. Electron microscopic analysis of lipid droplet accumulation in reproductively aging female mice: representative electron microscopy images of lipid droplet accumulation in the
anterior commissure of A. reproductively irregular, B. reproductively incompetent and C. aged female mice. Average number of lipid droplets per cell body in the D. anterior commissure
and E. corpus callosum. (A, B. N = 3–4; C. N = 4; D. N = 4; E. N = 3). (*p b 0.05).
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metabolism and inflammatory genes in reproductively incompetent fe-
male mice is consistent with the gene expression pattern previously re-
ported from aged male rodent hippocampus, aged female non-human
primate hippocampus and human AD hippocampus (Blalock et al.,
2003, 2004, 2010, 2011; Kadish et al., 2009; Rowe et al., 2007). In
these analyses of gene expression in aged male rodent hippocampus,
aged female non-human primate hippocampus and human AD hippo-
campus down regulation of genes related to mitochondrial function,
and up-regulation in multiple genes encoding for enzymes involved in
ketone body metabolism occurred (Blalock et al., 2003, 2004, 2010,
2011; Kadish et al., 2009; Rowe et al., 2007). The comparability across
data derived from aging female mouse hippocampus reported herein
and those derived from male rodent brain, female nonhuman brain
and human AD brain strongly suggest that cPLA2-sphingomyelinase
pathway activation, myelin sheath degeneration and fatty acid metabo-
lism leading to ketone body generation is a metabolic adaptation that is
generalizable across these naturally aging models and are evident in
aged human AD brain. Collectively, these data support the translational
relevance of findings reported herein.

Data obtained via immunohistochemistry, electron microscopy and
MBP protein analyses demonstrated an age-related loss in myelin
sheath integrity. Evidence for a loss of myelin structural integrity
emerged in reproductively incompetent mice following activation of
the cPLA2-sphingomyelinase pathway. The unraveling myelin pheno-
type observed following reproductive senescence and aging reported
herein is consistent with the degenerative phenotype that emerges
following exposure to the chemotherapy drug bortezomib which in-
duces mitochondrial dysfunction and increased ROS generation
(Carozzi et al., 2010; Cavaletti et al., 2007; Ling et al., 2003). In parallel
to the decline in myelin integrity, lipid droplet density increased. In
aged mice, accumulation of lipid droplets declined in parallel to the
rise in ketone bodies consistent with the utilization of myelin-derived
fatty acids to generate ketone bodies. Due to the sequential relationship
between WM degeneration and lipid droplet formation, we posit that
lipid droplets serve as a temporary storage site for myelin-derived
fatty acids prior to undergoing β-oxidation in astrocytes to generate ke-
tone bodies.

Microstructural alterations in myelin integrity were associated with
alterations in the lipid profile of brain, indicative of WM degeneration
resulting in release of myelin lipids. Sphingomyelin and galacto-
cerebroside are two main lipids that compose the myelin sheath
(Baumann and Pham-Dinh, 2001). Ceramide is common to both
galactocerebroside and sphingomyelin and is composed of sphingosine
coupled to a fatty acid. Ceramide levels increase in aging, in states of ke-
tosis and in neurodegeneration (Filippov et al., 2012; Blazquez et al.,
1999; Costantini et al., 2005). Specifically, ceramide levels are elevated
at the earliest clinically recognizable stage of AD, indicating a degree
of WM degeneration early in disease progression (Di Paolo and Kim,
2011; Han et al., 2002; Costantini et al., 2005). Sphingosine is statistical-
ly significantly elevated in the brains of AD patients compared to
healthy controls; a rise that was significantly correlated with acid
sphingomyelinase activity, Aβ levels and tau hyperphosphorylation
(He et al., 2010). In our analyses, a rise in ceramides was first observed
early in the aging process in reproductively incompetent mice. The rise
in ceramideswas coincidentwith the emergence of loss ofmyelin integ-
rity consistent with the release of myelin ceramides from
sphingomyelin via sphingomyelinase activation. Following the rise in
ceramides, sphingosine and fatty acid levels increased. The temporal se-
quence of the lipid profile was consistent with gene expression
indicating activation of ceramidase for catabolism of ceramide into
sphingosine and fatty acid during reproductive senescence. Once re-
leased from ceramide, fatty acids can be transported into themitochon-
drial matrix of astrocytes via CPT-1, where β-oxidation of fatty acids
leads to the generation of acetyl-CoA (Glatz et al., 2010). It is well doc-
umented that acetyl-CoA cannot cross the inner mitochondrial
membrane, thus posing a barrier to direct transport of acetyl-CoA gen-
erated by β-oxidation into neurons. In response, the newly generated
acetyl-CoA undergoes ketogenesis to generate ketone bodies to fuel
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Fig. 9. Lipid profile of female brain during reproductive aging: A. Sequence of catabolic events that occur during myelin breakdown. B. Levels of brain lipids in reproductively irregular,
reproductively incompetent and aged femalemice. Lipidswere separated into three categorical panels: ceramides, non-esterified fatty acids and TCAmetabolites. Red values are indicative
of the peak level of a particular lipid and green values indicate statistical significance. (N = 4–6 per group.)
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Fig. 10. Expression of proteins involved in fatty acid transport and metabolism in
the aging female mouse model: A. CPT1 protein expression in isolated whole brain mito-
chondria. B. HADHA protein expression in isolated whole brain mitochondria. C. ABAD
protein expression in isolated whole brain mitochondria (A, B, C. N = 3–8). (**p b 0.005
and ***p b 0.0005).

Fig. 11. Hippocampal, cortical and plasma ketone body levels in the aging female mouse:
A. Hippocampal levels of ketone bodies. B. Cortical levels of ketone bodies. C. Plasma levels
of ketone bodies. (A. N=4per group; B.N=5–6; C. N=3–7). (*p b 0.05 and **p b 0.005).
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energy demands of neurons (Morris, 2005; Guzman and Blazquez,
2004; Stacpoole, 2012). Because astrocytes serve as the primary loca-
tion of β-oxidation in brain they are critical to maintaining neuronal
metabolic viability during periods of reduced glucose utilization
(Panov et al., 2014; Ebert et al., 2003; Guzman and Blazquez, 2004).

Once fatty acids are released from myelin ceramides, they are
transported into astrocytic mitochondria by CPT1 to undergo β-
oxidation. The mitochondrial trifunctional protein HADHA catalyzes
the last three steps of mitochondrial β-oxidation of long chain
fatty acids, while mitochondrial ABAD (aka SCHAD—short chain fatty
acid dehydrogenase) metabolizes short chain fatty acids. Concurrent
with the release of myelin fatty acids in aged female mice, CPT1,
HADHA and ABADprotein expression aswell as ketone body generation
increased significantly. These findings indicate that astrocytes play
a pivotal role in the response to bioenergetic crisis in brain to
activate an adaptive compensatory system that activates catabolism of
myelin lipids and the metabolism of those lipids into fatty acids to gen-
erate ketone bodies necessary to fuel neuronal demand for acetyl-CoA
and ATP.

Collectively, these findings provide amechanistic pathway that links
mitochondrial dysfunction and H2O2 generation in brain early in the
aging process to later stage white matter degeneration. Astrocytes
play a pivotal role in providing a mechanistic strategy to address the
bioenergetic demand of neurons in the aging female brain. While this
pathway is coincident with reproductive aging in the female brain, it
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Fig. 12. Schematicmodel ofmitochondrial H2O2 activation of cPLA2-sphingomyelinase pathwayas anadaptive response to providemyelin derived fatty acids as a substrate for ketonebody
generation: The cPLA2-sphingomyelinase pathway is proposed as amechanistic pathway that links an early event,mitochondrial dysfunction andH2O2, in the prodromal/preclinical phase
of Alzheimer'swith later stage development of pathology, whitematter degeneration. Our findings demonstrate that an age dependent deficit inmitochondrial respiration and a concom-
itant rise in oxidative stress activate an adaptive cPLA2-sphingomyelinase pathway to provide myelin derived fatty acids as a substrate for ketone body generation to fuel an energetically
compromised brain.
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is likely to have mechanistic translatability to the agingmale brain. Fur-
ther, themechanistic linkbetweenbioenergetic decline andWMdegen-
eration has potential relevance to other neurological diseases involving
white matter in which postmenopausal women are at greater risk, such
as multiple sclerosis. The mechanistic pathway reported herein spans
time and is characterized by a progression of early adaptive changes in
the bioenergetic system of the brain leading to WM degeneration and
ketone body production. Translationally, effective therapeutics to pre-
vent, delay and treat WM degeneration during aging and Alzheimer's
disease will need to specifically target stages within the mechanistic
pathway described herein. The fundamental initiating event is a bioen-
ergetic switch from being a glucose dependent brain to a glucose and
ketone body dependent brain. It remains to be determined whether it
is possible to prevent conversion to or reversal of a ketone dependent
brain. Effective therapeutic strategies to intervene in this process
require biomarkers of bioenergetic phenotype of the brain and
stage of mechanistic progression. The mechanistic pathway reported
herein may have relevance to other age-related neurodegenerative dis-
eases characterized by white matter degeneration such as multiple
sclerosis.
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