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Improvement in sperm quality 
and spermatogenesis 
following faecal microbiota 
transplantation from alginate 
oligosaccharide dosed mice

Very recent publications in Gut and else-
where1 2 suggest that gut microbiota 
affects fertility. The application of faecal 
microbiota transplantation (FMT) to 
modify fertility is an emerging novel area 
of interest.3 FMT from women with poly-
cystic ovary syndrome (PCOS) leads to 
the disruption of ovarian function and a 
decrease in fertility which indicates that 
modification of gut microbiota may be 
a valuable approach in the management 
of PCOS.2 FMT of gut microbes, that 
developed under a high-fat diet, into 
mice on a normal diet leads to the disrup-
tion of spermatogenesis and a reduc-
tion of sperm motility,1 which highlights 
that restoring gut microbiota may be a 
means of improving disturbed male infer-
tility caused by environmental factors.1 
However, to date, there are no reports 
that address improvements of fertility 
following FMT. In a recent study,4 we 
found that busulfan damages spermato-
genesis and sperm quality, and disturbs 
gut microbiota as found in many other 
studies.5 6 Alginate oligosaccharides (AOS), 
a natural product with many benefits, 
rescues busulfan disrupted spermatogen-
esis by supporting gut microbiota through 
an increase in ‘beneficial’ bacteria4 such 
as Bacteroidales and Lactobacillaceae and 
a decrease in ‘harmful’ bacteria, such as 
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Figure 1  Mouse sperm motility, concentration, VASA staining and apoptosis status. (A) Mouse 
sperm concentration. The y-axis represents the concentration. The x-axis represents the treatment 
(n=30/group). a,b,c means not sharing a common superscript are different (p<0.05). (B) Mouse 
sperm motility. The y-axis represents the percentage of cells. The x-axis represents the treatment 
(n=30/group). a,b,c means not sharing a common superscript are different (p<0.05). (C) Germ 
cell marker VASA staining for mouse testicular samples. (1) Control (dosed with saline); (2) Sa 
(busulfan (a single injection 40 mg/kg BW of busulfan)4 plus saline); (3) Con-FMT (busulfan plus 
gut microbiota from regular mice); (4) A10-FMT (busulfan plus gut microbiota from AOS 10 mg/kg 
dosed mice); (5) A100-FMT (busulfan plus gut microbiota from AOS 100 mg/kg dosed mice). See 
more detailed information in online supplementary file 1. FMT, faecalmicrobiota transplantation.

Desulfovibrionaceae.7 Gut microbiota 
from AOS dosed animals may improve 
spermatogenesis through benefit to the 
recipients gut microbes.

To test this hypothesis, we set out 
to explore the beneficial improvement 
of sperm quality and spermatogenesis 
following FMT from AOS dosed animals 
to busulfan treated mice (online supple-
mentary file 1, online supplementary 
figure 1). A10-FMT (busulfan plus gut 
microbiota from AOS 10 mg/kg mice) 
significantly increased sperm concentra-
tion (twofold) and sperm motility (twen-
tyfold) (figure  1A,B). Spermatogenesis 
was significantly improved by A10-FMT 
as shown by the germ cell marker VASA 
(figure  1C) in murine testicular samples. 
The protein level of the anti-oxidant 
enzyme GPX1 was higher in the A10-
FMT group (online supplementary figure 
2A). Moreover, A10-FMT improved gene 
expression related to spermatogenesis in 
testes (figure 2A–D; online supplementary 
figure 2), and increased the protein levels 
of the most important genes for spermato-
genesis (figure  2E; online supplementary 
table 1).8 A10-FMT improved busulfan 
stimulated dysbiosis of gut microbiota 
through an increase in the ‘beneficial’ 
bacteria Bacteroidales and Bifidobacte-
riales (online supplementary figures 3 
and 4; online supplementary table 2).7 
Furthermore, there was good correlation 
between gut microbiota and sperm quality 
(online supplementary figure 3F). A10-
FMT ameliorated the blood metabolome 
through recovery of blood metabolites 
(online supplementary figures 5 and 6; 
online supplementary data file 1; online 
supplementary table 3).9 Most blood 
metabolites were positively correlated 
with some of the gut microbes. The data 
suggested that A10-FMT may improve 
small intestine function and gut microbiota, 
which assists in digestion and absorption.9 
A10-FMT improved the testicular metab-
olome (online supplementary figures 7 
and 8; online supplementary data file 2; 
online supplementary tables 4 and 5) to 
help the recovery of spermatogenesis since 
unsaturated fatty acids and sphingolipids 
are protective for biological systems.10 
Testicular metabolites and sperm quality 
were well correlated (online supplemen-
tary figure 7H,I). It was most interesting 
that gut microbiota, blood metabolites 
and testicular metabolites were well 
correlated, respectively, between the A10-
FMT dosed and AOS dosed studies (online 
supplementary figure 9; online supple-
mentary tables 6 and 7). Worldwide, 10% 
to 15% of couples are infertile and many 
of them have abnormal spermatogenesis.8 

Many studies have tried to improve sper-
matogenesis using different approaches, 
however, there has been little progress. 
This investigation found a mechanistic 
dimension linking an improved gut micro-
biota with the rescue of spermatogenesis 
and sperm quality. Because gut micro-
biota and host interact in very complex 
ways, more work is needed to clarify the 
deep mechanisms through which FMT 
improves spermatogenesis. The current 
data, for the first time, highlighted that 
gut microbiota could be used to treat male 
infertility through the improvement of 
spermatogenesis.
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Figure 2  RNA-seq data for mouse testicular samples. (A) Heatmap summary of the differentially expressed genes in the three comparisons: 
control versus SA; SA versus Con-FMT; SA versus A10-FMT. (B) GO enrichment of downregulated genes in control versus SA. (C) GO enrichment of 
upregulated genes in SA versus A10-FMT. (D) GO enrichment of upregulated genes in SA versus Con-FMT. (E) Immunofluorescence staining (IHF) for 
some of the spermatogenesis related marker genes in mouse testes. (1) Control (dosed with saline); (2) Sa (busulfan (a single injection 40 mg/kg BW 
of busulfan)4 plus saline); (3) Con-FMT (busulfan plus gut microbiota from regular mice); (4) A10-FMT (busulfan plus gut microbiota from AOS 10 mg/
kg dosed mice); see more detailed information in online supplementary file 1. AOS, alginate oligosaccharides; FMT,faecal microbiota transplantation.
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