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Abstract: Objective: The mortality rate of critically ill patients in ICUs is relatively high. In order to
evaluate patients’ mortality risk, different scoring systems are used to help clinicians assess prognosis
in ICUs, such as the Acute Physiology and Chronic Health Evaluation III (APACHE III) and the
Logistic Organ Dysfunction Score (LODS). In this research, we aimed to establish and compare
multiple machine learning models with physiology subscores of APACHE III—namely, the Acute
Physiology Score III (APS III)—and LODS scoring systems in order to obtain better performance for
ICU mortality prediction. Methods: A total number of 67,748 patients from the Medical Information
Database for Intensive Care (MIMIC-IV) were enrolled, including 7055 deceased patients, and the
same number of surviving patients were selected by the random downsampling technique, for a
total of 14,110 patients included in the study. The enrolled patients were randomly divided into a
training dataset (n = 9877) and a validation dataset (n = 4233). Fivefold cross-validation and grid
search procedures were used to find and evaluate the best hyperparameters in different machine
learning models. Taking the subscores of LODS and the physiology subscores that are part of the
APACHE III scoring systems as input variables, four machine learning methods of XGBoost, logistic
regression, support vector machine, and decision tree were used to establish ICU mortality prediction
models, with AUCs as metrics. AUCs, specificity, sensitivity, positive predictive value, negative
predictive value, and calibration curves were used to find the best model. Results: For the prediction
of mortality risk in ICU patients, the AUC of the XGBoost model was 0.918 (95%CI, 0.915–0.922), and
the AUCs of logistic regression, SVM, and decision tree were 0.872 (95%CI, 0.867–0.877), 0.872 (95%CI,
0.867–0.877), and 0.852 (95%CI, 0.847–0.857), respectively. The calibration curves of logistic regression
and support vector machine performed better than the other two models in the ranges 0–40% and
70%–100%, respectively, while XGBoost performed better in the range of 40–70%. Conclusions: The
mortality risk of ICU patients can be better predicted by the characteristics of the Acute Physiology
Score III and the Logistic Organ Dysfunction Score with XGBoost in terms of ROC curve, sensitivity,
and specificity. The XGBoost model could assist clinicians in judging in-hospital outcome of critically
ill patients, especially in patients with a more uncertain survival outcome.

Keywords: machine learning; postoperative death; prediction model

1. Introduction

As the number of critically ill patients is increasing, the demand for intensive care
units (ICUs) has also substantially increased. Increasing demand for critical care has made
capacity limitations commonplace in ICUs [1]. Critically ill patients admitted to ICUs are
at a high risk of mortality [2]. Previous studies have indicated that the overall mortality
rate was 20.5–43% among patients with an ICU stay, and the most common causes of death
among patients in ICUs were sepsis, cardiac arrest, pneumonia, and cardiac arrhythmia [3].
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Previous evidence has suggested that the severity and extent of disease upon admission to
the ICU are strongly associated with ICU in-hospital mortality [4]. Therefore, the outcome
of ICU patients predicted by multifactorial scores upon admission to the ICU is critical
for long-term treatment and humanistic care [5]. At present, when patients are admitted
to the ICU, they are scored with scales such as the Acute Physiology and Chronic Health
Evaluation III (APACHE III) score, the Logistic Organ Dysfunction Score (LODS), and the
Sequential Organ Failure Assessment (SOFA) [6,7]. Some scales, including SOFA, Systemic
Inflammatory Response Syndrome (SIRS), and APACHE II, have been used to predict
outcomes in critically ill patients and achieved adequate results [8,9].

Machine learning techniques have been widely used in clinics, ranging from diagnosis
to predicting survival outcomes [10,11]. For ICU mortality prediction, the current prognosis
models employ the logistic regression classifier or the single long short-term memory
(LSTM) classifier [12] and single scoring system [13]. However, logistic regression constructs
linear decision boundaries, and therefore, nonlinear problems may have relatively poor
prediction results with logistic regression [14]. Previous research showed that an ensemble
machine learning algorithm could have better prediction performance with Simplified
Acute Physiology Score (SAPSII) and SOFA scores as input variables compared with
logistic regression [15]. The XGBoost algorithm has been used to predict mortality based
on the MIMIC-III database. A study used admission and laboratory variables to construct
an XGBoost model to predict in-hospital mortality among patients with heart failure and
achieved a high AUC of 0.84 [16]. Another study used the XGBoost algorithm to predict all-
cause mortality based on the MIMIC-III database with some acute physiology variables and
chronic conditions and achieved the highest AUC of 0.86 compared with other models [17].

It remains to be seen if we can achieve higher accuracy of survival outcome prediction
by taking each score of both APS III and LODS scoring systems as the input features of
nonlinear classifiers based on an ensemble machine learning algorithm. There were a few
studies that used APS II or LODS to predict mortality in the ICU. A study on assessing the
physiological instability of pediatric intensive care unit patients found that APS III could
be sensitive to small changes in physiological status [18]. A previous study based on the
MIMIC-III database used APS III data as input variables to construct a model to predict
mortality among trauma patients with acute respiratory distress syndrome and found that
the model achieved an AUC of 0.718 [19]. Another study used LODS to predict all-cause
30-day mortality and achieved an AUC of 0.733 among intensive care patients with sepsis
based on the MIMIC-III database. As a result, we chose two kinds of scoring systems to
construct models and achieve higher prediction performance [20]. There are few other
research works that combine two scoring systems to predict mortality in ICUs.

We aimed to integrate the physiology subscores of APACHE III—namely, the APS
III scoring system—and the LODS scoring system, and compare four different machine
learning models (XGBoost [21], logistic regression, SVM, and decision tree) based on the
data of 14,110 patients in the MIMIC-IV database [22] to predict the different performances
of ICU patient mortality.

2. Methods
2.1. Data Source and Population

The study data were taken from the Medical Information Mart for Intensive Care
(MIMIC)-IV database [22]. MIMIC-IV is a large, single-center database with more than
70,000 patients. For this study, we selected 67,748 adult patients with LODS scores and
acute physiology subscores as part of APACHE III scores in the MIMIC-IV database and
performed a retrospective review.

The inclusion criteria were patients admitted to the ICU for the first time who were
older than 18 years. The first ICU admission was considered when a subject had multiple
admissions to the ICU. The exclusion criteria were patients with admission to an ICU
two or more times, patients younger than 18 years, and patients with the same hospital
admission IDs. We did not exclude patients with any diseases, similar to the method used
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in previous studies [23]. Class imbalance is a major problem in ICU datasets, as the number
of deceased patients (7055, 10.4%) is much lower than the number of living patients (60,693,
89.6%). Methods for dealing with datasets with class imbalance include resampling [24,25]
and classifying cost functions [26]. Downsampling is a kind of resampling that entails
decreasing the number of records in the majority class with more samples. We used random
downsampling to randomly select the same number of positive samples as the negative
samples from the original dataset of 60,693 patients [27]. After random downsampling,
a total of 14,110 patients (7055 in-hospital deceased patients and 7055 surviving patients)
were considered in the study. The sample size was sufficiently large, and no sample size
calculation was undertaken. The flow chart of the study is shown in Figure 1. PostgreSQL
was used to extract clinical information, including age, sex, weight, admission type, Lo-
gistic Organ Dysfunction Score (LODS), and Acute Physiology Score III (APS III) on the
PostgreSQL database server (version 10).

Diagnostics 2022, 12, x FOR PEER REVIEW 3 of 13 
 

 

admissions to the ICU. The exclusion criteria were patients with admission to an ICU two 

or more times, patients younger than 18 years, and patients with the same hospital admis-

sion IDs. We did not exclude patients with any diseases, similar to the method used in 

previous studies [23]. Class imbalance is a major problem in ICU datasets, as the number 

of deceased patients (7055, 10.4%) is much lower than the number of living patients 

(60,693, 89.6%). Methods for dealing with datasets with class imbalance include 

resampling [24,25] and classifying cost functions [26]. Downsampling is a kind of 

resampling that entails decreasing the number of records in the majority class with more 

samples. We used random downsampling to randomly select the same number of positive 

samples as the negative samples from the original dataset of 60,693 patients [27]. After 

random downsampling, a total of 14,110 patients (7055 in-hospital deceased patients and 

7055 surviving patients) were considered in the study. The sample size was sufficiently 

large, and no sample size calculation was undertaken. The flow chart of the study is 

shown in Figure 1. PostgreSQL was used to extract clinical information, including age, 

sex, weight, admission type, Logistic Organ Dysfunction Score (LODS), and Acute Physi-

ology Score Ⅲ (APS Ⅲ) on the PostgreSQL database server (version 10). 

 

Figure 1. Flow chart. 

2.2. Selection of Variables 

The LODS score is based on six different scores, one each for the respiratory, cardio-

vascular, hepatic, coagulation, renal, and neurological systems. APS III scores include 

heart rate score, mean blood pressure score, temperature score, respiratory rate score, 

PaO2-aadO2 score, hematocrit score, white blood count score, serum creatinine score, 

urine output score, blood urea nitrogen score, sodium score, albumin score, bilirubin 

score, glucose score, acid base score, Glasgow Coma Scale score, and total APS III score. 

2.3. Data Analysis and Model Construction 

After employing the random downsampling technique to select surviving patients, 

the dataset was partitioned into the training set (70%) and the testing set (30%). After the 

completion of the feature engineering, the machine learning algorithms, including 

XGBoost, support vector machine (SVM), logistic regression (LR), and decision tree, were 

used to construct the models [28]. Receiver operating characteristic (ROC) curve analysis 

Figure 1. Flow chart.

2.2. Selection of Variables

The LODS score is based on six different scores, one each for the respiratory, cardiovas-
cular, hepatic, coagulation, renal, and neurological systems. APS III scores include heart rate
score, mean blood pressure score, temperature score, respiratory rate score, PaO2-aadO2
score, hematocrit score, white blood count score, serum creatinine score, urine output score,
blood urea nitrogen score, sodium score, albumin score, bilirubin score, glucose score, acid
base score, Glasgow Coma Scale score, and total APS III score.

2.3. Data Analysis and Model Construction

After employing the random downsampling technique to select surviving patients,
the dataset was partitioned into the training set (70%) and the testing set (30%). After
the completion of the feature engineering, the machine learning algorithms, including
XGBoost, support vector machine (SVM), logistic regression (LR), and decision tree, were
used to construct the models [28]. Receiver operating characteristic (ROC) curve analysis
was considered as a metric to tune model parameters. Grid search and 5-fold cross-
validation [29] were performed for hyperparameter optimization and the construction of
prediction models. The AUCs, sensitivity, specificity, positive predictive rate, and negative
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predictive rate were calculated, and calibration curves [30] were plotted to evaluate the
advantages or disadvantages of the models.

We performed statistical analyses using the sklearn machine learning package (0.24.2),
xgboost package (1.5.0), and shap package (0.40.0) in Python 3.7.4 and R 4.1.0 programs.
The normality of continuous variables was analyzed by the normality test. Continuous
variables with normal distribution were expressed as mean ± standard deviations and
continuous variables with non-normal distribution were expressed as median [IQR]. Cat-
egorical data are shown as numbers (percent). Group comparisons for continuous data
with normal distribution were calculated with Student’s t-test, while continuous data with
non-normal distribution were calculated with the Kruskal–Wallis test, and categorical data
were compared using χ2 or Fisher’s exact test with the tableone package in R 4.1.0. Effects
with p-values smaller than 0.05 were considered significant.

3. Results

The pre- and post-sampling characteristics of the study subjects are presented in
Table 1. The data show significant differences between surviving and in-hospital deceased
patients in terms of admission type, weight, neurological score, cardiovascular score, renal
score, pulmonary score, hematological score, hepatic score, total LODS score in the LODS
scoring system, heart rate score, mean blood pressure score, temperature score, PaO2-
aadO2 score, white blood count score, serum creatinine score, urine output score, blood
urea nitrogen score, blood sodium score, albumin score, bilirubin score, glucose score, acid
base score, Glasgow Coma Scale score, and total APS III score in the APS III scoring system
(p < 0.001). However, there were no statistical differences between surviving and in-hospital
deceased patients in respiratory rate score, hematocrit score, and gender.

Table 1. Baseline data of participants.

Variable (Score)

Dataset before Downsampling Dataset after Downsampling

Survived
(60,693)

Dead
(7055) p Survived

(7055)
Dead
(7055) p

Female 1 26,774 (44.1) 3235 (45.9) 0.006 3193 (45.3) 3235 (45.9) 0.488
Age 3 64.37 ± 17.10 71.44 ± 15.23 <0.001 64.25 ± 17.32 71.44 ± 15.23 <0.001

Weight 3 81.48 ± 26.00 77.34 ± 23.89 <0.001 81.08 ± 26.33 77.34 ± 23.89 <0.001
Emergency 1 43,724 (72.0) 6016 (85.3) <0.001 5102 (72.3) 6016 (85.3) <0.001

LODS 2 3.00 [2.00, 5.00] 8.00 [5.00, 11.00] <0.001 3.00 [2.00, 6.00] 8.00 [5.00, 11.00] <0.001
Neurologic 2 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001

Cardiovascular 2 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001
Renal 2 1.00 [1.00, 3.00] 3.00 [1.00, 5.00] <0.001 1.00 [1.00, 3.00] 3.00 [1.00, 5.00] <0.001

Pulmonary 2 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 3.00] <0.001
Hematologic 2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001

Hepatic 2 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001 0.00 [0.00, 1.00] 1.00 [0.00, 1.00] <0.001
APS III 2 39.00 [29.00, 52.00] 73.00 [53.00, 95.00] <0.001 39.00 [29.00, 52.00] 73.00 [53.00, 95.00] <0.001

Heart rate 2 1.00 [0.00, 5.00] 5.00 [0.00, 7.00] <0.001 1.00 [0.00, 5.00] 5.00 [0.00, 7.00] <0.001
Mean pressure 2 9.00 [7.00, 15.00] 15.00 [7.00, 15.00] <0.001 9.00 [7.00, 15.00] 15.00 [7.00, 15.00] <0.001
Temperature 2 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001

Respiratory rate 2 6.00 [6.00, 8.00] 6.00 [6.00, 8.00] <0.001 6.00 [6.00, 8.00] 6.00 [6.00, 8.00] 0.001
PaO2-aadO2

2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001
Hematocrit 2 3.00 [3.00, 3.00] 3.00 [3.00, 3.00] 0.670 3.00 [3.00, 3.00] 3.00 [3.00, 3.00] 0.735
White blood

count 2 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 1.00] <0.001

Creatinine 2 0.00 [0.00, 3.00] 4.00 [0.00, 7.00] <0.001 0.00 [0.00, 4.00] 4.00 [0.00, 7.00] <0.001
Urine output 2 4.00 [0.00, 5.00] 5.00 [4.00, 8.00] <0.001 4.00 [0.00, 5.00] 5.00 [4.00, 8.00] <0.001
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Table 1. Cont.

Variable (Score)

Dataset before Downsampling Dataset after Downsampling

Survived
(60,693)

Dead
(7055) p Survived

(7055)
Dead
(7055) p

Blood urea
nitrogen 2 2.00 [0.00, 7.00] 7.00 [7.00, 11.00] <0.001 2.00 [0.00, 7.00] 7.00 [7.00, 11.00] <0.001

Blood sodium 2 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 2.00] <0.001
Albumin 2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001
Bilirubin 2 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001 0.00 [0.00, 0.00] 0.00 [0.00, 0.00] <0.001
Glucose 2 0.00 [0.00, 3.00] 0.00 [0.00, 3.00] <0.001 0.00 [0.00, 3.00] 0.00 [0.00, 3.00] <0.001

Acid base 2 0.00 [0.00, 2.00] 3.00 [0.00, 9.00] <0.001 0.00 [0.00, 2.00] 3.00 [0.00, 9.00] <0.001
Glasgow Coma

Scale 2 0.00 [0.00, 3.00] 3.00 [0.00, 29.00] <0.001 0.00 [0.00, 3.00] 3.00 [0.00, 29.00] <0.001

Hypertension 1 38,236 (63.0) 4608 (65.3) <0.001 4399 (62.4) 4608 (65.3) <0.001
Ischemic heart

disease 1 20,317 (33.5) 2568 (36.4) <0.001 2307 (32.7) 2568 (36.4) <0.001

Diabetes 1 18,001 (29.7) 2135 (30.3) 0.301 2053 (29.1) 2135 (30.3) 0.136
Chronic

pulmonary
disease 1

15,248 (25.1) 1916 (27.2) <0.001 1721 (24.4) 1916 (27.2) <0.001

Cerebrovascular
disease 1 8919 (14.7) 1630 (23.1) <0.001 1072 (15.2) 1630 (23.1) <0.001

Data are number of subjects (percentage) or median [IQR]. 1 Chi-square test or Fisher’s exact test was used to
compare the percentage between participants between surviving and deceased patients. 2 Kruskal–Wallis test
was used to compare the median [IQR] between surviving and deceased patients. 3 Student’s t-test was used to
compare the mean ± standard deviations between surviving and deceased patients.

For the prediction of mortality in ICU patients (Figure 2), the AUC of the XGBoost
model was 0.918 (95%CI, 0.915–0.922). The AUCs of logistic regression, SVM, and deci-
sion tree were 0.872 (95%CI, 0.867–0.877), 0.872 (95%CI, 0.867–0.877), and 0.852 (95%CI,
0.847–0.857), respectively (Table 2). XGBoost showed better accuracy, sensitivity, specialty,
positive predictive value, and negative predictive value compared with SVM, logistic
regression, and decision tree. The calibration curves of logistic regression and SVM per-
formed better than the other two models in the low and high probability range (0–40%
and 70–100%), while the calibration curve of XGBoost performed better in the medium
probability range of 40–70% (Figure 3). The XGBoost feature importance plot shows that
apart from total LODS score, total APS III score, weight, and age, the three most important
characteristics in predicting ICU mortality were Glasgow Coma Scale score, respiratory
rate score, and acid base score (Figure 4). The SHAP bee swarm plot shows the SHAP value
importance of all features in the XGBoost model (Supplementary Figure S2), and the results
show that in the plot, the Glasgow Coma Scale score, acid base score, and urine output score
were the three most important features in predicting mortality [31]. The hyperparameters
of the models are shown in Supplementary Table S1.

Table 2. AUC, accuracy, sensitivity, specialty, positive predictive value, and negative predictive value
of different models.

Models ROC (95%CI) Accuracy SEN SPE PPV NPV

XGBOOST 0.918 (0.915–0.922) 0.834 0.822 0.846 0.842 0.826
SVM 0.872 (0.867–0.877) 0.789 0.773 0.805 0.799 0.780

Logistic regression 0.872 (0.867–0.877) 0.787 0.756 0.818 0.806 0.771
Decision Tree 0.852 (0.847–0.857) 0.776 0.727 0.825 0.806 0.752



Diagnostics 2022, 12, 1068 6 of 13Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 2. ROCs of different models. 

Table 2. AUC, accuracy, sensitivity, specialty, positive predictive value, and negative predictive 

value of different models. 

Models ROC (95%CI) Accuracy SEN SPE PPV NPV 

XGBOOST 0.918(0.915–0.922) 0.834 0.822 0.846 0.842 0.826 

SVM 0.872(0.867–0.877) 0.789 0.773 0.805 0.799 0.780 

Logistic regression 0.872(0.867–0.877) 0.787 0.756 0.818 0.806 0.771 

Decision Tree 0.852(0.847–0.857) 0.776 0.727 0.825 0.806 0.752 

 

Figure 3. Calibration curve. 

Figure 2. ROCs of different models.

Diagnostics 2022, 12, x FOR PEER REVIEW 6 of 13 
 

 

 

Figure 2. ROCs of different models. 

Table 2. AUC, accuracy, sensitivity, specialty, positive predictive value, and negative predictive 

value of different models. 

Models ROC (95%CI) Accuracy SEN SPE PPV NPV 

XGBOOST 0.918(0.915–0.922) 0.834 0.822 0.846 0.842 0.826 

SVM 0.872(0.867–0.877) 0.789 0.773 0.805 0.799 0.780 

Logistic regression 0.872(0.867–0.877) 0.787 0.756 0.818 0.806 0.771 

Decision Tree 0.852(0.847–0.857) 0.776 0.727 0.825 0.806 0.752 

 

Figure 3. Calibration curve. Figure 3. Calibration curve.



Diagnostics 2022, 12, 1068 7 of 13Diagnostics 2022, 12, x FOR PEER REVIEW 7 of 13 
 

 

 

Figure 4. Feature importance plot of XGBoost. 

4. Discussion 

Critical illness in the ICU is associated with in-hospital mortality and substantial eco-

nomic burden. The in-hospital mortality in ICUs accounts for 20–50% of all in-hospital 

deaths [32,33], and the ICU accounts for 22% of the aggregate costs [34] for all hospitali-

zations, or nearly USD 81.3 billion in 2005 [35]. Early aggressive therapy can retard pro-

gression and control disease. However, it is difficult for clinicians to predict which pa-

tients will worsen and to evaluate the risk of not treating patients or if they will respond 

to specific therapy. As a result, better prediction models are needed to predict the mortal-

ity risk of critically ill patients in the ICU. Several prognostic scoring systems in ICUs have 

been developed to predict the outcome of patients. The advantages of such scoring sys-

tems are that they are easy to measure and interpret and are less prone to measurement 

and calculation errors. In this study, we used two prognostic scoring systems (LODS and 

APS III, the physiology subscore part of the APACHE III scoring system) as input varia-

bles, as more variables could provide better prediction performance [36,37]. The Logistic 

Organ Dysfunction Score (LODS) system is a common and important scoring system. 

LODS scores are used to assess six organ or system states and record the worst score 

within 24 h after admission to the hospital. The organ scoring system assesses for dys-

function of neurological, cardiovascular, renal, pulmonary, hematological, and hepatic 

systems [38]. As a weighted system, LODS is summed by six subscores, ranging from 0 to 

5, and each subscore represents an organ or system’s function or state. However, for the 

respiratory and hematological systems, the highest score is 3 points, and for the hepatic 

system, the highest is 1 point. Since its development in 1996 [39], it has been widely used 

for assessing mortality in ICUs. The Acute Physiology and Chronic Health Evaluation 

system was introduced in the early 1980s and has experienced three major revisions [40]. 

Although the APACHE II model is old, and new scoring systems have been developed 

Figure 4. Feature importance plot of XGBoost.

4. Discussion

Critical illness in the ICU is associated with in-hospital mortality and substantial
economic burden. The in-hospital mortality in ICUs accounts for 20–50% of all in-hospital
deaths [32,33], and the ICU accounts for 22% of the aggregate costs [34] for all hospi-
talizations, or nearly USD 81.3 billion in 2005 [35]. Early aggressive therapy can retard
progression and control disease. However, it is difficult for clinicians to predict which
patients will worsen and to evaluate the risk of not treating patients or if they will respond
to specific therapy. As a result, better prediction models are needed to predict the mortality
risk of critically ill patients in the ICU. Several prognostic scoring systems in ICUs have
been developed to predict the outcome of patients. The advantages of such scoring systems
are that they are easy to measure and interpret and are less prone to measurement and
calculation errors. In this study, we used two prognostic scoring systems (LODS and APS
III, the physiology subscore part of the APACHE III scoring system) as input variables, as
more variables could provide better prediction performance [36,37]. The Logistic Organ
Dysfunction Score (LODS) system is a common and important scoring system. LODS
scores are used to assess six organ or system states and record the worst score within
24 h after admission to the hospital. The organ scoring system assesses for dysfunction of
neurological, cardiovascular, renal, pulmonary, hematological, and hepatic systems [38].
As a weighted system, LODS is summed by six subscores, ranging from 0 to 5, and each
subscore represents an organ or system’s function or state. However, for the respiratory
and hematological systems, the highest score is 3 points, and for the hepatic system, the
highest is 1 point. Since its development in 1996 [39], it has been widely used for assessing
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mortality in ICUs. The Acute Physiology and Chronic Health Evaluation system was
introduced in the early 1980s and has experienced three major revisions [40]. Although the
APACHE II model is old, and new scoring systems have been developed using more recent
cohorts and better features, APACHE II is still widely used in clinical practice [41]. The
APACHE III scoring system was developed in 1991. Compared to the APACHE II scoring
system, APACHE III performs better in terms of correct classification and the AUCs [42].
The APACHE III scores several factors, including clinical complications, vital signs, and
partial blood biochemical examination results [43]. A higher score of LODS or APACHE III
is associated with high mortality in the ICU. Although some studies took APACHE III as
features to establish machine learning models, there is little literature on using LODS or
APS III data as partial input variables at present.

Our study aimed to compare the predictive power mortality between four different
machine learning models using subscores of LODS and APS III in predicting in-hospital
mortality of ICU patients. In the dataset, the mortality rate of ICU patients was 10.4%. Of
the four models, XGBoost showed the best performance in predicting mortality, followed
by SVM, logistic regression, and decision tree. Moreover, calibration curves were plotted to
evaluate the clinical usefulness of different mortality ranges. The results showed that in the
uncertain medium mortality risk range (40–70%), XGBoost was more valuable than logistic
regression and SVM models.

As the most widely used model, logistic regression has been used to diagnose diseases
and predict outcomes. A study based on a Spanish ICU database revealed that a logistic
regression model could achieve an AUC of 0.82 with APACHE III data as input variables,
which showed prediction ability to some extent [36]. Another study based on an American
ICU database found that using APACHE IV data as input variables could achieve high
prediction results [44]. Previous studies found that logistic regression and artificial neural
network (ANN) had similar performance when the sample size was adequate [45]. Al-
though logistic regression could not provide a nonlinear decision boundary, it still achieved
suitable prediction results. However, more studies revealed that, compared with logis-
tic regression, ANN demonstrated a better degree of discrimination in complex clinical
situations [46]. And another research revealed that using ANN to predict early hospital
mortality in acute pancreatitis in MIMIC-III could achieve higher prediction performance
compared with logistic regression [47]. This may be because ANNs have an inherently
flexible nature that suits more complicated interactions between the clinical input variables.
In comparison, logistic regression lacks modeling for complex interactions in clinical issues.
Some studies found that logistic regression had a relatively worse performance in AUCs,
prediction accuracy, or other metrics [36]. Meanwhile, there is research revealing a better
discrimination in predicting ICU mortality using XGBoost and gradient-boosted decision
trees (GBDT) models compared to SVM [48]. However, a better performance using SVM
classification to predict mortality risk for ICU patients with sepsis compared with logistic
regression has also been shown [49]. That might be because, depending on the particular
dataset or subject population, nonlinear classifiers (XGBoost and SVM) could obtain better
predictive performance compared with linear classifiers (logistic regression), which means
researchers need to take practical issues into account and select the optimal model.

Some previous studies used vital signs and laboratory variables available in conven-
tional clinical scoring systems as input features to predict mortality based on the MIMIC-III,
MIMIC-IV, and eICU databases with recurrent neural networks and achieved similar pre-
diction performance [31]. Another study used partial vital signs and Glasgow Coma Scale
scores at different time points after admission to the hospital as input features to predict
mortality based on the MIMIC-III database with a convolutional neural network-based pre-
diction model for multivariate time series [50]. The above studies used SHAP or heatmaps
to interpret the importance or contribution of the models. However, the studies used a
single scoring system as input variables. In contrast, our study selected all subscores of
LODS and APS III scoring systems as input variables, as they were completed within the
first 24 h of admission to ICU [51], and we used SHAP to explore the features’ importance
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following the method employed in previous studies. Additionally, we used the calibration
curve to find the best prediction range of different models. Previous studies showed that
constructing models based on SVM, neural network, and logistic regression with SOFA
scores as input variables to predict ICU mortality all performed well [23]. A study using
APACHE III as variables to construct an XGBoost model based on the MIMIC-III database
showed that XGBoost could perform better in accuracy, sensitivity, specificity, and AUC [52],
and the comparisons between XGBoost and other models (including logistic regression
and multilayer perceptron models) were statistically significant. Our research drew a
similar conclusion, as XGBoost had advantages in accuracy, AUCs, and discrimination
ability compared with SVM, logistic regression, and decision tree. However, among the
population with high mortality probability (more than 70%) and low mortality probability
(less than 40%), the calibration of SVM and logistic regression was better than XGBoost,
while among the population with medium mortality probability (40–70%), XGBoost had
advantages in calibration and discrimination compared with SVM and logistic regression.
As a result, in terms of ROC curve, sensitivity, and specificity, for patients whose prognosis
is difficult to predict by clinical experience, XGBoost performs better.

Although the importance of variables in XGBoost is shown in Figure 4, the recognition
of variables’ importance and mortality in the ICU could not be completely explained.
However, the reason why the variables of weight, age, and APS III total score had high
importance was because the values of the three variables were relatively large compared
with other scores. The three variables of the Glasgow Coma Scale score, respiratory rate
score, and acid base score were the most important variables. The SHAP bee swarm plot
shown in Supplementary Figure S2 showed a similar result, that the Glasgow Coma Scale
score, respiratory rate score, and acid base score were the three most important variables.
As a result, special attention should be paid to these physiological indices. This result is
consistent with previous studies. A study by Daniel found that the Glasgow Coma Scale
score dominates in predicting 30-day mortality in a mixed ICU with admission Sequential
Organ Failure Assessment scores as input variables [53]. Another study revealed that the
Glasgow Coma Scale was more suitable for early in-hospital death assessment among
patients with acute head injury [54]. A study by Piotr found that in multivariate analysis,
the Glasgow Coma Scale score was the most important variable in critically ill surgical and
nonsurgical patients [55]. There are few studies about respiratory rate predicting value for
mortality. A multicenter study developed a machine learning analysis with age, heart rate,
and respiratory rate as input features and found that the two most important prediction
factors were respiratory rate and heart rate [56]. Considering acid base, a study by Anja
found that in the ICU, some acid base imbalance factors (including lactate, base excess, and
pH) were all suitable predictors of mortality [57].

Compared with previous related studies, our study introduced each score in the APS
III and LODS scales to predict mortality in the ICU based on a newly released database
and achieve better prediction performance and used calibration curves to judge the best
prediction range of different patients with different mortality risk. In the SHAP plots of
value importance and feature importance of XGBoost, we explained the most influential
physiological conditions for survival. Clinicians can judge patients’ mortality probability
by whether the patients were at high or low mortality risk.

The strengths of this study rest on several aspects. First, we used the updated MIMIC-
IV database with complex and comprehensive information. Second, relatively novel
machine learning methods were used to replace the traditional logistic regression, and
the results showed better performance of XGBoost methods than the conventional logistic
regression model. Third, better statistical methods were used to replace traditional meth-
ods, such as 5-fold cross-validation to evaluate the model, and the results showed that
XGBoost had better performance. Fourth, we plotted calibration curves and found that
patients with different mortality risks could be assessed with different machine learning
models. In our study based on the MIMIC-IV database, the relatively certain in-hospital
outcome of patients with high or low mortality probability (0–40% and 70–100%) could be
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predicted with a logistic regression model or SVM, while the relatively uncertain survival
outcome of patients with medium mortality probability (40–70%) could be predicted with
XGBoost. Fifth, we used the SHAP bee swarm to explain the importance of all input
features. Additional different machine learning models should be developed, aiming to
predict the outcomes of critically ill patients with different scores.

However, there were also limitations in the present study. First, it was a single-center
retrospective study. Thus, further prospective multicenter studies are needed to validate
the current results. Second, this observational study used the random downsampling
technique to select surviving patients, which might result in some information loss and
potential bias. A better sampling technique or more datasets in order to obtain balanced
datasets can achieve better performance [58].

5. Conclusions

Compared with models with a single scoring system to predict mortality, our models
of data analysis provide strong evidence for the accuracy of predicting mortality in the
ICU with the APS III–LODS-based scoring system. In conclusion, this study showed that
a machine learning method based on XGBoost could perform better than conventional
logistic regression and support vector machine models. The Glasgow Coma Scale, acid base
score, urine output, and respiratory rate should be considered in order to improve clinical
prognosis. The XGBoost model could assist clinicians in judging in-hospital outcome of
critically ill patients, especially in patients with a more uncertain survival outcome.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/diagnostics12051068/s1, Figure S1: ROC curves of training dataset
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Table S1: Hyperparameter values of models.
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