
Frontiers in Immunology | www.frontiersin.

Edited by:
Shiki Takamura,

Kindai University, Japan

Reviewed by:
Wolfgang Kastenmüller,

Julius Maximilian University of
Würzburg, Germany

Phillip Scott,
University of Pennsylvania,

United States

*Correspondence:
Yoshiki Tokura

tokura@hama-med.ac.jp

Specialty section:
This article was submitted to

Immunological Memory,
a section of the journal

Frontiers in Immunology

Received: 19 October 2020
Accepted: 21 December 2020
Published: 03 February 2021

Citation:
Tokura Y, Phadungsaksawasdi P,

Kurihara K, Fujiyama T and Honda T
(2021) Pathophysiology of Skin

Resident Memory T Cells.
Front. Immunol. 11:618897.

doi: 10.3389/fimmu.2020.618897

REVIEW
published: 03 February 2021

doi: 10.3389/fimmu.2020.618897
Pathophysiology of Skin Resident
Memory T Cells
Yoshiki Tokura1,2*, Pawit Phadungsaksawasdi1, Kazuo Kurihara1, Toshiharu Fujiyama1

and Tetsuya Honda1

1 Department of Dermatology, Hamamatsu University School of Medicine, Hamamatsu, Japan, 2 Department of Cellular &
Molecular Anatomy, Hamamatsu University School of Medicine, Hamamatsu, Japan

Tissue resident memory T (TRM) cells reside in peripheral, non-lymphoid tissues such as
the skin, where they act as alarm-sensor cells or cytotoxic cells. Physiologically, skin TRM
cells persist for a long term and can be reactivated upon reinfection with the same
antigen, thus serving as peripheral sentinels in the immune surveillance network.
CD8+CD69+CD103+ TRM cells are the well-characterized subtype that develops in
the epidermis. The local mediators such as interleukin (IL)-15 and transforming growth
factor (TGF)-b are required for the formation of long-lived TRM cell population in skin.
Skin TRM cells engage virus-infected cells, proliferate in situ in response to local antigens
and do not migrate out of the epidermis. Secondary TRM cell populations are derived from
pre-existing TRM cells and newly recruited TRM precursors from the circulation. In addition
to microbial pathogens, topical application of chemical allergen to skin causes delayed-
type hypersensitivity and amplifies the number of antigen-specific CD8+ TRM cells at
challenged site. Skin TRM cells are also involved in the pathological conditions, including
vitiligo, psoriasis, fixed drug eruption and cutaneous T-cell lymphoma (CTCL). The
functions of these TRM cells seem to be different, depending on each pathology.
Psoriasis plaques are seen in a recurrent manner especially at the originally affected
sites. Upon stimulation of the skin of psoriasis patients, the CD8+CD103+CD49a- TRM
cells in the epidermis seem to be reactivated and initiate IL-17A production. Meanwhile,
autoreactive CD8+CD103+CD49a+ TRM cells secreting interferon-g are present in
lesional vitiligo skin. Fixed drug eruption is another disease where skin TRM cells evoke
its characteristic clinical appearance upon administration of a causative drug.
Intraepidermal CD8+ TRM cells with an effector-memory phenotype resident in the skin
lesions of fixed drug eruption play a major contributing role in the development of localized
tissue damage. CTCL develops primarily in the skin by a clonal expansion of a transformed
TRM cells. CD8+ CTCL with the pagetoid epidermotropic histology is considered to
originate from epidermal CD8+ TRM cells. This review will discuss the current
understanding of skin TRM biology and their contribution to skin homeostasis
and diseases.
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INTRODUCTION

The number of T cells infiltrating in the skin is nearly twice as
many as that in the peripheral blood, and the majority of these
cells are effector memory T cells (1). T cells in the skin include ab
T cells accounting for up to 99% and gd T cells for around 1% (2).
Thus, the skin is a homing organ for T cells in physiological and
pathological conditions related to adaptive immune response.
Before the discovery of resident memory T (TRM) cells, it was
supposed that T cells infiltrating in inflamed or infected tissue
transiently reside and undergo apoptosis or exit the tissue after
clearance of inflammation or infection. Skin TRM cells are a
memory T cell subset that provides local surveillance and do not
migrate out of the skin. This memory subset has distinct
behavior and transcriptional profile that distinguish TRM cells
from other memory T cell compartment.

Tissue TRM cells reside in peripheral, non-lymphoid tissues
such as the skin, where they act as alarm-sensor cells or cytotoxic
cells (3, 4). Physiologically, skin TRM cells persist for a long term
and can be reactivated upon reinfection with the same antigen,
thus serving as a part of an immune surveillance network.
CD8+CD69+CD103+ TRM cells are the well-characterized
subtype that develops in the epidermis, although CD4+

TRM cells are documented in certain conditions. Local
signaling by IL-15 and TGF-b is required for the formation of
these long-lived memory cells (5).

Skin TRM cells play a critical defensive role against skin
infections. In addition to this essential physiological role, they
are also involved in the pathological conditions (6), as
exemplified by psoriasis. The functions of these TRM cells seem
to be different, depending on each skin disease. The TRM cell-
inducing skin diseases have currently extended from fixed drug
eruption to psoriasis and cutaneous T-cell lymphoma, and even
to vitiligo. In this review, we will discuss recent insights into skin
TRM cells, with emphasis on their pathogenic roles in these
heterogeneous skin disorders.

TISSUE TRM CELLS

TRM cells, which lack the ability of recirculation via the
bloodstream and reside in the tissue, exist in various tissues in
Abbreviations: ATLL, Adult T-cell leukemia/lymphoma; CCL, Chemokine
ligand; CLA, Cutaneous lymphocyte-associated antigen; CTCL, Cutaneous T-
cell lymphoma; CTLs, cytotoxic lymphocyte; CXCL, CXC chemokine ligand;
CXCR, CXC chemokine receptor; DCs, Dendritic cells; DETCs, Dendritic
epidermal T cells; FABPs, Fatty acid binding proteins; FFA, Free fatty acid;
HSV, Herpes simplex virus; IFN, Interferon; IL, Interleukin; iNOS, Inducible nitric
oxide synthase; KLRG1, Killer cell lectin-like receptor subfamily G member 1; LN,
Lymph node; MF, Mycosis fungoides; MPECs, Memory precursor effector cells;
PD-1, Programmed cell death protein 1; PDE4, Phosphodiesterase 4; PD-L1,
Programmed cell death ligand 1; S1PR1, Sphingosine 1-Phosphate Receptor 1;
SLECs, Short-lived effector cells; SLOs, Secondary lymphoid organs; SS, Sézary
syndrome; TCM, Central memory T cell; TEM, Effector memory T cell; TMM,
Skin-tropic migratory memory T cell; TPM, Peripheral memory T cell; TRM,
Resident memory T cell; Th, Helper T cell; Treg, Regulatory T cell; TCR, T-cell
receptor; TILs, Tumor-infiltrating lymphocytes; TIP-DCs, TNF-a iNOS
producing dendritic cells; TNF, Tumor necrosis factor; VLA, Very late
antigen protein.
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various organs. However, the phenotypes of TRM cells in each
tissue, such as surface markers, the longevity, and the signals for
their survival are not uniform and highly heterogeneous. Insights
into TRM cells in various tissues have mostly been obtained from
mouse studies, and the data of human TRM cells are relatively
scarce, because of the technical difficulties in obtaining samples
and taking enough number of cells from small biopsy samples in
human. It is considered that both CD8+ TRM and CD4+ TRM cells
exist, but the property is best defined for CD8+ TRM cells. In this
section, we will briefly introduce the characteristics of TRM cells
in various tissues, mainly focusing on CD8+ TRM cells in mice
(Table 1).

The surface markers and longevity of CD8+ TRM cells are
critical issues and have been studied in mouse tissues. One of the
most important functions of TRM cells is the defense against
pathogens such as viruses, bacteria, fungi, and parasites, all of
which commonly invade to our body through barrier tissues.
Consistently, TRM cells are observed in barrier tissues such as the
skin, intestines, lung, and female reproductive tract (25, 26). TRM

cells are also detected in non-barrier tissues such as the central
nervous system, liver, and salivary glands (25, 26). Furthermore,
TRM cells are present in lymphoid tissues, some of which are
derived from non-lymphoid tissues (27). CD69 and CD103 are
the key surface markers of TRM cells in general, however, the
expression patterns of these markers are various depending on
the tissues, and even show heterogeneity in the same tissue.
CD103 is expressed in TRM cells in most tissues such as the skin
and central nervous system, but TRM cells lacking CD103 have
been reported in some tissues including intestines (28) and liver
(29). CD69, a C-type lectin, is expressed in most TRM cells. CD69
is supposed to work as a stop signal that prevents tissue egress of
TRM cells by antagonizing sphingosine-1-phosphate receptor 1
(S1PR1). However, a substantial proportion of TRM cells in the
pancreas, salivary glands, and female reproductive tract was
reported to be negative for both CD69 and CD103 (30).
February 2021 | Volume 11 | Article 618897
TABLE 1 | Resident memory T cells in various tissues in mice and humans.

Tissue of
residency

Type of TRM

reported in mice
or human

Possible involvements in human
diseases

CD4
TRM

CD8
TRM

Skin ✓ Fixed drug eruption (7)
✓ Psoriasis (8)
✓ Vitiligo (9)
✓ Alopecia areata (10)
✓ HSV infection (11)

✓ Candida infection (12)
✓ Leishmania infection (13)
✓ ✓ CTCL (14)

Gut ✓ ✓ Inflammatory bowel disease (15, 16)
Lung ✓ ✓ Influenza (17)

✓ ✓ RSV infection (18)
✓ Allergic asthma (19)

Synovial bursa ✓ ✓ Rheumatoid arthritis (20)
Central nervous
system

✓ Multiple sclerosis (21)
✓ Schizophrenia (22)

Kidney ✓ Lupus nephritis (23, 24)
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Longevity, which can be defined as the persistence of TRM cells in
the tissues, may be also quite different between tissues (4). It has
been reported that TRM cells in the lungs and liver persist for
weeks to months (31, 32), while TRM cells in the skin remain
numerically stable for months to years (33–35), suggesting a
tissue specificity of longevity. Longevity is the net effects of
several factors such as recruitment, maintenance, division,
death, egress, and competition. The extent of the effects of
each factor is various depending on the tissues. For example, at
the steady state, the ratio of TRM cells that uptake BrdU over 7
days is 0%–5% in the lung (36) and skin (37), while Ki67+ TRM

cells in the brain is reported around 9% (38), suggesting the
various proliferation ability of TRM cells depending on the
tissues. As for the maintenance signals of TRM cells, IL-15 is
one of the most important one. Indeed, IL-15 is required for the
maintenance of TRM cells in the skin (39), liver (40), salivary
glands and kidney (41). However, this is not the case for TRM

cells in the female reproductive tract, pancreas, small intestines,
and secondary lymphoid organs (SLOs) (41). Expression of
CD103 may also be important for the persistence of TRM cells
in several tissues such as the skin (39) and the gut (42). TGF-b is
necessary for the development of TRM cells in the skin (39), gut
(43), and lung (44), while not required for the development of
TRM cells in lamina propria of intestine (28). Thus, TRM cells in
each tissue possess their own characteristics. Because the
environment in each tissue such as available cytokines and
nutrients are various, TRM cells seem to adapt to unique local
environment to survive.

In human, T cells showing surface markers similar to murine
TRM cells have been detected in various tissues, suggesting that
TRM cells also exist in human. It is considered that TRM cells play
crucial roles for the protection of the host against pathogens, as
well as the development of inflammatory diseases. TRM cells in
the skin are probably the best studied population in human TRM

cells. In the genital skin after human simplex virus (HSV)
infection, virus-specific CD8+ T cells persist at the epidermal-
dermal junction (11). Involvement of TRM cells is suggested in
the development of various inflammatory skin diseases, such as
psoriasis, vitiligo, and drug eruption, which will be discussed
later. TRM cells are also detected in the gut, and are suspected to
contribute to the development of Crohn’s disease (15). In the
lung, CD69+ or CD103+ CD8+ TRM-like cells are detected in
patients with influenza or respiratory syncytial virus infection
(17, 18). Other than these tissues, existence of TRM cells has been
reported in the female reproductive tract after the vaccination
targeting human papilloma virus 16 (45) and liver in hepatitis C
infection (46), suggesting the importance of TRM cells in the
protective immunity in human as well.

CD4+ TRM cells are usually found within the tissue
parenchyma, such as the dermis in the skin. Compared with
CD8+ TRM cells, little is known about the characteristics and
functions of CD4+ TRM cells. However, this subset may also play
important roles in the protective immunity against pathogens in
several tissues (47). In mice, the protective roles of CD4+ TRM

cells have been reported in Leishmania major infection in the
skin (48), herpes simplex virus infection in the genital mucosa
Frontiers in Immunology | www.frontiersin.org 3
(34), Chlamydia trachomatis infection at the reproductive
mucosa (49), and Streptococcus pneumonia infection in the
lung (50). It remains to be clarified whether those CD4+ TRM

cells are really resident in tissues or just a subset of memory
CD4+ T cells which spend an extended period time in the tissue
before circulation.
IDENTIFICATION AND DEFINITION
OF SKIN TRM CELLS

As discussed above, the markers that identify tissue TRM cells
may differ among the tissues. The characteristic behavior and
markers of skin TRM were well studied in murine models. In
human, it is technically difficult to address the migratory
behavior of skin TRM cells in an in vivo system. The resident
memory properties of human skin T cells are largely described
on CD8+ T cells with surface markers similar to those of murine
TRM cells (23, 51). In this section, we review the current evidence
of skin TRM identification, which mostly came from the murine
study, and their relevance in human (Figure 1).

Precursors of Skin TRM Cells
Naïve CD8+ T cells proliferate and differentiate into a pool of
effector cells upon recognition of cognate antigen. During
the effector phase, CD8+ effector cells can be divided into
short-lived effector cells (SLECs) and memory precursor
effector cells (MPECs) (52). SLECs are characterized by
KLRG1hi IL-7Ralo(CD127), while MPECs are KLRG1lo IL-
7Rahi. The fate decision of SLECs/MPECs depends on a sum
of inflammatory signals that create a T-bet gradient, in which a
low-level magnitude promotes MPECs fate during T cell priming
(52). Almost all SLECs undergo apoptosis, whereas MPECs turn
into heterogenous populations of long-lived memory CD8+ T
cells after clearance of infection (52). In early skin infection of
herpes simplex virus, skin-infiltrating T cells are mainly KLRG1+

effector cells, while at the memory phase, the remaining memory
T cells in the skin bear negative or low expression of KLRG1.
Consistently, the adoptive transfer study of KLRG1- T cells
confirmed that KLRG1- MPECs gave rise to TRM cell
populations in the skin (39). Memory T cells also express
CD45RO but not CD45RA. Skin-infiltrating T cells isolated
from normal human skin were almost all CD45RO+ memory T
cells (1). Collectively, skin TRM cells possess the memory
precursor phenotype, KLRG1-CD127+CD45RO+CD45RA-.

Skin-Homing Molecules on TRM Cells
Skin-infiltrating memory T cells express a distinct homing
receptor called cutaneous lymphocyte-associated antigen
(CLA), which binds to E-selectin and P-selectin and allowing
CLA+ T cells to enter the skin (1). Nearly all CLA+ effector
memory T cells are resident in human skin during steady state
(1). Chemokine receptor (CCR)10 is one of the essential
chemokine receptors for skin homing of T cells (53), as
CCR10-deficient mice showed a reduction of CD8+ T cells in
the skin (54). Similarly, CD8+ T cells lacking CCR10 impaired
February 2021 | Volume 11 | Article 618897
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their TRM forming capacity (55). CXCR6 is expressed on skin
TRM cells in human (1) and mice (56), and CXC chemokine
ligand (CXCL)16, a ligand for CXCR6, is expressed on epidermal
keratinocytes and can be released as a chemoattractant (57). T
cells lacking CXCR6 had low capacity to form TRM cells in the
skin, whereas CXCR6-/- and wild-type T cells were not different
in number in the SLOs. Consistently, direct injection of
CXCR6-/- CD8+ T cells into the skin also decreased TRM

formation, suggesting that CXCR6 is important for retention
rather than recruitment of CD8+ T cells to the skin (55). CCR4 is
an essential skin-homing molecule for the migration of T cells to
the skin (58) and highly expressed on skin TRM cells (1).
Mogamulizumab, a humanized anti-CCR4 antibody, was
approved for mycosis fungoides (MF) and Sézary syndrome
(SS), which are a malignancy of skin-homing malignant T cells
(59). However, the exact role of CCR4 on skin CD8 TRM

formation is not clear. Previous studies showed that CXCR3
expression is necessary for TRM cell precursors to enter the
epidermis, and CD8+ T cells lacking CXCR3 resulted in less
formation of CD103+ TRM cells in mice (39). Skin CCR8+ T cells
show phenotypic, functional, and transcriptomic profiles
compatible with TRM cells (60). CCR8 is expressed on half of
cutaneous memory T cells, whereas very few CCR8 is expressed
on circulating memory T cells (61). The ligand for CCR8, CCL1,
is preferentially expressed in human skin, and keratinocyte-
derived prostaglandin E2 and vitamin D3 can induce CCR8
expression by CD8+ T cells, suggesting that it may involve in
TRM localization in skin (62, 63). However, the role of CCR8 is
currently unclear, since T cells lacking CCR8 can migrate and are
maintained in the skin as usual in mouse epidermis following
viral skin infection (55). Collectively, CCR10 (53, 64), CCR4
(58), CCR8 (60, 62), and CXCR3 (39) enable memory T cells to
migrate to the skin, CLA allowing them to enter the skin (1), and
Frontiers in Immunology | www.frontiersin.org 4
CCR10 and CXCR6 (55) contribute to TRM formation in
the skin.

Retention Mechanisms of Skin TRM Cells
The retention properties of skin TRM cells have been widely
explored in a murine model. The most recognized markers of
skin TRM cells in both humans and mice are CD103 and CD69,
which are responsible for TRM retention (65). CD103 is an a-
chain of the integrin aEb7and binds to E-cadherin expressed by
keratinocytes (Figure 2) and is the most common and widely
accepted TRM marker. CD103 expression on CD8+ TRM is
dependent on the TGF-b (39, 66), which is activated by
keratinocyte integrins avb6 or avb8 (67). In mice lacking this
keratinocyte-integrin, TRM cells are unable to express CD103 and
cannot persist long term in epidermis (67). CD103 on CD8 TRM

cells mediate cell adhesion to the epidermis and thus promote
local retention (55). Similarly, CD103-/- CD8+ T cells can enter
the epidermis but unable to persist long term in the skin as TRM

cells (39, 55). TGF-b induces CD103 expression on activated
CD8+ T cells, but not CD4+ T cells, and leads to CD103-
mediated adhesion of CD8+ T cells, but not CD4+ T cells, to
monolayer human keratinocyte cultures (68). This may explain
the reason why CD4+CD103+ T cells can exit in the skin, but
CD8+CD103+ TRM cells cannot. However, another study showed
that TGF-b also induces CD103 expression on CD4+ T cells and
mediates cell adhesion to keratinocyte (14). This discrepancy is
possibly due to different experimental setups and T cell
stimulation methods, and further studies are needed to
confirm the function of CD103 on CD4+ T cells. Indeed,
CD4+CD103+ cells can be found in human circulation but not
CD8+CD103+ cells (69). Moreover, CD69 expression is very
dynamic and can be easily induced in vitro upon stimulation
(70). By using qPCR, the expression of TGF-b in psoriatic skin is
FIGURE 1 | Characterization of skin resident memory T cell.
February 2021 | Volume 11 | Article 618897
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comparable to normal skin, implying that increment of CD103+

T cells in psoriasis does not stem from general upregulation of
TGF-b expression (68). In tumor context, the interaction
between aE(CD103)b7 on tissue-infiltrating lymphocytes and
E-cadherin on tumor cells induces cytolytic granule polarization
and subsequent exocytosis, leading to tumor cell lysis (71). This
suggests that CD103 also exerts some biological activity in
addition to the adhesion property.

CD69 is involved in the residency status of TRM cells by
downregulating sphingosine 1 phosphate receptor (S1PR1)-
mediated tissue egress (72, 73). The vast majority of skin TRM

cells in both mice and humans express CD69 (14, 39, 74). The
induction of CD69 expression is strongly influenced by antigen
stimulation and exposure to pro-inflammatory mediators (72).
CD69 is upregulated shortly after memory T cells reaching the
skin and CD69 expression is critical for early T cell retention
rather than recruitment of T cell into skin (39, 72). However, a
recent parabiosis study demonstrated that CD69 expression is
inadequate to define a stable residence (27).

a1(CD49a)b1 integrin is one of the T cell receptors for
collagen IV, originally termed as Very Late Antigen (VLA)-1.
CD49a is upregulated following T cell activation and can be
found on circulating T cells before they enter into the skin (75).
CD49a-expressing CD8+ T cells are enriched in the epidermis of
human and mouse skin (8, 37). In an HSV infection mouse
Frontiers in Immunology | www.frontiersin.org 5
model, CD49a increased TRM effector function and promoted
TRM persistence in the skin, but not required for CD8+ T
cell to entry into the epidermis (75). In contrast, in the
xenotransplantation model of psoriasis, blocking CD49a
inhibits T cell migration into the epidermis, resulting in a
decrease of TRM cells and prevention of psoriasis development
(76). IL-12 and TGF-b can upregulate CD49a expression on
CD8+ T cells (75). Not only CD8+ TRM cells but also CD4+

memory T cells poised for Interferin (IFN)-g production
preferentially express CD49a in human (74, 77). Since IL-12
can induce IFN-g production and CD49a expression, it is
tempting to speculate that in the psoriasis context, IL-17A-
producing TRM cells, which preferentially express IL-23R (74),
downregulate their CD49a due to a greater influence of IL-23
over IL-12.

Collectively, CD69 is critical for initial formation of TRM cells
shortly after T cells enter in the skin, while CD103 is required for
T cell adhesion and long-term retention of TRM cells. Ultimately,
both CD69 and CD103 are required for TRM formation in the
skin. In addition, CD49a regulate the persistence, morphology
and effector function of CD8+ TRM cells in the skin.

Characteristics of CD4+ Skin TRM Cells
Compared with CD8+ skin TRM cells, the characteristics and
behavior of CD4+ skin TRM cells have been less understood,
FIGURE 2 | Adhesion of TRM cell in the skin.
February 2021 | Volume 11 | Article 618897
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and probably, they are quite different between mice and humans
and remain controversial. In human skin, CD4+ T cells can be
found in both epidermal and dermal compartments (14),
whereas CD4+ T cells in murine skin are predominantly in the
dermis. In fact, human skin has a thicker epithelial layer and
lower density of hair follicles that are crucial for residency of
CD4+ TRM in mouse skin (78, 79).

Earlier studies showed that the motility of skin-infiltrating
CD4+ T cells are higher than that of CD8+ T cells, and they
equilibrate with circulating T cell pool at steady state (78, 80).
Skin CD4+ memory T cells preferentially accumulate around the
hair follicle isthmus and constantly move back and forth to the
circulation (78). After cutaneous HSV infection, two distinct
HSV-specific memory T cell subsets were found in the skin; the
slow-moving CD8+ T cell population resided in the epidermis,
particularly at the site of infection, whereas dynamic CD4+ T cell
population rapidly trafficked through the dermis and showed
recirculation pattern (80). Indeed, we have previously
demonstrated a substantial recirculation of CD4+ T cells in the
skin to the draining lymph nodes, using a photo-convertible
system of Kaede-transgenic mice (81).

A recent study using mice parabiosis experiment identified
the CD4+ TRM population with prolonged residency in non-
lymphoid tissue, which was separated from the circulation and
shared transcriptional signatures with CD8+ TRM cells. However,
this study showed only a limited period of 4 weeks of the extent
of residency (82), because the prolonged parabiosis was
associated with great equilibration for skin CD4+ T cells (78).
Another study using alemtuzumab, an antibody targeting
CD52 and depleting circulating T cells, showed that
CD4+CD69+CD103+ and CD4+CD69+CD103- persist in the
skin without replenishment of the circulating compartment,
suggesting that they are TRM populations. Similarly, in in vivo
studies, CD4+CD69+CD103+ T cells possibly represented a non-
migrating resident CD4+ T cell population in the dermis (12, 83).
However, the dynamic observation of CD4+ TRM cells in the skin,
particularly in human, is technically challenging, and
their migratory behavior cannot be excluded. In contrast,
the xenografting model with human skin showed that
CD4+CLA+CD103+ TRM cells down-regulate CD69 expression,
exit from the skin, and reach into the circulation (69). These
cells in the blood and skin are clonally related and share their
function and transcriptional profiles. CD4+ TRM cells were
reported to play a role against skin infection with L. major
(13) and C. albicans (12). Recently, resident memory Th2 cells in
the lung exhibit a distinct CD4 population and play a critical role
in an allergic asthma murine model (19). Furthermore, in
experimental colitis, CD4+ TRM cells play a crucial role in the
regulation of intestinal inflammation, and they were found in the
colon of inflammatory bowel disease patients (16). These studies
support the existence and critical role of CD4 TRM cells in tissue-
specific immune and inflammatory diseases.

Originally, TRM cell was defined as a memory T cell
population that persists long-term in peripheral tissue and do
not migrate back to the circulation. According to this definition,
not all skin-infiltrating T cells are resident memory T cells. There
Frontiers in Immunology | www.frontiersin.org 6
are only a fraction of these cells that represent the authentic TRM

population. A similar definition may be applied to CD4+ TRM

cells. In fact, the residence is difficult to quantify, and there are no
perfect markers to define a permanent resident T cell. CD103
and/or CD69 may not be sufficient for defining the residence
status of skin infiltrating T cells, especially CD4+ T cells (14, 84).
Collectively, it is tempting to postulate that CD4+ TRM cells are
generally more dynamic and have a distinct migratory behavior
compared to CD8+ TRM cells in human skin. Meanwhile, in some
inflammation or infection context, CD4+ TRM cells play a crucial
role and may persist in the skin for an extended period.
DEVELOPMENT OF SKIN TRM CELLS

A different subset of memory CD8+ T cells contribute to an
immune memory response in different aspects and locations.
Once naïve CD8+ T cells are activated, they differentiate into
pooled effector CD8+ T cell populations, which are composed
of SLECs and MPECs. MPECs are characterized by
CD127hiKLRG1lo populations, while SLECs are KLRG1hi

populations. After clearance of inflammation or infection, the
majority of SLECs undergo apoptosis, whereas MPECs turns into
a heterogeneous subset of memory T cells (85). Historically,
memory T cells were divided into central memory (TCM) cells
that express high lymphoid homing molecules and recirculate
through SLOs, and effector memory T (TEM) cells that lack
lymphoid homing molecules (86). From the current literature,
memory T cells can be broadly divided into four main
populations in the murine model. (1) TCM: expressing lymph
node (LN) homing molecules (CCR7+CD62L+CX3CR1-) and
mainly surveying SLOs. (2) TEM: expressing CCR7-CD62L-

CX3CR1+ and predominantly surveying the blood. (3)
peripheral memory T cells (TPM): expressing CCR7+CD62L-

CX3CR1int and preferentially patrolling peripheral tissues and
migrate to blood and LN. (4) TRM: persisting for a long term in
peripheral tissues.

By immunizing mice with a protein antigen, chemical hapten,
or non-replicating virus, TRM cells from the treated skin and
distant skin as well as the draining and distant LNs contain
identical TCR cells in both TRM and TCM compartment,
suggesting that TRM and TCM cells may be derived from
common naïve T cell precursors (87). However, equal
contribution of individual naïve clones to formation of TRM

subsets has not been definite. Using a lineage-tracing technique
to track individual naïve CD8+ T cells responding to skin
vaccination, it was shown that individual T cell clones
contribute differentially to the formation of TRM-poised
effector T cell subset, which has a capacity to subsequently
form TRM population (88). The propensity to form TRM

populations is disparately distributed over T cell clones,
implying that this fate must be committed before clonal
expansion. The heterogeneity of circulating vaccine-specific
effector T cell pool can be divided into four distinct
populations based on the gene expression profiles, including
effector cell, intermediate cell, circulating memory T cell-like
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precursor, and TRM-like precursor. This study revealed the
existence of TRM cell precursor in circulation and their
commitment to TRM cells before entering into the skin (88).

The existence of pre-commitment TRM cells in circulation was
further supported by an elegance study on the role of dendritic
cell in TRM cell formation (89) (Figure 3). This study revealed
that the formation of skin TRM cells requires interaction between
naïve CD8+ T cells and migratory dendritic cells (DCs) from the
skin at a steady state. This process depended on the presence of
TGF-b, which activates V-integrins on migratory DCs. In fact,
lack of V-integrins on CD11c+ DCs resulted in a substantial
reduction in epidermal CD8+ T cells, but did not affect dermal
CD8+ T cells or other skin immune populations. The expression
of a V-integrins on DCs during immune homeostasis, but not in
priming state, was required for pre-conditioning naïve CD8+ T
cells for effective TRM cells formation (89). Therefore, TRM fate
decisions on T cells seem to happen earlier than expected, and
this event appears to be controlled primarily by a cross-talk
between local skin and draining LNs via DCs. Indeed, DCs are
able to instruct T cells to migrate to a specific location. For
example, DCs in skin-draining LNs and mesenteric LNs induce
the expression of tissue homing molecule that elicits tropism for
skin and gut, respectively (90, 91). Earlier studies showed that
individual naïve T cells contribute differentially to short-term
effector cells and long-term memory cells, and the fate of each
naïve T cells is unpredictable (92). However, the subsequent
study revealed the clonal bias of TRM precursors within
heterogenous memory populations (88).

Non-specific inflammation is sufficient to attract CD8+ T cells
into the inflamed tissue and adopt TRM cells in the skin (93, 94),
suggesting that TRM cells in the skin do not require cognate
antigen for their establishment. Basically, the skin immune cells
respond to an invader such as hapten and secrete pro-
inflammatory cytokines that induce dendritic cell migration
and maturation (95). Endothelial cells increase the expression
of adhesion molecules; CD54 (ICAM-1) and CD106 (VCAM-1),
Frontiers in Immunology | www.frontiersin.org 7
which guide T cell entry into the tissue. In addition, chemokines,
Chemokine ligand (CCL)2 to 5, CXCL9, and CXCL10 are
secreted from keratinocyte and innate immune cells, and this
initial step is induced by a non-specific inflammation process
and is a fundamental mechanism to recruit T cells into inflamed
skin (96). However, the presence of cognate antigens enhances
TRM cell formation. Moreover, antigen challenges at the skin lead
to generalized seeding of antigen-specific TRM cells, which are
found at the highest density at sensitizing area (39, 87).
MAINTENANCE OF SKIN TRM CELLS

A whole-genome bisulfate sequencing study suggests that TRM

cells have a high plasticity and a development potential
comparable to TCM and TEM cells, indicating that they are not
terminally differentiated (97). In addition, TRM cells can
proliferate in situ in response to viral challenge, further
supporting their as yet undifferentiated status (94). Different
factors are required for maintenance of TRM cells, depending on
individual tissues (98). Skin CD8+ TRM cells can be maintained in
the skin for a long period (65, 87). Several factors, including local
antigens, cytokines, and metabolites, contribute to TRM

maintenance (Figure 4). A disparate level of skin residency
may exist in skin TRM cells. While certain subsets of skin TRM

cells have long-term residency, other subsets transiently reside in
the skin and possibly migrate out to the circulation.

Effects of Cognate Antigens
Although local antigen is not required for skin recruitment of
circulating CD8+ T cells to obtain the TRM phenotype, antigen
exposure greatly amplifies the number of CD8+ TRM cells (99).
Local antigenic challenge induces antigen-specific TRM cell
proliferation, and they are maintained as epidermal TRM pool
(94). Intriguingly, the subsequent pool of TRM cells after antigen
reencounter is generated mainly from the pre-existing TRM cell
FIGURE 3 | Development of skin TRM cell.
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population, rather than from circulating memory T cell
compartment (94, 100). A self-sustained capacity of TRM cells
in the skin seems to be independent of CD4+ helper T cells and
CD11c+ cells (100). The contribution of circulating memory T
cells in the local immune response may depend on the density of
the pre-existing TRM population, suggesting the flexibility of
circulating TCM cells to support TRM population. Moreover, even
with the newly seeded, unrelated TRM population in the skin, the
number of pre-existing TRM cells remain largely unchanged.
Initial activation of skin TRM cells requires antigen recognition,
which represents TRM-mediated skin protection and is ultimately
changed to an antigen independent reaction (101). TRM cells thus
exert a protection capacity, depending on their local density in
skin (94). A question arises as to how local antigen influences
composition of skin TRM cells from a pool of polyclonal skin-
infiltrating memory precursors during active infection or
inflammation. It has been revealed that local antigen-
dependent cross-competition contributes to shaping the
polyclonal TRM cell repertoire in the skin, whereas this event is
not observed in SLOs (102). Therefore, the local antigen-
dependent self-amplification and cross-competition processes
may serve as a mechanism to modulate local TRM composition
in response to a variety of invaders and responsible for
maintenance of TRM cell population in skin.

Fatty Acids for the Maintenance of Skin
TRM Cells
One of the basic needs for life is food. The skin has a unique
microenvironment where lipids are rich even with shortage of
nutrients. Skin TRM cells reside in the epidermis, and thus, they
are relatively independent from blood circulation. Although
nutrients may diffuse from the dermis to the epidermis, the
local energy source seems to be required for TRM cells. Fatty acid
binding proteins (FABPs) are a group of intracellular molecules
that mediate lipid trafficking and metabolism (103). FABPs
originally consist of adipose FABP (A-FABP) and epidermal
FABP, which encoded by Fabp5. E-FABP is expressed on
Frontiers in Immunology | www.frontiersin.org 8
keratinocytes and immune cells, including T cells and
macrophages (104). High-fat diet upregulated E-FABP
expression and promote skin inflammation, suggesting the role
of lipid metabolism in immune regulation (105). Recently, it was
shown that CD8+ TRM cells utilize exogenous lipids in the skin as
an energy source for their survival. T cells lacking Fabp4 and
Fabp5 cannot uptake and utilize exogenous free fatty acid (FFA),
which results in a reduction of long-term survival and impaired
functional properties of CD8+ TRM cells in vivo. This deficiency
has no effect on TCM cell survival. Interestingly, the significance
of lipid metabolism for TRM survival is increased over time,
suggesting metabolic adaptation to the skin environment. It is
proposed that CD8+ TRM cells utilize local lipid as an energy
source to maintain their functional competence and longevity in
the skin. Similarly, CD8+ TRM cells in the skin also increase the
expression of FABP4 and FABP5 (106). It seems that the impact
of FABP deficiency is not only limited to CD8+ TRM cells but also
affects CD4+ T cells and DCs. Upregulation of FABPs on CD4+ T
cells promotes IL-17 expression, while the loss of FABPs is
associated with enhanced expression of FoxP3 (104),
suggesting the role of E-FABP and Th17/Treg balancing. In
addition, FABP-deficient mice showed an altered antigen-
presenting function of dendritic cells and macrophages (107).
The limitation of energy resources in the epidermal niche
possibly influences the TRM cell density and survival. A recent
study demonstrated that CD8+ TRM cells displace pre-existing
dendritic epidermal T cells (DETCs) from the epidermis because
they have a superior metabolic fitness (108).

Cytokines
Despite the likeness between IL-15 and IL-2, including shared
receptor subunit, IL-15 has a perceptible difference in
immunomodulatory properties (109). Basically, IL-15 promotes
proliferation and survival of circulating memory CD8+ T cells
but did not affect regulatory T cell populations in human (110,
111). IL-15 deficient mice showed a reduction of CD8+ TRM cell
number (39, 112) but slightly increased CD4+ TRM cells in the
FIGURE 4 | Maintenance of skin TRM cell.
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skin, while the numbers of CD8+ T cells and CD4+ T cells in
SLOs were not different between IL-15-deficient and WT mice
(112). Keratinocytes at hair follicle has been shown as the main
source of IL-15 for maintaining CD8+ TRM cells in the skin. In
addition to IL-15, IL-7 from hair follicle also influence on both
CD8+ TRM and CD4+ TRM cells persistent in the skin. However,
the requirement of IL-15 for TRM maintenance may vary
depending on the tissue and context of inflammation (41).
Apart from maintenance property, IL-15 strongly induces
perforin and granzyme B expression in CD8+CD103+CD49a+

TRM cells but not in CD8+CD103+CD49a- TRM cells isolated
from normal human skin (74). TGF-b is a pleiotropic cytokine
that is produced in an inactive form that requires specific
integrins on keratinocyte to activate them (113). Activated-
TGF-b induces CD8+ TRM cells to express CD103, which is
mandatory for their retention and long-term persistence in the
skin (39, 55). Collectively, keratinocytes play an important role in
establishing long-term TRM cell populations by providing local
mediators like IL-15, IL-7, and activated TGF-b.
SKIN TRM CELLS IN CUTANEOUS
DEFENSE SYSTEM AGAINST PATHOGENS

Although the pathophysiological roles of skin TRM cells
encompass several aspects (65), they serve primarily as a
critical component of cutaneous immune defense. TRM cells act
as peripheral sentinels providing rapid immune response against
invading pathogens (114). Infection with pathogenic
microorganisms leads to directed homing of T cells to the
appropriate tissues, such as the skin. Subsequently, most
antigen-specific memory T cells reside in the non-lymphoid
organs, convey tissue-resident memory, and mount durable
protective immunity in the skin.

Virus is a major pathogen to which skin TRM cells respond,
and a number of valuable findings have been obtained from
studies on virus infection. TRM cells can autonomously regulate
the local TRM composition to mediate immunosurveillance
independently of circulating memory T cells (94, 100).
Skin TRM cells are activated and proliferate in situ upon
encounter with virus-infected cells, and do not migrate out of
the skin. As a consequence, secondary TRM cell populations were
mainly derived from pre-existing TRM cell populations and the
precursors recruited from the circulation. In subsequent
infections, the pre-existing skin TRM cell populations are not
displaced by the newly generated TRM cells, enabling multiple
TRM cell specificities to maintain a diverse immune response
within the tissue (94). Consistently, mucosal TRM cells are highly
motile, but pause and undergo in situ division after local antigen
challenge. TRM cell reactivation triggers the recruitment of
recirculating memory T cells that undergo antigen-
independent TRM cell differentiation in situ. The proliferation
of pre-existing TRM cells dominates the local mucosal recall
response and contribute most substantially to the boosted
secondary TRM cell population (100).
Frontiers in Immunology | www.frontiersin.org 9
CD8+ TRM cells seem to play a major role in cutaneous
defense against virus. After resolution of skin vaccinia virus
infection, antigen-specific circulating memory CD8+ T cells
migrate into the skin. Memory T cells that reside at these
surfaces provide a first line of defense against subsequent
infection (6, 115, 116).

The local cytokine environment within the skin determines
the differentiation state and persistence of the central and
peripheral memory-T-cell pool (67). CD8+CD103+ TRM cells
develop in the skin from epithelium-infiltrating precursor cells
that lack expression of the effector-cell marker. Following the
entry of the T cells into the epidermis, the local mediators such as
IL-15 and transforming growth factor (TGF)-b are required for
the formation of long-lived TRM cell population in skin (39). The
retention of tissue-resident memory T cells is mediated by TGF-
b, which up-regulates CD103 expression and down-regulates
CCR7 expression. Besides microbial pathogens, topical
application of chemical allergen to skin causes delayed-type
hypersensitivity and amplifies the number of antigen-specific
CD8+ TRM cells at challenged site (117). Expanded
TRM CD8+ T cells in the skin are derived from memory T cells
recruited out of the circulation. Expanded TRM CD8+ T cells
significantly increase anti-viral protection.

In addition to CD8+ cells, CD4+ TRM cells are also involved in
microbial defense. CD4+ TRM cells play a role in cutaneous
fungal infection (12). Candida albicans (C. albicans) is a
common dimorphic fungal pathogen to which human subjects
are exposed early in li fe , and by adulthood. In a
C. albicans infection mouse model, dermal gd T cells
producing IL-17 are the main effector cells in the initial
infection, and then, abTh17 effector T cells become
predominant. By day 30 after infection, the CD4+ TRM cells
become the main population of IL-17-producing T cells that
react to C. albicans. Between 30 and 90 days after infection, these
reactive CD4+ T cells acquire expression of CD69 and CD103,
the retention markers, and reside in the papillary dermis. These
TRM cells are more effective to eradicate C. albicans than
recirculating T cells (12).

Recently, the preclinical studies on TRM-targeted vaccination
have shown a favorable outcome. Intranasal (118) and mucosal
(119) administration of vaccine generated protective TRM cells in
the lung and airway of mice. Direct vaccination (118, 119) or
delivery vaccine vectors to a specific tissue (120, 121), rather than
parenteral route, generated antigen-specific TRM cells, thereby
mediating effective protection independent of circulating
memory T cells. In addition, a “prime and pull” strategy (122),
which combines vaccination with local application of
chemokines, effectively generated TRM cells. These studies
suggest that protective TRM cells can be generated through
vaccination, especially tissue-targeted approaches that give a
better protection than ordinary parenteral route. Since the skin
is an accessible tissue for administration of vaccine, a question
arises whether immunization through the skin can generate TRM

cells in other organs or barrier tissues. In fact, the smallpox
vaccine, which is one of the most effective vaccine in history, was
delivered by skin scarification (123). In a murine model, the
February 2021 | Volume 11 | Article 618897
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localized virus skin infection (35) or skin immunization (87) can
generate antigen-reactive TCM cells and skin TRM cells that reside
within the entire skin and possibly in the lung (124). Besides, the
combination of “prime and pull” with a prime boost approach
was reported to be very effective to produce protective TRM cells
(125). These suggest the possible role of the skin as a TRM-
targeted vaccination strategy. Further understanding of how skin
dendritic cells shape the TRM precursor pool (89), which have a
potential to transform into tissue-specific TRM cells, may provide
a crucial information for the development of TRM-targeted
vaccination. Furthermore, skin resident memory T cells also
play a protective role in skin infection, such as HSV (35),
C. albicans (12), leishmania major (13), and in skin cancers,
such as melanoma (126) and squamous cell carcinoma (127).
They also play a pathogenic role in some autoinflammatory skin
diseases; vitiligo (9, 128), psoriasis (8) and alopecia areata (10).
Thus, the vaccination-induced TRM cell strategy may also have a
potential to become a novel therapeutic approach to protect the
skin from infection, prevent tumor growth, or suppress
autoreactive immune responses.
SKIN TRM CELLS IN PSORIASIS

Psoriasis is a common chronic inflammatory skin disease, and
the pathogenesis underlying psoriasis has been extensively
studied (Figure 5). CD4+ T cells producing interleukin (IL)-17,
named Th17 cells, play an essential role in its pathogenesis
(129). Th17-derived cytokines, IL-17A, IL-17F and IL-22,
induce epidermal acanthosis, which represents an intriguing
histological finding of psoriasis and results from the
proliferation of epidermal keratinocytes. These mediators
stimulate keratinocytes to produce TNF-a, IL-8, and
vascular endothelial growth factor, thereby promoting
inflammation, neutrophil recruitment, and angiogenesis (129). For
maintenance of Th17 cells, IL-23 is required and secreted from
inflammatory DCs or TNF-a and iNOS-producing DCs (TIP-DCs)
Frontiers in Immunology | www.frontiersin.org 10
Psoriasis and other Th17-mediated skin diseases (129). Epidermal
Langerhans cells are another source of IL-23 in a certain condition
(130). Keratinocytes are also activated by their own cytokines, such
as IL-17C, IL-36, and TNF-a, in an autocrine manner (131, 132). In
addition, antimicrobial peptides released from keratinocytes and
(IFN)-a from plasmacytoid DCs has been considered to play
initiative roles for the development of psoriatic lesions (133).
Meanwhile, a self-regulatory autocrine mechanism is disturbed in
epidermal keratinocytes of psoriasis patients (134).

The cytokine network in psoriasis has been proven by the
therapeutic effectiveness of biologic antibodies that block
individual cytokines, including TNF-a, IL-23/IL-12p40, anti-
IL-23p19, IL-17A, and IL-17 receptor (135). Although
biological drugs are effective, there are variations in the
responsiveness between patients (136). Moreover, upon
withdrawal of the biologics, the skin lesions often recur.
Psoriasis plaques are seen in a recurrent manner especially at
the originally affected sites (137). Thus, even after clearance of
skin lesions, some immunocompetent cells possibly remain in
the previously affected, currently normal-appearing skin. A
number of studies have suggested the pathogenetic role of skin
TRM cells in psoriasis (8, 74), particularly as a strong candidate
that evokes recurrence (2). Notably, TRM cells in psoriatic skin
can produce certain cytokines and decreased in number after
improvement (74). CD8+ TRM cells reside even in disease-naïve,
non-lesional sites of psoriasis patients possibly in correlation
with disease duration (138).

The skin TRM cells are positive for tissue-retention markers
CD103 and CD69, but negative for lymphoid homing markers
CD62L and CCR7 (139). Double immunofluorescent staining for
CD3, CD4, or CD8 (red) along with CD103 (green) is shown,
and the merged yellow color represents cells positive for both
(Figure 6). CD3+ T cells infiltrate into both epidermis and
dermis, and majority of the T cells in the epidermis co-
expressed CD103. CD4+ cells mainly infiltrate in the dermis
and scarcely express CD103. CD8+ cells infiltrating in the
epidermis are positive for CD103, while those in the dermis
FIGURE 5 | Mechanism of psoriasis.
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were mostly CD103-. Thus, the majority of epidermal T cells are
CD8+CD103+ TRM cells and a small number of CD4+CD103+

TRM cells infiltrate in the dermis. A few CD8+CD103+ TRM cells
are present in the papillary and subpapillary layers. The number
of CD8+CD103+ TRM cells in the epidermis tends to correlate
with the epidermal thickness (70), suggesting the role of TRM

cells in the formation of psoriatic lesions.
When CD103+, CD103-, CD69+, and CD69- T cells were

isolated and expanded ex vivo with anti-CD3/CD28 Ab and IL-2
(140–142), the positive and negative expression of CD103 was
unchanged (70). However, CD69 expression can be changed
bidirectionally by cultivation, suggesting the unsteady, fluctuated
expression of CD69. By using skin-derived, ex vivo expanded T
cells (140–142), we conducted to characterize the cytokine profile
of CD103+ skin TRM cells, especially, epidermal CD8+CD103+

TRM cells (39, 74). In T cell samples expanded from psoriasis
lesional skin, a part of CD8+ T cells co-expressed CD103, and
this CD8+CD103+ T cells are considered to be epidermal TRM

cells. CD4+CD103+ cells are present at a much lower frequency.
CD103+ T cells were mostly CD8+CD45RO+CD45RA-CD69+

memory T cells with a skin-homing potential, i.e., partially
CCR6+ and mostly CCR7-CD62L-. They contained both
CXCR3+CD49a+ and CXCR3-CD49a- populations. These
findings are in accordance with the importance of CD8+

T cells in psoriasis pathogenesis (138, 143–145).
The cytokine production pattern of skin TRM cells has been a

crucial issue, because their function is generally determined by
the released cytokines. Skin TRM cells remain longer in the same
position than effector memory T cells (51) and produce certain
cytokines in relation to psoriatic etiology (39, 74, 146). CD103+

TRM cells produce IFN-g, IL-17A, and IL-22 (39, 74, 147). In the
ex vivo expanded T cells, certain populations of CD8+CD103+ T
cells produce IFN- g, IL-17A or IL-22, while CD4+CD103+ T cells
scarcely elaborate these cytokines. In CD8+ T cells, CD103+ TRM

cells more frequently produce IL-17A than CD103- T cells. Thus,
CD8+CD103+ TRM cells efficiently produce IL-17A.
Frontiers in Immunology | www.frontiersin.org 11
The sorted CD103+ cells expressed CXCR3 or CD49a at a
frequency of 28%, sharing the feature with Tc1 or reported IFN-g-
producing T cells (39, 74). The counterpart cells were CD49a
negative or low, supposedly corresponding to IL-17A-producing T
cells (39, 74). Taken together these observations, CD8+CD103+ TRM

cells canbedivided into two types:CD49a-IL-17A+andCD49a+IFN-
g + types. It is assumed that the former type is closed associated with
psoriasis, while the latter type play a role in vitiligo (74).

Skin TRM cells are associated with not only the development of
psoriasis (39, 138, 139), but also its clinical course. TRM cells
producing IL-17A in resolved psoriasis epidermis could be
associated with early relapse (148), and CD8+ TRM cells with IL-
17A-producing potential in disease-naïve, non-lesional sites
possibly correlate with disease duration (138). Thus, IL-17A-
producing CD103+ TRM cells may have an influence on the
future clinical course of psoriasis. We surveyed the 10 patients as
to whether oral cyclosporine, oral phosphodiesterase 4 (PDE4)
inhibitor or systemic biologics was initiated within one year after
the biopsy. The results showed that the patients having entered
these advanced therapies possessed higher frequencies of
CD8+CD103+IL-17A+ TRM cells (70). Among CD103+ T cells, the
frequencies of CD8+CD103+IL-17A+ and CD4+CD103+IL-17A+

cells tended to be higher in the advanced therapy group than in
the non-advanced therapy group. The CD8+ TRM cells showed a
high frequency compared with the CD4+ TRM cells. Thus, IL-17A-
producing CD8+CD103+ TRM cells may be associated with a
progressive clinical course of psoriasis rather than the severity of
skin lesions. One can speculate that upon provocation of the skin
with stimulants causing Köbner phenomenon, reactivated
CD8+CD103+ TRM cells initiate the psoriatic condition with IL-17A.
SKIN TRM CELLS IN VITILIGO

Vitiligo is an autoimmune skin pigmented disorder mediated by
autoreactive IFN-g- producing CD8+ T cells that attack
FIGURE 6 | Double immunofluorescent staining. Left: CD4 (red) and CD103 (green). Right: CD8 (red) and CD103 (green). Merged yellow color (right) indicate cells
positive for both CD8 and CD103, representing TRM cells.
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melanocytes, leading to loss of skin pigmentation (Figure 7). The
appearance of vitiligo in melanoma patients treated with anti-PD-
1 immune checkpoint inhibitors is well known as an immune-
related adverse event. Autoreactive cytotoxic lymphocytes (CTLs)
against normal melanocytes as well as melanoma tumor cells are
activated by the antibody therapy (149).

When aberrantly activated, skin TRM cells have a profound role
in vitiligo and melanoma (128). CD8+CD103+CD69+CD49a+ TRM

cells serve as CTLs (74, 143). Accordingly, most of CD8 TRM cells
express CXCR3 in vitiligo, indicating inclusion of the population
of melanocyte-specific CD8 T cells, which display increased
production of IFN-g and tumor necrosis factor-a with moderate
cytotoxic activity (143). Autoreactive TRM cells are also present in
mouse models of vitiligo. However, it was found that not only skin
TRM, but also recirculating memory T cells, plays a role in the
development of vitiligo (150). They sense autoantigen in the skin
long after stabilization of disease and produce IFN-g, which
further induces CXCL9, and CXCL10 production. Blockade of
recirculating memory T cell recruitment to the skin with FTY720
or depletion of them with an antibody reverse disease, indicating
that recirculating memory T cells cooperate with TCM to maintain
disease (150).

Targeting of TRM cells could become a promising treatment
strategy for vitiligo. Moreover, recent evidence demonstrates that
induction of melanoma-reactive TRM cells is needed to effectively
control tumor growth (9). In a murine model, IL-15 is essential
for TRM formation and functions. Both human and mouse
TRM cells express IL-15Rb subunit CD122, and that
keratinocytes or other antigen presenting cells up-regulate the
expression of IL-15Ra subunit CD215, thereby promoting
activation of T cells. Blocking the IL-15 signaling with an anti-
Frontiers in Immunology | www.frontiersin.org 12
CD122 antibody improves the skin depigmentation in mice with
established vitiligo. Although prolongation of treatment with
anti-CD122 antibody depletes TRM cells from the skin lesion, and
the short-term treatment with systemic or local anti-CD122
antibody inhibits IFN-g production from TRM cells and
promotes skin repigmentation (151). Thus, targeting IL-15
signaling via CD122 may be a promising therapy for vitiligo.
SKIN TRM CELLS IN CUTANEOUS
LYMPHOMAS

Cutaneous T-cell lymphoma (CTCL), encompassing mycosis
fungoides (MF), Sézary syndrome (SS) and other variants, is a
mature T-cell lymphoma, which is currently thought to develop
primarily in the skin by a clonal expansion of a transformed, TRM

cell (14, 112, 152, 153).
In the epidermis, both CD8+CD103+ and CD4+CD103+ TRM

are present and have potent effector functions (14), although the
former CD8+ population is present at a higher frequency in the
normal and psoriatic lesional skin (70, 138, 142). Skin TRM in
the dermis are CD4+CD69+CD103-. In recirculating T cells, there
are CCR7+L-selectin+ central memory T cells (TCM) and
CCR7+L-selectin- skin-tropic migratory memory T cells (TMM).
Clonal malignant T cells from the blood of Sézary syndrome (SS)
patients universally coexpress CCR7 and L-selectin as well as the
differentiation marker CD27, a phenotype consistent with TCM

cells (14). CCR4 is also universally expressed at high levels, and
there is variable expression of other skin addressins (CCR6,
CCR10, and CLA). In contrast, T cells isolated from MF skin
lesions lack CCR7/L-selectin and CD27 but strongly express
FIGURE 7 | Mechanism of vitiligo.
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CCR4 and CLA, a phenotype suggestive of skin TRM cells (152).
CD4+ and CD8+ skin TRM cells reside predominantly within the
hair follicle epithelium. Hair follicle expression of IL-15 is
required for CD8+ skin TRM cells, and IL-7 for CD8+ and
CD4+ skin TRM cells, to exert epidermotropism (112).

However, the skin TRM origin concept for the development of
MF does not explain the occurrence of multiple, widespread skin
lesions. A whole-exome sequencing approach to detect and
quantify TCR-a, b, and g clonotypes in tumor cell clusters
suggests the existence of multiple T-cell clones within the
tumor cell fraction, with a considerable variation between
patients and between lesions from the same patient (153).
Thus, circulating neoplastic T-cell clones may continuously
replenish the lesions of MF, thus increasing their heterogeneity
by a mechanism analogous to the consecutive tumor seeding.

Adult T-cell leukemia/lymphoma (ATLL) is a malignancy of
mature T cells caused by human T-cell leukemia virus type
I. Approximately 50% of ATLL patients exhibit skin lesions
where malignant CD4+CD25+ T cells histologically show
epidermotropism (154). We documented a case of adult T-cell
leukemia/lymphoma (chronic type), which had a phenotype of
CD4+CD25+CD69+CD103+ TRM cells (155), indicating the TRM

property of this case and the presence of TRM malignancy in
cutaneous lymphomas other than MF. Taken together these
observations in CTCL and ATLL, the vast majority of
cutaneous lymphomas are derived from skin CD4+ TRM cells.

It has been reported that some patients with MF have malignant
CD8+ T cells instead of CD4+ T cells. Accordingly, a case of CD8+

primary cutaneous peripheral T-cell lymphoma arising
from skin TRM cells was also reported (156). Pagetoid
reticulosis is histologically characterized by dense infiltration of
atypical mononuclear cells in the epidermis that produce
a pagetoid appearance. This unique disease is historically divided
into the localized type (Woringer-Kolopp disease) and the
disseminated type (Ketron-Goodmann disease). However, a case
showing progression from the former to the latter was documented
(157), and currently, pagetoid reticulosis is regarded as a subtype of
Frontiers in Immunology | www.frontiersin.org 13
MF. In the immunohistochemical phenotype, cases of pagetoid
reticulosis can be divided into three subtypes: CD4+ (37.5%), CD8+

(29.2%), and CD4-CD8- (33.3%) types (157). While the single
positive types are derived from ab T cells, the double negative
type originates from gd T cells. It should be noted that one third of
pagetoid reticulosis cases are CD8+, suggesting that this subtype is
an epidermal CD8+ TRM cell tumor (Figure 8). The pagetoid
fashion of this tumor may reflect the nature of skin TRM cells.
SKIN TRM CELLS IN FIXED DRUG
ERUPTION

Fixed drug eruption is induced by skin TRM cells (Figure 9). CD8+

TRM cells in the epidermis possess an effector-memory phenotype
and play a role in development of localized tissue damage in
fixed drug eruption (7). These epidermal CD8+ T cells
constitutively express an early activation marker CD69 even
before challenge. A large proportion of these CD8+ T cells exhibit
immediate effector function as proven by the rapidly increased IFN-
g production after challenge, resulting in localized epidermal injury.
In addition, the intracellular cytokine assay ex vivo supports the
great capability of these T cells to produce IFN-g (158).

Although reactivation of these CD8+ TRM cells is sufficient to
initiate the lesion, the recruitment of circulating CD4+ and CD8+

T cells is necessary to cause extensive tissue damage observed in the
fully evolved lesions. The abundance of regulatory T cells in the
epidermis of fully evolved lesions would serve to limit aberrant
immune reactions. Local IL-15 production from lesional epidermis
could maintain the survival of the epidermal CD8+ TRM cells even
without antigen stimulation over a prolonged period of time (159).

The presence of TRM cells in the epidermis and ocular surface
may also play a key role in immune activation and antigen
recognition. Some evidence supports the role of TRM cells in
Stevens-Johnson syndrome and Toxic epidermal necrolysis, and
disease distribution may relate to their site-predominance (160).
FIGURE 8 | Histopathology (left; hematoxylin and eosin, HE) and immunostaining for CD4 (middle) and CD8 (right) in CD8+ pagetoid reticulosis.
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DISCUSSION

One of the important issues on the residency status of skin TRM

cells in which what conditions allow TRM cells to emigrate from
the tissue is under debate. Skin TRM fate decision seems to be
established prior to antigens recognition. Once these naïve T cells
encounter with cognate antigen presented by DCs, these pre-
conditioned T cells will be ready to become a skin-homing TRM

precursor, implying that preconditioned naïve TRM cells are
prepared during homeostasis, and skin-homing molecules are
imprinted during T cell priming (89). Inflammatory signals
from inflamed skin attract these skin-homing cells to the local
inflammation site. After entering the skin, local signals induce TRM

precursors to differentiate into mature skin TRM cells. The non-
differentiated TRM precursors may recirculate between the skin,
blood and LNs, where these cells possibly represent circulating
memory T cells that have been described as skin recirculating
memory T cells in mice (67) or skin-tropic migratory memory
T cells in human (14). Interestingly, skin recirculating memory
T cells are induced greatly by skin infection but not by intravenous
infection (67). Moreover, a very recent study reported that skin
TRM could exit their residential skin and rejoin the circulating pool
of memory T cells (97). In human ex vivo skin experiments, using
the nanobody labeling technique also demonstrated that CD8+

TRM cells can migrate from the epidermis to the papillary dermis
(161). However, whether TRM cells that migrate out of the skin are
authentic TRM cells or these cells are skin recirculating memory
T cells that intermittently present in skin remains to be elucidated.

Memory T cell populations are more diverse and
heterogeneous than initial expectation, and tissue memory
responses may be involved beyond the TRM cell population.
Recently, a novel concept of tissue memory beyond the role of
adaptive immune memory has emerged. The inflammatory
memory can be exerted by various cell types and the
interaction among these memories across cell lineages and may
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impact on tissue adaptation and maladaptation (162). It should
be noted that the characteristics and behavior of TRM cells are
different among barrier tissues, as each barrier tissue has
specialized cells residing in each location, as exemplified by
keratinocytes in the skin. A chemical allergen like DNFB can
persist in the skin for several weeks, especially in keratinocytes
around hair follicles, a part of which are slow-cycling epidermal
stem cells (99). This remaining allergen in keratinocytes correlate
with the number of antigen-specific CD8+ TRM cells (99). This
epithelial memory may contribute to or instruct immune
memory cells, and they coordinate each other to maximize the
protection. CD8+ TRM cells that we have observed may just only a
tip of the iceberg in the process of tissue memory responses.

In several cutaneous diseases, the presence of skin TRM cells
has been investigated in the active lesional skin and resolved
lesional skin along with non-lesional, normal appearing skin.
Unexpectedly, in the active lesion, it is no easy task to identify
and enumerate TRM cells, because many T cell populations are
intermingled with each other and their activity, residency, and
fate cannot be easily expected. For example, the involvement of
TRM cells in the recurrent lesions of psoriasis and fixed drug
eruption are well known. However, it remains a matter of debate
whether the cells with TRMmarkers in the active lesions belong to
TRM cells. We have only limited information on the activity and
residency of these cells in relation to the clinical significance.

In our clinical study in psoriasis patients, the cells with TRM

markers were increased in the active skin lesion and decreased
after the systemic treatment with anti-IL-17A mAb, although they
were relatively resistance to the treatment compared to the non-
TRM cells (142). In addition, T cells bearing TRM markers in the
active lesion were capable of producing pathogenic cytokines, such
as IL-17A, and were possibly related to the unfavorable disease
course (70). In active skin lesion, CD8+CD103+ cells tended to be
present in the middle to upper epidermis, while they were located
at the basal layer in the resolved skin and non-lesional skin of
FIGURE 9 | Mechanism of fixed drug eruption.
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psoriasis. Therefore, TRM cells or TRMmarker-bearing cells behave
as effector cells and likely serve as crucial effectors in psoriasis
pathology. Further investigations on their dynamics, detailed
functions, and residency are required. Furthermore, to see the
disease specificity of these TRM cells, TRM characterization in
atopic dermatitis is in progress in our laboratory.
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