Translational Psychiatry

ARTICLE

www.nature.com/tp

W) Check for updates

Hair glucocorticoids are associated with childhood adversity,
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Hypothalamic—pituitary—adrenal (HPA) axis dysregulation has been commonly reported in major depressive disorder (MDD),
but with considerable heterogeneity of results; potentially due to the predominant use of acute measures of an inherently
variable/phasic system. Chronic longer-term measures of HPA-axis activity have yet to be systematically examined in MDD,
particularly in relation to brain phenotypes, and in the context of early-life/contemporaneous stress. Here, we utilise a
temporally stable measure of cumulative HPA-axis function (hair glucocorticoids) to investigate associations between cortisol,
cortisone and total glucocorticoids with concurrent measures of (i) lifetime-MDD case/control status and current symptom
severity, (ii) early/current-life stress and (iii) structural neuroimaging phenotypes, in N =993 individuals from Generation
Scotland (mean age = 59.1 yrs). Increased levels of hair cortisol were significantly associated with reduced global and lobar
brain volumes with reductions in the frontal, temporal and cingulate regions (B;ange = —0.057 to —0.104, all Prpg < 0.05).
Increased levels of hair cortisone were significantly associated with MDD (lifetime-MDD status, current symptoms, and severity;
Brange = 0.071 to 0.115, all Prpg = < 0.05), with early-life adversity (8 = 0.083, P=0.017), and with reduced global and regional
brain volumes (global: 8 = —0.059, P = 0.043; nucleus accumbens: 8 = —0.075, Prpr = 0.044). Associations with total
glucocorticoids followed a similar pattern to the cortisol findings. In this large community-based sample, elevated
glucocorticoids were significantly associated with MDD, with early, but not later-life stress, and with reduced global and
regional brain phenotypes. These findings provide important foundations for future mechanistic studies to formally explore
causal relationships between early adversity, chronic rather than acute measures of glucocorticoids, and neurobiological

associations relevant to the aetiology of MDD.
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INTRODUCTION

Major depressive disorder (MDD) is the leading cause of disability
worldwide [1] and affects ~6% of the adult population globally per
year [2]. Exposures to psychosocial stress and stressful circum-
stances are consistently implicated in the aetiology of MDD and are
associated with onset, severity, remission, and antidepressant
response [3, 4]. Early-life stress in particular is one of the largest
environmental risk factors for depression [5], and the association
between childhood adversity and subsequent psychopathology has
been linked to dysregulation of the hypothalamic—pituitary-adrenal
(HPA) axis [6-10]. However, precise mechanisms in MDD are unclear
since previous findings are inconsistent with substantial variability
in effect sizes across studies [11-16]. This is potentially due
to differing approaches to the measurement of the highly

phasic/variable HPA system, which is predominantly measured
using cross-sectional measures of glucocorticoids in blood, saliva or
spot urine samples. These acute measures demonstrate strong
diurnal effects and both inter- and intra-individual fluctuations in
response to environmental factors and are therefore temporally
unstable [17]. Further, the structural neural correlates of prolonged
glucocorticoid exposure in the context of MDD and in relation to
early-life stress remains unclear.

Glucocorticoids are the liposoluble downstream effectors of
the HPA-axis and can readily cross the blood-brain barrier. Murine
models indicate that long-term excess glucocorticoid exposure
suppresses neurogenesis, decreases dendritic branching and inhibits
synaptogenesis, most notably in the hippocampus [18-20]. Previous
human studies of glucocorticoid effects on the brain have typically
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relied on acute cross-sectional measures from saliva, blood, or urine.
Although findings should be interpreted cautiously due to the short
timeframe and variability of these measures, these studies to some
extent indicate that elevated levels of cortisol are associated with
general global brain atrophy [21, 22]. One study of urinary markers
also found that elevated glucocorticoid levels at baseline predicted
subsequent brain atrophy and cognitive decline over the following 6
years [23]. Further, individuals with Cushing’s syndrome, charac-
terised by long-term hypercortisolaemia, have been consistently
shown to have structural brain abnormalities, as well as a high
prevalence of cognitive deficits and low mood/depression [24-26].

Previous studies of glucocorticoid associations with brain
structure in the context of MDD are however inconsistent, not
only because of the prevailing use of temporally unstable serum/
saliva measures, but they have also typically focused on one
imaging modality (structural T1 weighted imaging), single regions
of interest (e.g. the hippocampus), and with relatively small
sample sizes (N < 50) [27-30]. Since there are no previous studies
of long-term glucocorticoid exposure with both global/regional
brain morphology and white matter microstructure phenotypes,
there is a clear need for research that examines neuroarchitecture
more broadly, and with measures that capture chronic glucocorti-
coid associations.

Hair glucocorticoid measures have been shown to provide a
more temporally stable measure of exposure over several weeks
compared to phasic blood/saliva measures [31-34]. However,
there have been no prior studies of the association between hair
glucocorticoids, structural neuroimaging phenotypes and depres-
sion. Furthermore, cortisone, the inert metabolite of cortisol, which
is more prevalent in hair [35], has not been investigated in relation
to brain imaging phenotypes, and may be a biologically relevant
marker in the investigation of longer-term HPA-axis activity.
Cortisone is activated to cortisol by 11B-hydroxysteroid dehydro-
genase (11B-HSD) type 1 in target organs including the brain, liver,
adipose tissue and vasculature. In contrast, 113-HSD type 2
inactivates cortisol to cortisone, predominantly in the kidney,
colon and salivary/sweat glands. Measuring both steroids in hair
gives a more comprehensive measure of total glucocorticoid
exposure over time.

In the current study, we report a large-scale investigation of
hair glucocorticoid associations with brain structure and MDD in
a large community-based sample (N=993) from a cohort of
deeply phenotyped individuals (Generation Scotland) in mid-
late life. Previous work in this cohort has found that depression
case/control status is associated with reduced total grey matter
volumes, however, the degree to which HPA-axis activity plays a
role in this association is currently unclear [36]. We sought to
characterise structural neural correlates of HPA-axis dysregula-
tion and associations with early-life adversity, current-life stress
and depressive symptomatology. We utilised hair glucocorticoid
measures of active cortisol, its inert metabolite cortisone and
their total as markers of cumulative HPA-axis activity over the
preceding weeks and months. In terms of neuroimaging, we
investigated 190 structural neuroimaging-derived phenotypes
using an a priori unbiased approach to characterise brain
structure associations, including T1 and diffusion tensor
imaging (DTI) measures. We investigated hair glucocorticoid
associations with (i) MDD case/control status and depressive
symptoms, (ii) childhood adversity and current-life stress and
(iii) structural neuroimaging-derived phenotypes from the two
imaging modalities.

Given the evidence from salivary/serum glucocorticoid mea-
sures described above, we hypothesised that increased hair
cortisol, cortisone and their total would be related to MDD status
and to increased measures of depressive symptoms, along with
childhood adversity. We further hypothesised that increased
glucocorticoids in hair would be associated with decreased global
cortical volumes, regionally decreased hippocampal volumes and
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decreased global white matter microstructure integrity, in line
with previous research.

MATERIALS AND METHODS
Participants
Participants in this study were recruited through Generation Scotland
and included ~1000 individuals who were re-contacted in 2015-2019 for
further assessment of mental health and brain imaging. Full details of
the recruitment and demographics of this cohort are published
elsewhere [36-38]. Demographics of the current sample are included
in Table 1. In the current study, N =993 individuals were included in
symptom analyses, N = 894 individuals had T1 imaging data and N = 864
also had DTI data.

Ethical approval was formally obtained from the NHS Tayside committee
on research (reference 14/55/0039), and all participants provided written
informed consent [37].

Depression status and symptoms
We measured both the lifetime incidence of MDD (case/control status)
and current depression symptoms and symptom severity. MDD case/
control status was ascertained using the research version of the
Structured Clinical Interview for DSM disorders (SCID) [39] and diagnostic
criteria were based on the ‘Diagnostic and Statistical Manual of Mental
Disorders’ (DSM-IV-TR). Using this definition, the sample had N =317 MDD
cases and N =676 controls.

To assess depression symptoms, the ‘Quick Inventory of Depressive
Symptomatology’ (QIDS) [40] was employed to assess both total current
symptoms and symptom severity.

Measures of early and current-life stress

Early-life stress was measured in terms of childhood trauma which was
assessed using the ‘Childhood Trauma Questionnaire’ (CTQ), a retro-
spective 28-item questionnaire that assesses three areas of abuse
(emotional, physical, and sexual) and two areas of neglect (emotional
and physical) [41]. A total CTQ summary score was calculated as well as
total scores for each subscale, with higher scores representing higher
reported trauma [37].

Recent life stress was measured using a brief life events questionnaire:
the ‘List of Threatening Experiences’ (LTE) [42], a self-report measure
consisting of 12 questions regarding common and life-threatening events
in the 6 months preceding the assessment. Where a participant has
experienced one of these life events, a follow-up question required rating
the threat from 3 (very bad), 2 (moderately bad) to 1 (not too bad) [43].
A total sum score of the LTE was calculated for analysis purposes.

Hair glucocorticoid measurement

Hair samples were collected from the posterior vertex region of the head
as close to the scalp as possible [37]. Cortisol (F) and cortisone (E)
concentrations were measured by LC-MS/MS, at the Technische

Table 1. Participant demographics.
Variable Unit Cases Controls P-value
(N=317)¢ (N =676)¢

Age® Years 57.4 (10.1) 60.8 (9.8) <0.01
(mean, SD)

Sex? Males (N) 72 265 <0.01
Females (N) 245 411

Study site® Aberdeen 122 361 <0.01
Dundee 195 315

Hair Batch 1 228 506 0.367

E;‘t’gﬁf,s"‘g Batch 2 89 170

Total QIDS Mean (SD) 7.04 (4.9) 3.6 (2.3) <0.01

score®

“Wilcoxon t-test.
PChi-squared test.
“Calculated by SCID diagnosis.

Translational Psychiatry (2021)11:523
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Fig. 1 Standardised effect sizes (8) of hair cortisol (F), cortisone (E) and total glucocorticoid associations (F + E) with depression and
stress measures. MDD case/control Status is determined through SCID diagnosis. MDD symptom totals are total QIDS scores and the severity
is also determined by QIDS scores. Trauma scores are determined from CTQ scores and current life stress is measured from LTE scores.

Associations where P < 0.05 are marked with an asterisk.

Universitdt, Dresden using an established method and following a
standard wash and steroid extraction procedure [44]. Cortisol and
cortisone levels were expressed as pg/mg. Total hair glucocorticoids
(F + E) were also calculated for analytic purposes.

MRI acquisition and analyses

Details of the structural neuroimaging-derived phenotypes included in the
sample have been reported in full previously [36]. Briefly, participants had
3T MRI scans at one of two sites - Aberdeen or Dundee. Only the T1 and
DTI data are used in this current study and 190 structural neuroimaging
phenotypes were derived from the scans. Full details of the neuroimaging-
derived phenotypes are provided in Supplementary Materials on pages 2
and 3. Briefly, global/lobar and regional metrics were derived for 34 cortical
and 8 subcortical regions with FreeSurfer version 5.3 [45]. The DTI data
were processed to extract fractional anisotropy (FA) and mean diffusivity
(MD) measures for 24 tracts as well as global measures derived from
principal component analysis (see Supplementary Information page 2 and
3 for further details).

Statistical analyses

Hair cortisol, cortisone and their total were log-transformed and
outliers + 3 standard deviations from the mean were removed for
statistical analyses. All analyses were conducted using R (version 3.2.3).
For all global and lobar measures and CTQ/LTE/MDD measures, a
generalised linear model was applied (function ‘glm’ in R package
‘stats’). For all bilateral imaging-derived phenotypes (T1 and DTI), both
sides of the brain were included in mixed-effect linear models (function
‘Ime” in R package ‘nlme’) correcting for hemisphere as a within-subject
measure [46, 47].

For case/control, QIDS and CTQ/LTE analyses, age, sex, assessment
centre and glucocorticoid lab batch were included as covariates. For all
phenotypes derived with FreeSurfer, age, sex, assessment centre,
glucocorticoid lab batch, imaging edits, imaging batch and standardised
intracranial volume (ICV) were included as covariates. For DTl data, age,
sex, assessment centre and lab batch were used as covariates. False
discovery rate (FDR) multiple comparison correction was applied per
biomarker and per measure/modality to all depression measures,

Translational Psychiatry (2021)11:523

CTQ subscales, bilateral/regional structures, lobes and white matter tracts.
Corrected P-values are referred to as Pgpg in this report and were obtained
using the ‘p.adjust’ function in R, and all betas were standardised. FDR
correction was not applied to global imaging metrics and to the summary
measure of the CTQ and LTE, since these are representative singular
measures of each of these phenotypes.

We investigated hair glucocorticoid associations with (i) MDD case/
control status and QIDS scores, (ii) CTQ/LTE scores and (iii) structural
neuroimaging-derived phenotypes.

Relatedness analyses

As Generation Scotland is comprised of related individuals, we ran
additional analyses excluding related individuals by randomly including
one person per family for all of the brain imaging analyses. Randomisation
was conducted in R using the ‘rnorm’ function to create a random seed
variable for each participant and one individual per family with the highest
random number was included in subsequent analyses, excluding all other
family members. The unrelated dataset comprised N =665 unrelated
individuals with T1 data and N = 640 with DTI data.

RESULTS

Demographics

Demographics and descriptive statistics of the key variables are
presented in Table 1. Hair cortisol and cortisone were also
positively correlated (r=0.66, P < 0.001).

Hair glucocorticoid associations with measures of depression
We tested the associations between the three glucocorticoid
measures and measures of depression (case/control status, total
QIDS scores and QIDS severity; Fig. 1 and Supplementary Table 1).
Although there were no FDR-significant associations with hair
cortisol, increased hair cortisone concentrations were significantly
associated with MDD case—control status (8 = 0.115, Pgpg = 0.002),
total QIDS scores (8 =0.089, Prpg = 0.014), and QIDS depression
severity (3 =0.071, Pepr = 0.038). There were no FDR-significant

SPRINGER NATURE



C. Green et al.

>
(]
o
o
o
=
®
o
w
s
®
w

Global Cortical Volume {  * o
Global Cortical Thickness — E
Global Cortical Surface Area  E— g
Global Total Grey Matter * =
Global Cerebral White Matter 4 | i
Global Cortical Volume 1 | 9
Global Cortical Thickness . =
Global Cortical Surface Area = =
Global Total Grey Matter 4 =
Global Cerebral White Matter 4 m (T
Global Cortical Volume 4  *ElEE o
Global Cortical Thickness 1 ] =
Global Cortical Surface Area k| =
Global Total Grey Matter * =
Global Cerebral White Matter 4 L i
010 -0.05  0.00
Effect Size (B)
c Temporal Lobe
Temporal Cortical Volume *_ o2
=
Temporal Cortical Thickness - - §
Temporal Cortical Surface Area _ =
Temporal Cortical Volume - g
Temporal Cortical Thickness . §
@
Temporal Cortical Surface Area I @
Temporal Cortical Volume _ =
o
Temporal Cortical Thickness - 5
+
Temporal Cortical Surface Area - o

010 005 0.0
Effect Size (B)

E Occipital Lobe

Occipital Cortical Volume

Occipital Cortical Thickness

(d) 108100

Occipital Cortical Surface Area -

Occipital Cortical Volume -
Occipital Cortical Thickness

Occipital Cortical Surface Area

Occipital Cortical Volume

Occipital Cortical Thickness -

ol |wan|=lN
(3) auosipon

(3+4) IejoL

Occipital Cortical Surface Area

010 -005 0.00
Effect Size (B)

Frontal Lobe

Frontal Cortical Volume

Frontal Cortical Thickness

(d) j0sH0D

Frontal Cortical Surface Area-

Frontal Cortical Volume
Frontal Cortical Thickness

Frontal Cortical Surface Area

Frontal Cortical Volume

Frontal Cortical Thickness

(3+4) |ejoL

Frontal Cortical Surface Area-

(3) auosiuon

-0.10  -0.05 0.00

Effect Size (B)
Parietal Lobe

Parietal Cortical Volume - 2
=
Parietal Cortical Thickness . g
Parietal Cortical Surface Area - 5
Parietal Cortical Volume I g
=
Parietal Cortical Thickness . =
@
Parietal Cortical Surface Area | . m
Parietal Cortical Volume - - g
o
Parietal Cortical Thickness - =
&
Parietal Cortical Surface Area-| - o

-0.10  -0.05 0.00

Effect Size (B)
Cingulate

Cingulate Cortical Volume A _ Q
=
Cingulate Cortical Thickness 1 . g
Cingulate Cortical Surface Area - T
: ) o
Cingulate Cortical Volume - S
Cingulate Cortical Thickness | [ | S
@
Cingulate Cortical Surface Area 1 I m
Cingulate Cortical Volume 1 _ =
g
Cingulate Cortical Thickness 1 - =
5
Cingulate Cortical Surface Area { . o

010 -005 0.00
Effect Size (B)

Fig. 2 Standardised effect sizes (8) of hair cortisol (F), cortisone (E) and total glucocorticoid (F + E) associations with global and lobar
structural neuroimaging phenotypes. A Global neuroimaging measures, B frontal lobe neuroimaging measures, C temporal lobe
neuroimaging measures, D parietal lobe neuroimaging measures, E occipital lobe neuroimaging measures, and F cingulate neuroimaging

measures. *P < 0.05, **P < 0.01, ***P < 0.001.

associations between total glucocorticoid (F 4+ E) concentrations
and any measure of depression.

Hair glucocorticoid associations with stress measures

We tested the associations between the three glucocorticoid
measures with early-life adversity using total CTQ scores and the
six subscales of the questionnaire (Supplementary Table 1).
While we found no associations with hair cortisol, increased hair
cortisone concentrations were significantly associated with total
CTQ scores (8=0.083, P=0.017) and with two subscales of the
CTQ: higher reported total emotional abuse (8= 0.087, Prpr=
0.034) and total physical neglect (8 =0.090, Prpr = 0.034). Total
hair glucocorticoids (F+ E) were also significantly associated

SPRINGER NATURE

with total CTQ scores (8 =0.076, P = 0.040) but not with any of
the individual subscales. None of the hair glucocorticoid
measures were significantly associated with recent life stress
(as measured by total LTE scores).

Hair glucocorticoid associations with global and lobar
measures of brain structure

Increased hair cortisol concentrations were significantly asso-
ciated with reduced global grey matter volumes (8= —0.057,
P=0.003; Fig. 2) and reduced global cortical volumes (8=
—0.104, P = 0.0007; Supplementary Table 2). This global loss was
also reflected in regional reductions where higher hair cortisol
was significantly associated with reduced cortical volumes in

Translational Psychiatry (2021)11:523
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Fig. 3 Brain map of the standardised effect sizes for hair cortisol associations with 34 regional cortical volumes, cortical thicknesses and
cortical surface areas. A Cortical volume, B cortical thickness, and C cortical surface area. 8 represents the standardised effect size. All
associations are corrected for age, sex, study site, intracranial volume, imaging batch, imaging edits and hemisphere.

frontal (8 = —0.064, Prpg = 0.014), temporal (8 = —0.093, Prpr =
0.0005) and cingulate regions (8= —0.064, Pgpgr=0.040).
Increased hair cortisol was also significantly associated with
reduced surface area of the temporal lobe (8= —0.068, Prpr =
0.042). Increased hair cortisone concentrations were significantly
associated with reduced global cortical volume only (8 = —0.059,
P =0.043). The total measure of hair glucocorticoids (F + E) was
significantly associated with reduced total grey matter volumes
(B=—0.053, P=0.009), reduced global cortical volumes (8=
—0.103, P=0.001), and reduced global cortical surface area
(B=—0.066, P=0.0496). The total measure was also associated
with decreased volume of the frontal (8= —0.068, Prpg = 0.010)
and temporal regions (8 = —0.076, Pgpr = 0.010).

Hair glucocorticoid associations with regional brain structures
We tested the associations of hair glucocorticoids with 34
cortical regions (volume, thickness and surface area measures)
and 8 subcortical volumes and found that increased hair
cortisol was significantly associated with reduced volume of
the temporal pole (8= —0.096, Prpgr=0.049; Supplementary
Table 3) and also demonstrated consistently negative effect sizes
for the 34 cortical measures although these did not reach
corrected levels of significance (Fig. 3). We also found that
increased hair cortisone concentrations were significantly
associated with reduced volume of the nucleus accumbens
(B=-0.075, Prpr=0.044; Fig. 4 and Supplementary Fig. 1,
Supplementary Tables 4, 6). The measure of total hair gluco-
corticoids (F 4+ E) was associated with reduced volume of the
pars orbitalis (8 =—0.089, Prpgr = 0.0497; Supplementary Fig. 2
and Supplementary Table 5). Both of these latter findings
survived controlling for multiple comparisons.

Hair glucocorticoid associations with white matter integrity

There were no significant associations after FDR correction
between hair glucocorticoids and any measure of white matter
integrity including global measures (Supplementary Tables 7-9).

Translational Psychiatry (2021)11:523

Relatedness analyses

All of the hair cortisol and total hair glucocorticoid (F+ E)
associations with global and lobar brain measures remained
significant in the sample of unrelated participants (Supplementary
Tables 10-17). For hair cortisone, the association with global
cortical volume remained significant whereas the association with
the nucleus accumbens did not, however, the effect size remained
in the same direction and of a similar magnitude (Bunrelated =
—0.06 versus PBreated = —0.075). The total hair glucocorticoid
association with the pars orbitalis also remained significant in
the unrelated sample.

DISCUSSION

We report the findings from a comprehensive and large-scale,
multimodal study with in-depth phenotypic data investigating
hair glucocorticoid associations with brain morphology, measures
of depressive psychopathology, and early/late life stress. Hair
glucocorticoids were significantly associated with measures of
depression, specific types of childhood trauma scores, but not
with measures of current-life stress. In terms of brain morphology,
hair glucocorticoids were associated with global reductions, along
with regional volumetric loss in frontal, temporal and cingulate
cortices, with some evidence for the involvement of reward-
associated regions, but not with decreased hippocampal volumes,
or with deficits in structural connectivity. This study provides
important evidence in support of widely held hypotheses
suggesting links between early adversity, disrupted HPA-axis
functioning, altered brain morphology and depression, and lays
essential foundations for future work to address causation and
potential interventions.

Our findings expand on previous studies of acute salivary/serum
measures of cortisol and MDD associations by utilising a hair
measure of cumulative/integrated long-term glucocorticoid
levels, and also additionally considering cortisone and total
hair glucocorticoid associations [11-15]. Using these broader
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Fig. 4 Significance plot for cortisol, cortisone and total gluco-
corticoid associations with regional structural imaging pheno-
types. A Cortisol, B cortisone, and C total glucocorticoid. The
x-axes represent structural imaging phenotypes, and the y-axes
represent the —log10 of uncorrected p-values between the
measure and the imaging phenotype corrected for covariates.
Each dot represents one imaging phenotype, and the colours
indicate their categories. The dashed lines indicate the p-value
threshold of 0.05 and the diamonds represent phenotypes that
survive FDR correction. The hippocampus (not significant) is
marked in brackets for reference to previous studies.
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longer-term markers of HPA-axis activity, we found elevated levels
of hair cortisone were significantly associated with three measures
of depression: lifetime case/control status, total current depressive
symptom scores and depression severity. The results, therefore,
indicate that HPA-axis activity, as measured by hair cortisone, has
a robust association with depression in terms of both current
symptoms and lifetime incidence.

In addition, we also report that hair cortisone was associated with
early-life stress, specifically in terms of childhood physical neglect
and emotional abuse. Several previous studies have found that
childhood adversity alters stress-reactivity in adulthood [48-53], with
increased responses in individuals with depression [54]. One meta-
analysis of 28 studies including N=3397 individuals found that
childhood adversity is also significantly related to hair cortisol
concentrations and this association is moderated by the type and
timing of the adversity experienced [55]. Animal work has also
shown that early-life adversity/prenatal stress elicits changes in HPA-
axis functioning that persists into adulthood (developmental
programming), including HPA-axis hyperactivity and glucocorti-
coid/insulin resistance [56-58] and the frequent comorbidity
between early-life adversity and MDD may be linked to HPA-axis
dysregulation [59]. We build on this preclinical work in humans to
show that chronically elevated glucocorticoids were specifically
associated with early-life stress, but not contemporaneous stress,
and were further specifically associated with childhood physical
neglect and emotional abuse, as well as current and lifetime MDD.
This finding further demonstrates the importance of the type and
timing of adversity experienced with potential long-term conse-
quences for HPA-axis functioning and wellbeing.

We further extend this work to also study associations with
brain imaging phenotypes. To our knowledge, this is the first
large-scale neuroimaging study of hair glucocorticoid associations
with both T1 MRI and white matter microstructural integrity data
in adults. We found higher concentrations of hair glucocorticoids
were significantly associated with reductions in total grey matter
and global cortical volumes. Increased hair cortisol concentrations
were further associated with volumetric loss in the frontal/
temporal lobes and cingulate regions. These areas are important
for cognition and emotion regulation, and volumetric loss in these
areas may underlie associations with MDD which is characterised
by cognitive impairment and dysregulated emotional processing
[60]. Preclinical work has shown that excess glucocorticoid
exposure is associated with grey matter damage and that brain
regions with higher numbers of glucocorticoid receptors are more
vulnerable to these noxious effects including regions such as the
cingulate described here [61-63]. Furthermore, animal models
indicate that chronic glucocorticoid exposure is associated with
changes in dendritic morphology, decreased neurogenesis/
synaptogenesis and decreased plasticity, which may be indicative
of the pathophysiological mechanisms underlying the grey matter
loss seen in the current study [19, 64-67]. Taken together, these
novel findings implicate chronically elevated glucocorticoids as
having deleterious associations with brain structure which may
potentially underlie associations with psychopathology, although
formal tests of directionality are required.

In terms of regional findings, we also report associations
between increased hair glucocorticoids and reduced volume of
the nucleus accumbens and pars orbitalis (lateral/orbitofrontal
cortex). Since these regions are central to reward processing, these
findings suggest that elevated glucocorticoids are associated with
structural alterations of reward neurocircuitry, which is also a key
feature of MDD. This is consistent with previous studies which link
chronic stress to altered reward processing by the attenuation of
reward sensitivity, increasing vulnerability to anhedonia and
psychopathology [68-71]. Animal work has also shown that
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glucocorticoid-receptor antagonists inhibit normal reward proces-
sing and that glucocorticoid neurotransmission plays a key role in
reward-related behaviours [72, 73]. Future work should aim to
replicate these associations in larger samples and further explore
the importance of disrupted reward processing in the context of
HPA-axis activity and early adversity in the aetiology of MDD.

Notably, we report no association between elevated glucocorti-
coids and hippocampal volumes, in contrast to previous findings
[22, 27]. This may be due to our ‘non-ROI' type approach, or to
differing methods of measurement of HPA-axis activity. Hair
measures may for example capture a distinct aspect of HPA-axis
biology in relation to integrated long-term glucocorticoid secre-
tion that may be specific to these imaging findings. We also note
that we report differing patterns of associations dependent on
whether we examine the active or the inactive metabolite. Hair
cortisone was associated with clinical features and early-life
adversity, while hair cortisol/ total hair glucocorticoids were
primarily associated with neural features. Cortisol and cortisone
are interconverted by two tissue-specific intracellular isozymes of
11B-HSD. Both glucocorticoids circulate at nanomolar levels in the
blood. Whilst some have postulated that hair cortisol:cortisone
reflects 11B3-HSD in the hair follicle, there is little evidence of
significant expression of either isozyme in this tissue. Thus, we
consider it more probable that the specific hair glucocorticoid
levels here reflect the kinetics of accumulation of cortisol and
cortisone from the blood into the growing hair root.

In terms of limitations, our study was comprised of commu-
nity-based, relatively well participants. Our findings may not,
therefore, reflect associations of hair glucocorticoid measures in
individuals with more severe forms of MDD but may be more
widely generalisable to the population. The main findings of this
sample were also conducted in a related sample, however, the
additional analyses in the unrelated sample replicated the main
findings of this paper, lending confidence to these findings. A
further limitation is that we cannot exclude the possibility of
biases in the retrospective self-report measures of childhood
adversity in our sample and this should be considered when
interpreting findings. Longitudinal research investigating child-
hood adversity, glucocorticoid trajectories and MDD would be
able to disentangle these relationships further. In addition,
given the association identified here between hair cortisone and
MDD, future research in terms of causal directionality is clearly
warranted utilising techniques such as Mendelian randomisa-
tion when suitable data of sufficient power is available,
particularly as these findings may have important implications
for the aetiology and treatment of depression. At the time of
writing, the only large glucocorticoid genome-wide association
studies available of sufficient power that we are aware of to
independently generate the genetic instruments to test these
causal relationships were based on plasma cortisol, rather than
hair cortisone [74]. Future mechanistic work is also required to
determine the underlying biology of the differential pattern of
cortisol/ cortisone findings.

In conclusion, this study utilised a large sample with detailed
behavioural phenotyping, multimodal imaging and chronic
longer-term measures of glucocorticoids from hair samples. We
found significant associations between elevated hair glucocorti-
coids and both current depression symptoms/severity and lifetime
incidence. Prolonged glucocorticoid exposure was also associated
with early-life adversity, specifically emotional abuse and physical
neglect. Elevated hair glucocorticoids were robustly associated
with global grey matter loss and volumetric lobar loss in frontal,
temporal and cingulate regions. This regional loss was seen in
areas of the brain that are important for cognition/emotion
regulation, and in reward processing regions, and may potentially
underlie associations with depression symptoms and severity.
Although we cannot currently elucidate causal mechanisms, we
have identified important relationships between longer-term
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measures of glucocorticoids, reduced grey matter volumes, and
depression/early-life adversity. These findings are also consistent
with preclinical work demonstrating long-term effects of early
adversity on the HPA-axis, and deleterious effects of excess
glucocorticoid exposure on the brain. This study also highlights
the utility of hair measures of glucocorticoids as markers of longer-
term HPA-axis activity. These findings, therefore, provide impor-
tant foundations for future mechanistic studies to explore formal
causal relationships between specific types of early adversity,
prolonged glucocorticoid exposure, changes in brain morphology
and subsequent psychopathology in order to develop novel and
efficacious interventions.

CODE AVAILABILITY
The code of the statistical analyses is available from the corresponding author upon
request.
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