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Abstract

The coronavirus disease (COVID-19) pandemic is sweeping the
globe. Even with a number of effective vaccines being approved and
available to the public, new cases and escalating mortality are
climbing every day. ACE2 (angiotensin-converting enzyme 2) is the
primary receptor for the COVID-19 causative virus, severe acute
respiratory syndrome coronavirus 2 (SARS-CoV-2), and its
complexation with spike proteins plays a crucial role in viral entry
into host cells and the subsequent infection. Blocking this binding
event or reducing the accessibility of the virus to the ACE2 receptor,

represents an alternative strategy to prevent COVID-19. In addition,
the biological significance of ACE2 in modulating the innate
immune system and tissue repair cascades and anchors its
therapeutic potential for treating the infected patients. In this
viewpoint article, we review the current efforts of exploiting ACE2
as a therapeutic target to address this dire medical need. We also
provide a holistic view of the pros and cons of each treatment
strategy.We highlight the fundamental and translational challenges
in moving these research endeavors to clinical applications.
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With the coronavirus disease (COVID-19)
pandemic raging globally, extraordinary
measures have been taken to tackle such
a daunting public health crisis. The
development of effective treatment
strategies for the COVID-19 infection is still
at the early stages, although remdesivir and
dexamethasone have shown moderate
efficacy in some highly defined clinical
settings (1). Although steady progress has
been made in the development of vaccines
against COVID-19, challenges in late-stage
testing, and eventual distribution remain.
Moreover, a recently reported recurrence
of severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection with
a different virus strain creates further
concerns about the durable effectiveness
of preventive vaccines or convalescent
plasma (2).

ACE2 (angiotensin-converting enzyme
2) is recognized as the primary receptor for
SARS-CoV-2 (3), although several other
proteins are proposed coreceptors (4–6).
ACE2 was initially discovered as a homolog
of ACE (angiotensin-converting enzyme)
but counteracted many ACE-mediated
physiological and pathophysiological effects
on humans and other species, ranging from
blood pressure regulation, cardiovascular
function, cell death, and proliferation to
host responses to a variety of insults (7–13).
The discovery of ACE2 as the primary
receptor for a novel coronavirus, SARS-
CoV, drastically changed the focus of
ACE2-related research, promoting new
interest in investigating the role of ACE2
in lung diseases (14). The COVID-19
pandemic has spurred even more extensive
research on ACE2, particularly its

interaction with the virus and other
molecules involved in viral entry. These
studies have unveiled novel insights
into the biology of ACE2. First, several
expression surveys show a gradient of
ACE2 expression in the upper and
lower airways and terminal airspace
compartments (15–18). The highest
compartmental cell-specific expression is
seen in ciliated cells of the proximal airway
and the alveolar type II cells of the airspace
compartment (19). Second, the binding of
SARS-CoV-2 to ACE2 is distinct from that
of SARS-CoV and NL63 in terms of the
interaction strength between ACE2 and the
respective receptor-binding domain (RBD)
(20–23); other coronaviruses that use
this receptor but cause severe and minor
lung morbidity. Third, the coreceptor
requirements of the virus–ACE2 complex
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are cell-specific with differential use of
TMPRSS2 (transmembrane serine protease
2) or cathepsin L (24, 25). TMPRSS2,
lysosomal cathepsin, and furin appear
essential for SARS-CoV-2 virus processing,
and entry into the cells before and after the
viral S protein (spike protein) is complexed
with ACE2 (24, 26–28). Although reports
indicate that TMPRSS2 can cleave ACE2
(29), the interactions between ACE2 and
TMPRSS2, or furin and cathepsin, after the
viral S protein binds ACE2 has yet to be
clarified. Preclinical and whole-cell studies
showing virus-triggered shedding of the
ACE2 ectodomain and the downregulation
of the enzyme on interaction with the virus
adds even more layers of reciprocal
complexity to the ACE2 and SARS-CoV-2
relationship (30–32). Interestingly, Onabajo
and colleagues recently reported a unique
form of primate-specific ACE2, dACE2
(dACE2), which is an ISG (IFN-stimulated
gene) and lacks 356 amino acids at its
N-terminus. This isoform of ACE2 has
no enzymatic activity and cannot bind
to the SARS-CoV-2 S protein (33). Most
importantly, they found that wild type
ACE2 is not an ISG; therefore, IFN-induced
dACE2 expression will unlikely affect the
cellular entry of SARS-CoV-2 and promote
infection. Taken together, multiple unresolved
issues remain, especially how the level of
ACE2 translate into virus susceptibility.

What follows is a view on trenchant
aspects of therapeutic ACE2 targeting,
focusing on both the enzymatic and receptor
functions of ACE2.

Approaches to Targeting
ACE2 for COVID-19 Therapy

Targeting ACE2 as the Receptor
for SARS-CoV-2 to Mitigate the
Infectivity
The binding of the S protein of SARS-CoV-2
to its cognate receptor ACE2 is the initial
step for virus entry, replication, and spread.
Therefore, blocking this specific binding
event has been logically considered a
highly promising therapy to address viral
infection and potentially avoid the later
consequences. The fundamental principle of
targeting ACE2 to mitigate SARS-CoV-2
infection is to block the virus’s accessibility
to the membrane-bound ACE2.

Decoy ACE2 molecules to trap the
virus. An attractive strategy to target ACE2
in COVID-19 therapy is to use sACE2

(soluble ACE2) as a decoy receptor capable
of trapping the virus to prevent cellular
engagement (34–37). sACE2 can bind its
cognate ligand, the viral S protein, but is
unable to reform a membrane-bound
ACE2, which consequently blocks the
mechanism of virus entry into the host cells
(38). As such, sACE2 ostensibly limits
SARS-CoV-2 cell attachment, cell entry,
and viral replication (36). Moreover, sACE2
has been proven to be an enzymatic activity
in some clinical trials or disease models (39,
40). Although this sounds like a highly
promising solution, there are several
technical hurdles to overcome. First,
because a full-length ectodomain of human
ACE2 comprises 740 amino acids, a
truncated form of sACE2 is needed to
reduce immunogenicity. Although variable
shorter sACE2 fragments have been
reported to maintain the enzymatic activity
(36, 37, 41), and the rationale of designing a
therapeutic short form of ACE2 is proposed
(42), whether the truncated ACE2 can
be functional as a decoy receptor is yet
to be validated. Recently, another group
has reported that computational modeling–
based ACE2 truncation enhances binding
to the RBD of SARS-CoV-2 than binding to
full-length ACE2 (42). Second, sACE2 is
unstable, especially in the setting of lung
infection or inflammation. As such, sACE2
may quickly degrade, attenuating its ability
to trap the virus efficiently. A similar
approach was explored for SARS in dealing
with such drawbacks. Researchers
generated a chimeric sACE2 with an
engineered human IgG Fc fragment onto
the sACE2 C-terminus to stabilize the
protein. The results showed that the
chimeric sACE2 exhibited a greatly
extended plasma half-life in mice, from less
than 2 hours of the original recombinant
ACE2 to over a week of the chimeric (43).
Similar approaches had been adopted to
test the potential in COVID-19 prevention
and treatment and the preliminary results
are promising that significantly attenuated
SARS-CoV-2 infection in a murine model
is achieved by administrating an IgG1 Fc
chimeric sACE2 (44). A recent report by
Zoufaly and colleagues demonstrates that
the soluble form of hrsACE2 (APN01
[human recombinant sACE2]) (0.4 mg/kg)
treatment in a single patient with COVID-
19 results in a reduced viral load in plasma,
tracheal suction, and nasopharyngeal swab.
In addition, leveraged proinflammatory
cytokine levels are observed and

accompanied by bacterial coinfection
during hrsACE2 therapy by intravenous
infusion (45). Moreover, because the Fc
fragment might bind to its receptor CD16,
the potential risk of the chimeric ACE2
becoming an alternative receptor to bind
the virus and subsequently facilitating
the viral transduction is potentially
problematic. Such a problem is solved by
mutating Fc fragment to block Fc binding
to CD16 (44). Other potential approaches
using sACE2 to prevent and treat COVID-
19 have emerged recently as well (46).
For instance, using novel LNPs (lipid
nanoparticle) to package a soluble form of
human ACE2, Kim and colleagues reported
that instilling the sACE2 into mouse lungs
resulted in a strongly inhibited (over 90%)
SARS-CoV-2 pseudovirus infection, and
the sACE2 can be detected even 48 hours
after administration (47). Chan and
colleagues, by using deep mutagenesis for
understanding the specificity of the
interaction between ACE2 and the S
protein of SARS-CoV-2 virus, engineered
high-affinity decoy ACE2 receptors
that showed potent SARS-CoV-2 and
SARS-CoV-1 neutralization in vitro
(48). Overall, recent development in
identifying a modified form of sACE2
with high-affinity to the S protein from
SARS-CoV-2, prolonged stability, and
low immunogenicity is exciting to
effectively use sACE2 as a decoy
receptor in COVID-19 prevention
and therapy.

Pseudoligands to dominate the binding
site of ACE2 for SARS-CoV-2. This idea
stems from a vaccine design strategy
(49). The critical step is to generate a
pseudoligand that has a high affinity to the
receptor, such as a truncated form of viral S
protein that only contains the RBD or an
engineered artificial receptor-binding motif.
Although advancements in structural
biology make this approach feasible, the
risk exists that on binding the de novo
designed ligand to the receptor, other
intracellular signaling pathways and
subcellular responses might also be
triggered, which can be beneficial or
detrimental to the host. For example, it has
been shown that binding of the RBD of
SARS-CoV-2 S protein to ACE2 also
triggers an inflammatory response, eliciting
cytokine production (50). The concerns
over these uncertainties warrant vigilance
in the design and application of
pseudoligands for COVID-19 prevention
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and treatment in that a cytokine storm has
been frequently observed in many severe
cases of COVID-19, contributing to
multiple organ failures and deaths (51).

Blocking antibodies against ACE2 viral
docking sites. Developing an antibody
against ACE2 on the basis of the epitopes
residing on viral docking sites would seem a
reasonable strategy for preventing COVID-
19 infection and the early treatment of
patients with COVID-19. Moreover,
because the catalytic domain of ACE2 is
separate from the viral binding domain,
blocking the docking sites may not interfere
with ACE2 enzymatic activity (13).
Therefore, special attention should be given
to the pulmonary ACE2 activity with all
relevant substrates when a newly designed
blocking antibody is tested preclinically.

ACE2 inhibitor against viral docking
sites. NAAE (N-[2-aminoethyl]-1 aziridine-
ethanamine) is, thus far, the only discovered
ACE2 inhibitor that inhibits SARS-CoV S
protein–mediated cell fusion. In a report (52),
investigators found that NAAE blocks the
membrane fusion of SARS-CoV S
protein–expressing cells and ACE2-
expressing cells with an IC50 in a
micromolar concentration range, comparable
to the ability of NAAE to inhibit ACE2
enzymatic activity. The authors reasoned that
the SARS-CoV S protein–binding residues of
ACE2 are shifted on NAAE interaction to
a sufficient degree that ACE2 binding to
the S protein is inhibited. Therefore, it is
conceivable that NAAE is potentially useful
for mitigating SARS-CoV-2 infectivity as
well. However, this inhibitor also displays
high potency to inhibit ACE2 catalytic
activity, an alarming feature that needs to be
considered when choosing this inhibitor in
COVID-19 therapy (52).

Agents to enhance ACE2 shedding. ACE2
can be released from the cell’s plasma
membrane to the extracellular milieu as
sACE2 (38, 53). Increased sACE2 leads to
reduced membrane-bound ACE2 since so
far, no evidence exists that suggests the
shedding process induces ACE2 expression.
Therefore, promoting ACE2 shedding
will likely reduce viral binding to ACE2
on the cell surface, while potentially
preserving local ACE2 in the soluble form.
Interestingly, the S protein from SARS-CoV
binds to ACE2 and induces ACE2 shedding
(54), a typical host-pathogen interaction
phenomenon. However, whether this can be
harnessed in the setting of active infection to
mitigate tissue damage is unclear.

ACE2 shedding depends on the activity
of ADAM17, or TACE, a metalloprotease
(53). Moreover, reports indicated that
ADAM10 might also be involved in the
shedding under certain circumstances (38).
Notably, the shedding is inducible by various
biomolecular stimuli, including agonist-
PMA (phorbol 12-myristate 13-acetate)
for ADAM17, ionomycin for ADAM10
(55), bacterial endotoxin, cytokines, and
chemokines. Because ADAM17 is the major
protease responsible for ACE2 shedding,
enhancing ADAM17 activity represents a
tractable strategy to increase ACE2 shedding
and reduce the SARS-CoV-2 infectivity.
However, given that ADAM17 also involves
many other biological processes, such as
TNF-a processing, the alteration of
ADAM17 activity may have detrimental
effects, such as significantly elevated
TNF-a or other cytokines that exacerbate
inflammatory responses.

Agents to promote or inhibit ACE2
internalization. Like many cell surface
proteins, ACE2 undergoes regulated
internalization in a clathrin-dependent fashion
(56). Therefore, designing or identifying small
molecules that can bind with ACE2 and
subsequently trigger internalization could be
considered an effective way to lower the ACE2
cell surface density for preventing binding,
thus reducing viral entry. Moreover, it has
been reported that RBD from SARS-CoV S
protein binds to ACE2 and induces ACE2
internalization (57). Many agonists or
antagonists of transmembrane proteins, once
engaged with the target protein, trigger
internalization (58–60). As such, inhibitors
for clathrin could be used in blocking the
endocytosis of the virus-ACE2 complex.
Several clinical trials of such types of inhibitors
are underway (56, 61). When considering such
a strategy, a caveat is that promoting ACE2
internalization will reduce enzymatically active
ACE2 on the cell surface, potentially resulting
in the heightened inflammatory response and
lung damage (details are shown below).

A summary of design strategies that
leverage ACE2 as the therapeutic target is
listed in Table 1.

Targeting ACE2 as a
Carboxypeptidase to Modulate
Inflammatory Responses
Conventionally, ACE2 is viewed as a
component of the renin–angiotensin
system to regulate cell functions in the
cardiovascular and renal systems.
Accumulating evidence indicates that

ACE2 is also a potent regulator of the
inflammatory response (62). As of today,
the antiinflammatory function of ACE2 is
achieved through its enzymatic activity and
no evidence suggests that ACE2 itself has
effects on the inflammatory process. Our
recent study revealed that the initial
reduction of pulmonary ACE2, while the
host encounters a bacterial lung infection, is
crucial for recruiting the inflammatory
neutrophils into the lungs (63). The
subsequent recovery of pulmonary ACE2 is
equally critical to prevent exuberant
neutrophil accumulation and safeguard the
lung inflammation progression, suggesting
a highly promising new strategy in
inflammatory lung disease therapy (63).
Clinical observations and public reports
suggest that the most vulnerable
populations to SARS-CoV-2 are the elderly
and those with preexisting conditions, such
as diabetes and hypertension (64), which
are the same group of people who have
impaired immunity. Not unexpectedly,
this is the group of people that display
the most severe disease progression and
high mortality, mainly because of the
exaggerated inflammatory response (51).
This suggests that a dysregulated
inflammatory response plays a critical role
in the initiation, progression, and prognosis
of COVID-19. Therefore, the logistics for
targeting ACE2 enzymatic activity in
COVID-19 therapy is rational.

Agents to enhance ACE2 enzymatic
activities. There are several ways to enhance
ACE2 activity. Although inducing ACE2
expression can increase ACE2 activity, more
membrane-bound ACE2 would further
facilitate the viral entry. Two commercially
available reagents, DIZE and XNT (65), are
reported to increase ACE2 activity (66),
enabling their potential use in patients with
COVID-19 to alleviate inflammatory
injury. However, the off-target potential,
the ACE2-independent effects (67), and
the relatively high toxicity challenge
their clinical utility. A clinical trial was
conducted using sACE2 as a therapy to
treat patients with acute respiratory distress
syndrome (40). The preliminary results
only demonstrated minimal beneficial
effects, such as an elevated surfactant-D
and a trend of decreased IL-6. Therefore,
novel ACE2 activators with high efficacy,
specificity, and low toxicity are urgently
needed. The accumulating evidence
indicates that ACEi (angiotensin-converting
enzyme inhibitor) and ARBs can increase
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ACE2 activity, although the underlying
mechanisms remain elusive (68).

Agents to simulate ACE2 activity. ACE2
is a carboxypeptidase that can hydrolyze
AngII (angiotensin II), apelin 13,
dynorphin-A, and des-Arg9–bradykinin
(69). The primary product peptide is
Ang1–7, which is generated from AngII
with high catalytic efficiency (70). The
antiinflammatory effects of ACE2
primarily reside in Ang1–7 (71, 72).
Accordingly, a reasonable therapeutic
approach is the delivery of Ang1–7 to
attenuate viral morbidity. Although
Ang1–7 has been used in clinical trials for
pulmonary hypertension, its short half-
life constrains therapeutic delivery
options (73). Alternative approaches
include stabilized forms of Ang1–7, which
have demonstrated efficacy in preclinical
settings (74). AVE0991, an analog
of Ang1–7, might also be used as
a substitute for ACE2 enzymatic activity
(75).

Agents to reduce ACE2
degradation. Inhibitors for TMPRSS2
have been proposed in treating patients
with COVID-19 (27, 76). TMPRSS2
activates the virus’s S protein and
hydrolyzes ACE2 into nonfunctional
fragments (27, 29, 76, 77). Thus, the
TMPRSS2 inhibitors that preserve ACE2
functions might serve as an ACE2
activator in this context, in addition
to their viral fusion blocking effect
(76, 78).

A list of therapeutic agents that leverage
ACE2 as an inflammation modulator is
included in Table 2.

Collective Considerations for
Targeting ACE2 in COVID-19 Therapy
ACE2 is a multifunctional protein;
consequently, leveraging ACE2 as a
therapeutic target for COVID-19 requires
collective considerations to balance the pros
and cons at the stage of disease progression
for each patient. Some basics about ACE2
have to be clear: 1) The enzymatic activity
and viral receptor property of ACE2 are
independent, as most known ACE2
inhibitors reduce ACE2 enzymatic activity.
However, only NAAE is reported to
dampen the binding of the SARS-CoV
S protein to ACE2 (52), suggesting
segregation of the enzymatic activity and
S protein–binding of ACE2. Moreover,
studies indicated that the binding of a virus
to ACE2 does not necessarily interfere with
the enzymatic activity of the latter (37, 79);
and 2) soluble ACE2 and membrane-bound
ACE2 share the same enzymatic and viral
binding functionalities (37, 38, 80).
However, only the membrane-bound ACE2
can facilitate viral entry and subsequent
infectivity (37, 38) (Figure 1). Having these
essential prerequisites in mind, it seems
feasible to target ACE2 as an alternative
option for COVID-19 therapy. However,
when planning a therapeutic ACE2-
targeting regimen, clinicians will need
to determine the stage of disease
and comorbidities that could prove
consequential. During the initial infection
stage, approaches to reduce viral infectivity
would be prioritized at the expense of
allowing an appropriate immune response
to contain the virus. At more advanced
stages of COVID-19 with exuberant

inflammation, not requiring an active
viral driver, strategies to enhance ACE2
activity should be entertained. Foundational
studies showing lung and systemic ACE2
expression and activity during different
disease stages are crucial for the optimal
use of these interventions. Regarding
comorbidities, when using decoy ACE2
for prevention purposes, the recipient’s
age and preexisting conditions must be
considered. An elderly or a potentially
immunocompromised recipient might
require the coadministration of an ACE2
inhibitor to reduce the possibility that
decoy ACE2 (with enzymatic activity) may
attenuate the innate immune response
that will lead to unexpected, enhanced
infectivity.

Drug delivery issues. Our proposed
strategies for targeting ACE2 in COVID-19
therapy are illustrated in Figure 2. Given the
many important biological roles that ACE2
plays in regulating cardiovascular functions
and innate immune systems, caution
must be taken in leveraging ACE2 as a
therapeutic target. Once a therapeutic
compound is identified and optimized,
efforts should be devoted to developing
formulations that enable its specific delivery
to the target sites to maximize the intended
preventive or therapeutic efficacy and
reduce harmful side effects.

For ACE2-based therapies, the primary
delivery targets are lung epithelial cells in the
airway and airspace compartments. Because
blocking the virus’s accessibility to ACE2
is the key to preventing viral infection,
inhalable delivery would seem to be a
logical option to selectively and locally

Table 2. Therapeutic Agents That Leverage ACE2 as an Inflammation Modulator

Design Strategy Therapeutic Agent Important Observations Refs.

Enhancing ACE2 enzymatic
activity

rhACE2 Elevated circulating: tissue ACE2 activity
reduced; inflammatory responses induced by
a bacterial lung infection

63

DIZE Enhanced ACE2 activity, but with off-target
effects; reduced infarct area; attenuated LV
remodeling

66, 67

XNT Prevention of glycemia and improved cardiac
function; off-target effects were noticed

65, 66

Simulating ACE2 enzymatic
activity

Ang1–7 or AVE0991 Ang1–7 represses the increased NADPH
oxidase; rescues the dilated cardiomyopathy
in ACE2ko mice

75

Reducing ACE2 degradation TMPRSS2 inhibitors (camostat,
nafamostat)

TMPRSS2 hydrolyzes ACE2 and thus degrades
ACE2

29, 76–78

Definition of abbreviations: ACE2ko=ACE2 knockout; DIZE=diminazene aceturate; LV= left ventricle; TMPRSS2= transmembrane serine protease 2;
XNT=9H-Xanthen-9-one.
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deposit pseudoligands, docking antibodies,
and/or ACE2 inhibitors to the lungs.
Similarly, therapeutic compounds to promote
ACE2 internalization or shedding also need
to be delivered to the lung epithelial cells.
There are three critical considerations in the
development of their inhalable formulations.
The first is the safety requirements in
administering an aerosolized drug to patients
who have a high risk of viral dissemination to
clinical personnel. Advancements in delivery
hardware and lessons learned from treating
current patients with COVID-19 will likely
address this challenge. The second is the
nebulization stability of these therapeutic
compounds. Although small molecule
therapeutics might not encounter any stability
issues, protein or peptide drugs may suffer
from potential denaturing because of the
mechanical forces or interface enrichment
during the nebulization process (81). The use

of nanoscale carriers may help stabilize their
molecular and structural integrity (82) but
their stability, such as size and morphology,
also needs to be carefully considered and
assessed. A third hurdle is the need to
penetrate the airway mucous layer. To
promote mucous penetration, spherical
nanoparticles with optimized size and surface
chemistry can improve delivery efficiency
(83). When using the soluble form of ACE2
or decoy ACE2 to block viral entry, it is
preferred that they stick on the top of the
mucous layers without any significant contact
with lung cells. In this case, charged
nanoparticles of a high aspect ratio might
better serve the purpose (84). Timing and
dosage control are incredibly essential to
modulate inflammatory responses by altering
the enzymatic activities of ACE2. Depending
on the severity of symptoms and patient
conditions, the administration of ACE2

inhibitors and activators should be assessed
case by case, with careful control over the
dose, dosing time, and frequency.

Clinical considerations. COVID-19 is a
disorder punctuated by clinical transitions,
including exposure to infection, fever or
upper respiratory symptomatology,
hypoxia, hypoxia-induced respiratory
failure, respiratory failure results in
acute respiratory distress syndrome, or
multiorgan system failure. Each of these
transitions reflects specific physiologic,
immune, and homeostatic perturbations
that reasonably require specific
interventions. Thus, a strategy anchored on
a single perturbation is not likely to be
effective in all stages of COVID-19.
Targeting ACE2 as a therapy for COVID-19
has to be considered holistically integrating
the infection stage, the degree of
inflammation, coagulation status, and

ACE2 as the receptor for SARS-CoV-2ACE2 as a Carboxypeptidase
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Figure 1. Schematic illustration of ACE2 (angiotensin-converting enzyme 2) in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection
and coronavirus disease (COVID-19) pathogenesis. The role of ACE2 in SARS-CoV-2 infection and the pathogenesis of COVID-19 encompasses
its function as the viral receptor to facilitate viral entry and also as carboxypeptidase to regulate the activities of the renin–angiotensin system and
kinin–kallikrein system, which in turn modulates cellular responses related to inflammation, fibrosis, coagulation, and thrombosis. The vertical dashed line
highlights two distinct functions of ACE2 in the pathogenesis of COVID-19. Adapted from Reference 86. Ang II = angiotensin II; AT1R=angiotensin II
receptor type 1; AT2R=angiotensin II receptor type 2; BKB1R=bradykinin receptor B1; DABK=des-Arg9-bradykinin; Mas1R=Mas1 receptor;
sACE2= soluble ACE2; TMPRSS2= transmembrane serine protease.
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disease progression for each patient. During
the initial infection stage, approaches to
reduce viral infectivity would be prioritized
at the expense of allowing an appropriate
immune response to contain the virus. At
more advanced stages of COVID-19 with
exuberant inflammation not requiring an
active viral driver, strategies to enhance
ACE2 activity would be appealing. Besides,
although the enzymatic activity and viral
receptor capacity of ACE2 are not coupled,
in clinical practice, manipulating one
function of ACE2 might affect the other
function of ACE2, resulting in severe clinical
consequences. By this view, reducing
membrane-bound ACE2 and increasing

sACE2 (harboring decoy and enzymatic
functions) may be ideal for this disorder.
However, if soluble and membrane-bound
ACE2 can both be induced with a single
agent (i.e., ARBs or ACEis), the soluble
agent’s dual effects might override the
possibility of feeding viral uptake, a singular
caution. The form and site of ACE2
modulation and the disease evolution stage
will dictate the best precision-based use of
this therapy. Foundational studies showing
lung and systemic ACE2 expression and
activity during different disease stages will
guide these optimal use interventions. In
addition, preclinical and clinical studies will
be essential to assess competing effects.

Other considerations. Given ACE2 as
the essential receptor for SARS-CoV-2, it is
conceivable that targeting ACE2 provides an
effective means for COVID-19 prevention
and treatment. However, this candidate
approach requires careful consideration of
the pros and cons of available reagents and
the clinical contexts in which they are likely
to be effective. More importantly, because
ACE2 is a multifunctional protein, all
functions of ACE2, either separately or
collectively, need to be considered in the
context of COVID-19 progression. For
instance, an underexplored nonenzymatic
ACE2 function is its role as a cotransporter
for neutral amino acid transporter B0AT1,
or SLC6A19 (85), underscoring the
multifaceted character of ACE2. Although
SLC6A19 does not express in airway
epithelial cells, it is abundantly expressed in
enterocytes and some renal cells. Although
there is no evidence that SLAC6A19
directly binds to or indirectly interacts
with the S protein of SARS-CoV-2, a
supercomplex formed by a dimer of
ACE2–SLC6A19, in which ACE2 binds the
viral protein and SLC6A19 stabilizes the
heterodimer, could be possible. Altogether,
the structural data suggest that even if
SLAC6A19 does not directly interact with
the virus, it may play a role in the virus’s
internalization, stabilizing, or participating
in the receptor’s conformational changes
(20).

Conclusions

Until effective anti–SARS-CoV-2 vaccines
are ready for the public, alternative
therapeutic options are urgently needed.
Because ACE2 is the receptor for the
virus and a modulator of inflammatory
responses, targeting ACE2 is a logical
option for COVID-19 treatment. Although
only a select few ACE2-related reagents are
tested in humans (e.g., sACE2, DIZE,
Ang1–7), many have already been
evaluated extensively in animal models.
In conclusion, ACE2 targeting is an
underexplored approach to COVID-19
therapeutics and may avail novel primary
or adjunctive pipelines for this pandemic. n
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