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Abstract

Cardiac fibroblasts are crucial in pathophysiology of the myocardium whereby their aberrant proliferation has significant impact on cardiac func-
tion. Hydrogen sulphide (H2S) is a gaseous modulator of potassium channels on cardiomyocytes and has been reported to attenuate cardiac
fibrosis. Yet, the mechanism of H2S in modulating proliferation of cardiac fibroblasts remains poorly understood. We hypothesized that H2S
inhibits proliferative response of atrial fibroblasts through modulation of potassium channels. Biophysical property of potassium channels in
human atrial fibroblasts was examined by whole-cell patch clamp technique and their cellular proliferation in response to H2S was assessed by
BrdU assay. Large conductance Ca2+-activated K+ current (BKCa), transient outward K+ current (Ito) and inwardly rectifying K+ current (IKir) were
found in human atrial fibroblasts. Current density of BKCa (IC50 = 69.4 lM; n = 6), Ito (IC50 = 55.1 lM; n = 6) and IKir (IC50 = 78.9 lM;
n = 6) was significantly decreased (P < 0.05) by acute exposure to NaHS (a H2S donor) in atrial fibroblasts. Furthermore, NaHS (100–
500 lM) inhibited fibroblast proliferation induced by transforming growth factor-b1 (TGF-b1; 1 ng/ml), Ang II (100 nM) or 20% FBS. Pre-con-
ditioning of fibroblasts with NaHS decreased basal expression of Kv4.3 (encode Ito), but not KCa1.1 (encode BKCa) and Kir2.1 (encode IKir). Fur-
thermore, H2S significantly attenuated TGF-b1–stimulated Kv4.3 and a-smooth muscle actin expression, which coincided with its inhibition of
TGF-b–induced myofibroblast transformation. Our results show that H2S attenuates atrial fibroblast proliferation via suppression of K+ channel
activity and moderates their differentiation towards myofibroblasts.
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Introduction

Cardiac fibroblasts are fundamentally involved in cardiac remodelling
in normal ageing heart [1] and in damaged myocardium [2]. Aberrant
proliferation of fibroblasts and their transformation to myofibroblasts
is a hallmark of cardiac fibrosis, which is characterized by excessive
extracellular matrix built-up leading to loss of tissue compliance [3,

4]. Because of their wide-ranging participation in myocardial patho-
physiology, cardiac fibroblasts represent an attractive target in man-
aging cardiac disorders, including cardiac hypertrophy, heart failure
and arrhythmias [5]. Indeed, atrial fibrosis has been closely associ-
ated with atrial fibrillation [6, 7] and sinus node dysfunction [8].

Hydrogen sulphide (H2S) is an endogenously generated gaseous
transmitter that has been reported to attenuate cardiac fibrosis [9]. It
is known to mediate its effects by modulating ion channel activity in
many cellular systems [10]. Hydrogen sulphide was the first opener
of KATP channel identified in vascular smooth muscle cells [11].
Through activation of KATP channels, H2S lowers blood pressure, pro-
tects heart from ischaemia and reperfusion injury [12, 13]. We have
recently reported that H2S inhibited delayed rectifier potassium chan-
nels in human iPS–derived cardiomyocytes [14]. Yet, effect of H2S on
cardiac fibroblasts remains poorly understood. We hypothesized that
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H2S inhibits proliferation of atrial fibroblasts by inhibiting functioning
of potassium channels. We present supporting data that H2S may
potentially modulate cardiac fibrosis by inhibiting BKCa, Ito and IKir,
independent of KATP channels, leading to decreased proliferation and
suppression of transforming growth factor-b1 (TGF-b1)–induced
myofibroblast transformation of atrial fibroblasts.

Materials and methods

Fibroblast isolation

Patients undergoing mitral valve repair and coronary bypass surgery
(n = 10) were recruited after informed consent in protocol approved

by institutional review board of Singapore General Hospital that con-

formed to the Declaration of Helsinki. Atrial appendages were collected
as surgical by-product. Human atrial fibroblasts were isolated by minc-

ing the appendages to less than 1 mm3 and followed by 0.1% trypsin

digestion for 20 min. before plating onto tissue culture–treated 60-mm

dishes to produce fibroblastic outgrowth from minced tissue pieces.
The isolated fibroblasts were confirmed with expression of collagen I

(1/20; Southern Biotech, Birmingham, AL, USA) and anti-human fibro-

blast (1/1000; Sigma-Aldrich, St. Louis, MO, USA) antibodies (Fig. S1).

Atrial fibroblasts were passaged as monolayer in 10% foetal bovine
serum–supplemented DMEM. Fibroblasts between passage 1 and 3

were used for subsequent experiments.

Electrophysiological recordings

Cell were placed on the stage of a Nikon Diaphot inverted microscope

and superfused continuously at 36 � 1°C with Tyrode solution con-
taining (in mM) 140 NaCl, 5.4 KCl, 1.8 CaCl2, 1 MgCl2, 10 HEPES and

10 Glucose (pH adjusted to 7.4 with NaOH). The patch-clamped cell

was superfused by means of a temperature-controlled micro-superfu-

sor (TC-324B, Warner Instruments, Hamden, CT, USA). Patch pipettes
were made from borosilicate glass shanks (Sutter Instrument, Novato,

CA, USA) and pulled with a Brown–Flaming puller (Model P-97; Sutter

Instrument Co), and had tip resistances of 2–3 MΩ when filled with
pipette solution. Pipette tips were polished (Microforge MF830; Nar-

ishige, Tokyo, Japan). These patch pipettes were filled with a standard

solution containing (in mM) 140 KCl, 1.2 MgCl2, 0.05 EGTA, 10 HE-

PES, 0.1 GTP and 5.0 Mg ATP (pH adjusted to 7.2 with KOH). For
Na+ current recording, the patch pipettes were filled with (in mM) 35

NaCl, 105 CsF, 0.1 EGTA and 10 HEPES (pH adjusted to 7.4 with

CsOH). After a gigaohm seal was obtained by negative pressure suc-

tion, the cell membrane was ruptured by a gentle suction to establish
whole-cell configuration with a seal resistance >800 MΩ. The cell

membrane capacitance (40.27 � 8.2 pF) was electrically compensated

with the pulse software. The series resistance (Rs, 3–5 MΩ) was
compensated by 50–70% to minimize voltage errors. Currents were

elicited with voltage protocols as described in the following results

section for different individual current recordings. Whole-cell voltage-

clamp experiments were performed with an Axopatch 200B amplifier
(Axon Instruments, Foster City, CA, USA) interfaced to a Digidata

1322A data acquisition system controlled by Clampex version 8.1 soft-

ware (Axon Instruments). Data were analysed with pCLAMP software

(Version 10.0; Axon Instrument) and Origin 8.0 (OriginLab, Northamp-
ton, MA, USA).

Cell proliferation and apoptosis assay

Cell proliferation assay was performed with BrdU kit (Roche, Basel,

Switzerland). Briefly, cells were plated on 96-well plate at a density of

3000/well and cultured for 24 hrs. After 4 hrs of serum starvation, cells
were incubated for 24 hrs with medium containing ion channel block-

ers, NaHS or growth factors. BrdU labelling solution (100 lM) diluted

10 times in DMEM (0.1% FBS) was added to each well and the plates

were incubated at 37°C for an additional 2 hrs. Incorporated BrdU was
detected by an anti-BrdU antibody for 90 min. and colorimetric develop-

ment proceeded for 15 min. before analysis by ELISA plate reader

(SpectraMax, Molecular Device, Sunnyvale, CA, USA). Cellular apopto-

sis assay was performed with Caspase-3 Fluorescence Assay kit as
instructed (Cayman Chemical, Ann Arbor, MI, USA). Briefly, cells were

plated on 96-well plate at a density of 104/well and cultured for 24 hrs.

After 4 hrs of serum starvation, cells were incubated for 24 hrs with
medium containing NaHS. Fluorescent intensity was obtained with

ELISA plate reader (SpectraMax, Molecular Device) at 485 nm excitation

and 535 nm emission wavelengths.

RNA isolation and RT-PCR

Total RNA was extracted from human atrial fibroblasts with Trizol reagent

(Life Technologies, Carlsbad, CA, USA) after 12 hrs of treatment. RT-PCR
was performed with one-step kit (Invitrogen) where 1 lg RNA and ran-

dom hexamer primer were used for the initiation of cDNA synthesis.

Gene-specific primers for the BKCa (KCa1.1): forward 5′- GGAG-
GATGCCTCGAATATCA-3′; reverse 5′-AGCTCGGGATGTTTAGCAGA-3′; Ito
(Kv4.3): forward 5′-CTGGACAA GAA CCAGCGACAGTGCG-3′; reverse 5′-
ATCACG ATCAGGAGGGCCACATAGGG-3′ and IKir (Kir2.1): forward, 5′-
TTGAGACCCAGACAACCATAGGCTATGG-3′; reverse 5′-TGGCCATGACTG
CGCCAATGATG-3′; a-SMA: forward 5′-CATCACCAACTGGGACGACA-3′;
reverse 5′-GTGGGTGACACCATCTCCAG- 3′; CSE: forward 5′-TCCGGATGGAG
AAACACTTC-3′; reverse 5′-GCTGCCTTTAAAGCTTGACC-3′; KATP (Kir6.2): for-

ward 5′-GACCCTCATCTTCAGCAAGC-3′; reverse 5′-GGTGTTGCCAAACTTG
GAGT-3′; b-actin: forward 5′-TTTGAGACCTTCAACACCCC-3′; reverse 5′-
TTTCGTGGATGCCACAGGA-3′. PCR products were fractionated on 2% aga-

rose gel electrophoresis. Data were expressed as values of optical density
(OD) standardized to those of b-actin.

Immunocytochemistry

Atrial fibroblasts cultured on LabTek chamber slides (Nunc; Thermo

Fisher Scientific, Waltham, MA, USA) were fixed with 4% paraformal-

dehyde, permeabilized with 0.5% Triton-X100 and blocked with 2%

BSA. Cells were incubated overnight with antibodies against a-smooth
muscle actin (1/2000; a-SMA; Sigma-Aldrich) to identify myofibro-

blasts, against anti-Kv1.1 (1/1000; Abcam, Cambridge, UK), anti-

Kv4.3 (1/500; Abcam) and anti-Kir2.1 (1/1000; Abcam) to identify
BKCa, Ito and IKir channels, respectively (Fig. S2), before incubating

with Alexa Fluor 488 or 555 secondary antibody (Life Technologies)

and mounted in Vectashield mounting media containing DAPI for

nuclear counterstain.
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Statistical analysis

Data were expressed as mean � SE. Statistical significance of the dif-
ference between groups was determined with Student’s t-test. A value

of P < 0.05 was considered statistically significant.

Results

Hydrogen sulphide suppresses ion currents in
human atrial fibroblasts

Multiple ionic channels are reported to be expressed in human cardiac
ventricular fibroblasts [15], ionic channels in our atrial fibroblasts
were activated by depolarization voltage between �70 and +60 mV
from a holding potential of �80 mV (0.2 Hz) to elicit total outward K+

currents. Activated currents that were sensitive to paxilline (1 mM), a
specific BKCa inhibitor, were significantly suppressed at +60 mV, con-
firming the presence of BKCa current (52%; 163/309 cells) in human
atrial fibroblasts (Fig. 1A). Under identical voltage-clamp condition,
exposure to 100 lM NaHS (as a donor of H2S) similarly reduced the
peak current density of BKCa (Fig. 1B). The inhibitory effects observed

could not be washed out (Fig. 1C). The presence of NaHS resulted in
a voltage-dependent suppression of the I–V curve from 10.5 �
1.2 pA/pF to 6.8 � 0.9 pA/pF at +40 mV (P < 0.01; n = 6) (Fig. 1D)
and a dose-dependent inhibition of BKCa peak current density with an
IC50 of 69.4 lM (Fig. 1E).

To verify the specificity of H2S inhibition on BKCa, we assessed its
effect in the presence of naringenin (10 lM), a specific opener of
BKCa [16]. BKCa currents were elicited with clamp pulses at +40 mV
from a holding potential of �80 mV under control condition (Fig. 1F).
Compared with baseline (9.9 � 0.8 pA/pF), naringenin increased
BKCa current significantly (14.1 � 0.5 pA/pF; P < 0.01; n = 6), but
addition of NaHS returned naringenin-induced current to baseline
(9.2 � 0.4 pA/pF; P < 0.05; n = 6) (Fig. 1G). The rising phase of the
BKCa currents at 50 mV with activation s (sact) at baseline (15.4 �
0.1 ms) was lowered significantly by naringenin (8.6 � 0.2 ms;
P < 0.01; n = 6), but reversed to baseline after addition of NaHS
(15.4 � 0.2 ms; P < 0.05; n = 6), which confirmed its modulation
of BKCa channel kinetics (Fig. 1H).

Similarly, under conditions to elicit total outward K+ currents, a 4-
aminopyridine (4-AP; 0.5 mM)–sensitive current was detected, indi-
cating the presence of transient outward currents, Ito (34%; 104/309
cells) in the atrial fibroblasts (Fig. 2A). Under identical voltage-clamp
condition, exposure of fibroblasts to 100 lM NaHS reduced the peak

A

B

C D E

F G H

Fig. 1 Effect of NaHS on BKCa currents in

human atrial fibroblasts. (A) Voltage-

dependent current was suppressed by

BKCa blocker Paxilline (1 lM). Paxilline-
sensitive I–V relationships of the mem-

brane currents of typical BKCa channel.

(B) BKCa traces recorded in the absence

and presence of NaHS (100 lM). (C)
Time course of BKCa current inhibition in

human atrial fibroblast after addition of

NaHS (100 lM). (D) Mean I–V relation-

ship of peak BKCa current in the absence
and presence of NaHS (100 lM)

(**P < 0.01; *P < 0.05 versus control).

(E) A concentration response curve of
NaHS-induced inhibition on BKCa. (F)
Effect of NaHS (100 lM) on BKCa currents

in the presence of Naringenin (10 lM).

(G) Summarized data for peak BKCa cur-
rents at +40 mV at baseline, in the pres-

ence of Naringenin (10 lM), and in the

presence of NaHS (100 lM) (*P < 0.05

versus basal levels; #P < 0.05 versus Na-
ringenin alone; n = 6). (H) Plot of the

activation s (sact) as a function of mem-

brane potential in the presence of Na-
ringenin (10 lM) and Naringenin together

with NaHS (100 lM) (**P < 0.01 versus

basal levels; #P < 0.05 versus Naringenin

alone; n = 6).
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current density of Ito (Fig. 2B). The inhibitory effects occurred within
1 min., reached saturation by 10 min. and could not be washed out
(Fig. 2C). Addition of NaHS showed a voltage-dependent suppression
of the Ito current in the I–V curve from 18.2 � 1.5 pA/pF to
12.7 � 1.7 pA/pF at +40 mV (P < 0.05; n = 6) (Fig. 2D) and dem-
onstrated a dose-dependent inhibition of peak current density with an
IC50 of 55.1 lM (Fig. 2E).

Steady-state activation of Ito was unaffected by NaHS (Fig. 2F).
[The curves were fitted by the Boltzman equation: G/Gmax=1/
[1 + exp(VT � V1/2/j)], where G/Gmax represents a ratio of conduc-
tance to the maximum conductance, and VT represents the values
of the depolarizing pulses]. The half-maximum activation voltage
(V1/2) and slope factor under control condition were 17.2 �1.5 mV
and 19.3 � 1.3, respectively, which were not significantly different

from those in the presence of NaHS (V1/2: 18.3 � 1.2 mV, slope
factor 20.2 � 1.2) (P = NS; n = 6). In contrast, NaHS significantly
influenced the steady-state inactivation of Ito (Fig. 2G). When fitted
to Boltzman function, I/Imax=1/[1 + exp(VT � V1/2/j)], the half-max-
imum inactivation voltage (V1/2-inact) and slope factor under control
condition were �53.6 � 1.2 mV and 9.08 � 1.1, respectively,
which were significantly different from those in the presence of
NaHS (V1/2-inact: �71.1 � 3.1 mV, slope factor 14.7 � 2.4)
(P < 0.05; n = 6). Furthermore, recovery of Ito from inactivation
was analysed by delivering two identical 500 ms depolarizing pulses
from �80 to +60 mV and varying the interpulse from 50 to
3500 ms. Addition of NaHS shifted the curve right and increased
the half-recovery time of Ito from of 461.7 � 57 to
1218.2 � 49 ms. (P < 0.01; n = 6) (Fig. 2H), confirming inhibition
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Fig. 2 Effect of NaHS on Ito currents in

human atrial fibroblasts. (A) Transient out-
ward current was activated in traces
recorded in the absence and presence of

4-AP (0.5 mM). 4-AP–sensitive I–V rela-

tionships of the membrane current of typi-

cal Ito channel. (B) Ito traces recorded in
the absence and presence of NaHS

(100 lM). (C) Time course of Ito current

inhibition in human atrial fibroblast after
addition of NaHS (100 lM). (D) Mean I–V
relationship of peak Ito in the absence and

presence of NaHS (100 lM) (*P < 0.05

versus control). (E) A concentration
response curve of NaHS-induced inhibition

on Ito. (F) Mean voltage-dependent activa-

tion of Ito current and inactivation (G) and
time-dependent recovery (H) in the
absence and presence of NaHS (100 lM)

(*P < 0.05 versus control). (I) Effect of

NaHS (100 lM) on Ito currents in the

presence of NS5806 (10 lM). (J) Sum-
marized data for Ito at +40 mV at baseline,

in the presence of NS5806 (10 lM), and

in the presence of NS5806 together with
NaHS (100 lM) (**P < 0.01 versus basal

levels; ##P < 0.01 versus NS5806 alone;

n = 6). (K) Mono-exponential functions

were fitted to the current decays, and the
time constants s are shown as a function

of membrane potential in the presence of

NS5806 (10 lM) and in the presence of

both NS5806 and NaHS (100 lM).
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of NaHS on the kinetic property of Ito channel recovery. Further-
more, these properties of Ito were similar to those reported in
human ventricular fibroblasts [15].

The inhibitory effect of NaHS on Ito was further confirmed in the
presence of NS5806 (10 lM), a specific opener of Ito [17] (Fig. 2I).
The Ito currents were elicited with clamp pulses at +40 mV from a
holding potential of �80 mV. Compared with baseline (18.8 � 0.85
pA/pF), peak current density significantly increased (24.9 � 1.5 pA/pF;
P < 0.05; n = 6) after the addition of NS5806, but additional pres-
ence of NaHS (100 lM) returned the NS5806-stimulated currents to
baseline levels (18.6 � 0.6 pA/pF; P < 0.01; n = 6) (Fig. 2J). After
exposure to NS5806 (10 lM), inactivation of Ito was significantly
subdued, as reflected by an expansion in time constant (s, from
8.6 � 0.2 to 13.6 � 0.7 ms at +30 mV, P < 0.05; n = 6). However,
addition of 100 lM NaHS returned the time constant to 10.1 �
0.9 ms at +30 mV in the presence of 10 lM NS5806 (Fig. 2K), con-
firming inhibition of H2S on Ito current.

Besides BKCa and Ito currents, an inward rectifier current activated
by hyperpolarization voltage steps on a holding potential of �40 mV
that was sensitive to Ba2+ (0.5 mM) was found, indicating the pres-
ence of IKir inward current (28%; 28/309 cells) in the atrial fibroblasts
(Fig. 3A). Exposure of atrial fibroblasts to 100 lM NaHS reduced the
peak current density of IKir (Fig. 3B). The inhibitory effects occurred
within 1 min., reached saturation at 10 min. and could not be washed
out (Fig. 3C). NaHS showed a voltage-dependent suppression of the
IKir current on the I–V curve from �4.4 � 0.1 pA/pF to �3.0 �
0.1 pA/pF at �110 mV (P < 0.05; n = 6) (Fig. 3D) and a dose-
dependent inhibition of peak current density with an IC50 of 78.9 lM
(Fig. 3E).

A minority of the atrial fibroblasts (1%; 1/54 cells) were found to
exhibit inward currents with 50 ms voltage steps between �60 and

+70 mV from �80 mV holding potential in 10 mV increments that
resembled sodium current, indicating that K+ currents represent the
major ionic species in human atrial fibroblasts.

H2S inhibits proliferation of atrial fibroblasts via
suppression of Ito currents and gene expression

Inhibition of BKCa channel by paxilline, but not Na channel, has been
reported to suppress proliferation of ventricular fibroblasts previously
[18]. We investigated whether inhibition of the major K+ currents of
BKCa and Ito by H2S similarly affected atrial fibroblast proliferation. Cell
proliferation was found to be dose-dependently suppressed by paxilline
(BKCa inhibitor), 4-AP (Ito inhibitor) and Ba2+ (IKir inhibitor) (Fig. 4).
Similarly, NaHS at 100, 300, 500 lM reduced cell proliferation by
33.1 � 4.2%, 43.7 � 3.1%, 58.4 � 6.2%, respectively (*P < 0.05;
**P < 0.01 versus vehicle control; n = 10) without significant apopto-
tic effect observed at 300 lM (Fig. 4B). While naringenin (100 lM)
had no effect on cellular proliferation, NS5806 (100 lM) enhanced
fibroblast proliferation by 9.1 � 5.0% (P < 0.05; n = 10). However,
NaHS (100 lM) reduced cellular proliferation by 29.1 � 5.8%
(P < 0.01; n = 10) and 23.1 � 4.8% (P < 0.05; n = 10) in the pres-
ence of naringenin (100 lM) and NS5806 (100 lM), respectively, con-
firming additive inhibitory effects of H2S on BKCa and Ito currents in
reducing cellular proliferation (Fig. 4C and D).

KATP channel has been reported to affect cellular proliferation
[19]. However, modulation of KATP channel (30%; 22/73 cells)
(Fig. 5A and B) and Kir6.2 (responsible for KATP) gene expression
(Fig. 5C) by H2S while confirming its role in enhancing current den-
sity, failed to show any appreciable effect on proliferation of our atrial
fibroblasts. The KATP currents were elicited from voltage-clamped at

A
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C D E

Fig. 3 Effect of NaHS on IKir currents in

human atrial fibroblasts. (A) inwardly rec-

tifying voltage-dependent currents were
suppressed by Ba2+ (0.5 mM). Ba2+-sensi-

tive I–V relationships of the membrane

currents of typical IKir. (B) IKir traces

recorded in the absence and presence of
NaHS (100 lM). (C) Time course of IKir
current inhibition after addition of NaHS

(100 lM). (D) Mean I–V relationship of

peak Ito current in the absence and pres-
ence of NaHS (100 lM) (*P < 0.05 ver-

sus control). (E) A concentration response

curve of NaHS-induced inhibition on IKir
(*P < 0.05; **P < 0.01; n = 6).
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A

B

C D

Fig. 4 Effect of ion channel modulators on

cell proliferation and apoptosis of human

atrial fibroblasts. (A) Cell proliferation was

assessed by BrdU assay in cells treated
with Paxilline (0.3–3 lM), 4-AP (0.3–
1 mM), Ba2+ (0.3–1 mM) or NaHS (100–
500 lM) (*P < 0.05; **P < 0.01 versus
basal levels; n = 10). (B) NaHS (1–
300 lM) exerts no significant cellular

apoptosis effect on cultured human atrial

fibroblasts. (C) NaHS reverses fibroblast
proliferation induced by Naringenin (Nari;

BKCa opener, #P < 0.05 versus Nari

alone). (D) NaHS suppresses cellular pro-

liferation induced by NS5806 (Ito opener,
*P < 0.05 versus basal levels; ##P < 0.01

versus NS5806 alone; n = 10).

A

C D E

B

Fig. 5 Effect of NaHS on KATP channels. (A) Superimposed KATP current traces recorded in the absence and presence of NaHS (100 lM), pinacidil

(30 lM) and glibenclamide (100 lM) (n = 6 in each group). (B) Graph representation of mean values of KATP current in the absence and presence

of NaHS (100 lM), pinacidil (30 lM) and glibenclamide (100 lM) (*P < 0.05; **P < 0.01 versus basal levels). (C) RT-PCR micrographs showing
effect of 100 lM NaHS on Kir6.2 expression in atrial fibroblasts. Summary data displaying effect of NaHS on Kir6.2 expression. (**P < 0.01 versus

basal levels; n = 4). (D and E) Cell proliferation was assessed in cells treated with glibenclamide (1–100 lM), pinacidil (1–100 lM) in the absence

and presence of NaHS (100 lM). (*P < 0.05; **P < 0.01 versus basal levels; n = 4).
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the holding potential of �40 mV, voltage ramps were applied every
9 sec. from �120 mV to +60 mV at 20 mV/sec. and subsequently
ramps to �40 mV at �100 mV/sec. Consistently, activation of the
KATP channel by 30 lM pinacidil (specific channel enhancer) or its
inhibition by 100 lM glibenclamide (specific channel inhibitor) did
not significantly affect cellular proliferation despite the observed dras-
tic modulation of current density (Fig. 5D and E). Down-regulation of
fibroblast growth was observed only in the additional presence of
NaHS with glibenclamide (19.9 � 2.9% reduction versus control;
P < 0.01; n = 4) or NaHS with pinacidil (22.5 � 4.2% reduction ver-
sus control; P < 0.05; n = 4), suggesting that H2S inhibition of prolif-
eration was independent of its modulating role of KATP channel in
atrial fibroblasts.

Gene expression showed that H2S reduced the mRNA level of
KCa1.1 (responsible for BKCa), Kv4.3 (responsible for Ito), Kir2.1
(responsible for IKir) in TGF-b1–stimulated fibroblasts by 42.3 �
5.1% (P < 0.05; n = 4), 76.9 � 3.5% (P < 0.01; n = 4), 90.8 � 4.7%
(P < 0.01; n = 4), respectively, at 12 hrs after addition of NaHS
(Fig. 6A–D). Furthermore, pre-treatment with NaHS decreased mRNA
level of Kv4.3 by 21.6 � 2.2% (n = 4; P < 0.05 versus basal levels),
but not that of KCa1.1 and Kir2.1. Furthermore, NaHS enhanced

production of endogenous H2S by enhancing cystathionine c–lyase
(CSE) mRNA levels and maintaining its expression even in the pres-
ence of D,L-propargylgylcine (PPG), a potent inhibitor of CSE (Fig. 6E
and F). These results indicated that H2S inhibited fibroblast prolifera-
tion by regulating Kv4.3 mRNA expression and inhibiting Ito current,
possibly via an autocrine feedback mechanism.

H2S inhibits TGF-b1–induced differentiation of
atrial fibroblasts to myofibroblasts

Transforming growth factor-b1 and Angiotensin II (Ang II) as the
major mediators of fibroblast proliferation and their differentiation
towards myofibroblasts in atrial fibrosis [20, 21] were consistently
shown to promote proliferation of atrial fibroblasts in our study
(Fig. 7A). Additional presence of NaHS decreased TGF-b1– (1 ng/ml),
Ang II- (100 nM) and 20% FBS-induced fibroblast proliferation by
50.1 � 4.3% (P < 0.01; n = 10), 42.1 � 5.7% (P < 0.01; n = 10)
and 21.2 � 3.4% (P < 0.05; n = 10), respectively, which suggested
H2S as a potent inhibitor of cytokine-mediated fibroblast proliferation.
Furthermore, NaHS (100 lM) decreased TGF-b1-(1 ng/ml)–induced
fibroblast transformation into myofibroblasts whereby mRNA expres-
sion of a-SMA, a hallmark of fibroblast differentiation, was signifi-
cantly down-regulated (34.1 � 7.1% reduction versus TGF-b1 alone;
P < 0.05) (Fig. 7B), which was confirmed by reduced immunocyto-
chemical a-SMA staining (percentage of a-SMA–positive cells,
47 � 6% versus 90 � 7%; P < 0.01; n = 4) (Fig. 7C and D). Never-
theless, no significant change in a-SMA–containing stress fibres was
observed after NaHS treatment alone (percentage of a-SMA–positive
cells, 33 � 4%; n = 4) as compared with standard cultured atrial fi-
broblasts (32 � 7%; n = 4) in 10% FBS.

Discussion

Multiple potassium channels are known to express in cardiac ventric-
ular fibroblasts [15] and inhibition of BKCa current resulted in sup-
pression of fibroblast proliferation [18]. Transient outward K+ current,
Ito, is present in neonatal rat cardiac fibroblasts (encoded by Kv1.4)
[22] and human ventricular fibroblasts (encoded by Kv4.3) [15]. Sim-
ilarly, Ba2+-sensitive inward rectifier K+ current (encoded by Kir2.1/
Kir2.3) is present in human ventricular fibroblasts [15] and rat ven-
tricular fibroblasts [23] whereby its modulation may have major sig-
nificance in cardiac fibrosis. However, their roles in atrial fibroblasts
which are more actively participating in cardiac fibrosis [24], are rela-
tively not well understood.

We demonstrated that H2S dose-dependently inhibited BKCa, Ito
and IKir in human atrial fibroblasts within minutes, suggesting an
acute modulation of H2S on such channels. The inhibitory effect of
H2S on BKCa, Ito and IKir was observed at 25–400 lM. The physiologi-
cal levels of plasma H2S have been reported to be 50–160 lM in
human brain [25] and 50–100 lM in human serum [26]. As NaHS
dissolved in saline, one-third of the H2S exists as an undissociated
gas, and the remaining two-third as the HS� anion [27]. Therefore,

A B

C D

E

F

Fig. 6 Effect of NaHS on ion channel and CSE expression. (A) RT-PCR
micrographs of Kca1.1 (BKCa), Kv4.3 (Ito) and Kir2.1(Ikir) expression in
response to NaHS and transforming growth factor-b1 (TGF-b1). (B–D)
Relative OD of PCR products. Each OD value is standardized to that of

b-actin (*P < 0.05; **P < 0.01 versus basal levels; #P < 0.05;
##P < 0.01 versus TGF-b1 alone; n = 4). (E) RT-PCR micrograph show-
ing the expression of CSE in response to PPG (3 mM) and NaHS

(100 lM). (F) Summary data displaying effect of NaHS on CSE expres-

sion in the absence and presence of 3 mM PPG (**P < 0.01 versus
basal levels; ##P < 0.05 versus PPG alone; n = 5).
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the physiologically relevant concentration of H2S (25–400 lM) used
in this study, which effectively blocked BKCa, Ito and IKir in vitro, is
likely to be attainable in vivo.

We found that NaHS attenuated naringenin-induced BKCa activa-
tion and decelerated the transition from closed to open state of the
channel, suggesting a role for H2S in regulating BKCa channel kinetic
and voltage sensitivity. However, NaHS had no effect on the half-max-
imum voltage activation, but shifted the steady-state inactivation
curve to the left, indicating that the voltage-dependent steady-state
inactivation kinetics of Ito channel were altered. Furthermore, NaHS
markedly shifted the recovery curve of Ito to the right, indicating that
H2S attenuated the recovery of Ito from inactivation. These results
indicated that H2S inhibited Ito through facilitation of steady-state
inactivation and attenuation of recovery from inactivation. In contrast
to reported presence of sodium current in ventricular fibroblasts
(61%) [15], we found relatively few cells (1%) with detectable sodium
current. This is consistent with previous reported presence of fast
sodium current only in atrial myofibroblasts, but not in undifferenti-
ated fibroblasts [28] like those used in our study.

BKCa channels (encoded by KCa1.1) have been demonstrated to
regulate proliferation of human cardiac ventricular fibroblasts [18]

and endothelial cells [29]. Furthermore, inhibition of IKir current sup-
pressed proliferation of endothelial cells [30]. Similarly, inhibition of
BKCa (by paxilline), Ito (by 4-AP) and IKir (by Ba2+) currents resulted
in a significant reduction in fibroblast proliferation in our study. Con-
sistently, suppression of the K+ currents by NaHS inhibited atrial
fibroblast proliferation in a dose-dependent manner. Furthermore,
suppression of proliferation by NaHS in the presence of naringenin
(channel opener of BKCa) or NS5806 (channel opener of Ito) sug-
gested an additive inhibitory effect of H2S on BKCa and Ito channels in
proliferation of atrial fibroblasts. Consistent with KATP channel–acti-
vating effect of H2S [11, 31], addition of NaHS recovered KATP chan-
nel activity from glibenclamide inhibition. Nevertheless, suppression
of cellular proliferation by NaHS in the presence of glibenclamide
(specific inhibitor of KATP) or pinacidil (specific enhancer of KATP)
indicated that KATP channel was unlikely to be involved in proliferation
of atrial fibroblasts. Consistently, H2S inhibition of lung fibroblast pro-
liferation has been reported to be independent of KATP channel [32].

Consistent with electrophysiological findings on the presence of
BKCa, Ito and IKir potassium currents, RT-PCR confirmed expression of
KCa1.1, Kv4.3 and Kir2.1 in atrial fibroblasts. Furthermore, H2S
decreased Kv4.3 expression and significantly moderated TGF-b1–medi-

A B

C D

Fig. 7 H2S donor inhibits cytokine-induced fibroblast proliferation and transforming growth factor-b1 (TGF-b1)–mediated myofibroblast transforma-

tion. (A) Proliferation of atrial fibroblasts in response to TGF-b1 (1 ng/ml), Ang II (100 nM) and 20% FBS in the absence and presence of NaHS
(100 lM) (*P < 0.05; **P < 0.01 versus basal levels; #P < 0.05; ##P < 0.01 versus TGF-b1, Ang II and 20% FBS alone; n = 10). (B) RT-PCR

micrograph showing the effect of TGF-b1 on a-smooth muscle actin (a-SMA) expression in atrial fibroblasts with and without 100 lM NaHS pre-

treatment. Summary data displaying NaHS inhibition of TGF-b1–induced a-SMA expression (*P < 0.05 versus basal levels; #P < 0.05 versus TGF-
b1 alone; n = 5). (C) Immunocytochemical staining of fibroblasts against a-SMA. Slides were counterstained with DAPI to visualize nuclei. Treat-

ment of fibroblasts with 1 ng/ml TGF-b1 for 48 hrs induced a significant increase in expression of a-SMA that was attenuated by pre-treating fibro-

blasts with 100 lM NaHS for 48 hrs. Immunocytochemical data representative of four experiments in cells isolated from separate patient samples

(n = 4). (D) Bar Graph representation of a-SMA–stained human fibroblasts. Cells were counted in 4 slides per group in 4 experiments (**P < 0.01
versus vehicle control; ##P < 0.01 versus TGF-b1 alone).
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ated enhanced expression of Kv4.3 as well as KCa1.1 and Kir2.1. Effect
of NaHS (exogenous donor of H2S) on expression of cystathionine c-
lyase (CSE) that produces endogenous H2S is controversial, with
reports of no effect in human airway smooth muscle cells [33] to inhib-
itory effect in mouse aortic smooth muscle cells [34]. However, in con-
cordance with other reports [27, 35], our results showed that NaHS
enhanced CSE expression and further sustained its expression in the
presence of DL-PPG[27] that strongly inhibited expression of CSE.

Myofibroblasts characterized by increased a-SMA expression
are abundant in cardiac fibrosis [36] that has been associated
with TGF-b-mediated [20] and Ang II-mediated [21] atrial fibrilla-
tion. Preventing myofibroblast differentiation from proliferating fi-
broblasts has been an attractive target in limiting cardiac fibrosis.
Inhibition of TGF-b1 function by anti–TGF-b1 antibodies reduced
myofibroblasts and lessened fibrosis [37]. Hydrogen sulphide was
found to inhibit TGF-b–induced transformation of MRC5 lung fi-
broblasts to myofibroblasts [32]. Consistently, our results showed
that NaHS effectively reduced proliferation of atrial fibroblasts in
response to TGF-b1, Ang II or FBS. Furthermore, NaHS amelio-
rated transformation towards myofibroblasts whereby a-SMA
expression and their stress fibres were significantly suppressed,
although causal role of potassium channels in such transformation
remained to be ascertained.

In summary, our study provides evidence of major K+ channels in
human atrial fibroblasts that share similar heterogenous expression
as in human ventricular fibroblasts [15]. Hydrogen sulphide inhibits
fibroblast proliferation probably through a combined modulation of
BKCa, Ito, IKir, but not KATP, channels. Although roles of MAPK and
ERK pathways in our atrial fibroblasts remain to be determined, they
were implicated in H2S-mediated suppression of proliferation of vas-
cular smooth muscle cells [38] and lung fibroblasts [32]. Both kinase
pathways were linked to cell cycle progression in lung fibroblasts
[39], which, in turn were reportedly regulated by BkCa in human
ventricular fibroblasts [18]. However, KATP was found to play no

significant role in ERK-inhibiting effect of H2S [32], which may explain
our observation in this study. Consistent with the observed beneficial
effects of H2S on cardiac fibrosis in vivo [12, 13], our results sug-
gested that such effects may be partly mediated via selective inhibi-
tion of K+ channels in atrial fibroblasts and suppression of their
transformation to myofibroblasts. Such regulating role of H2S in atrial
fibroblasts may have clinical value in targeting atrial fibrillation, which
invariably linked to atrial fibrosis.
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Figure S1 Immunocytochemical staining against anti-collagen I (top
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Figure S2 Immunocytochemical staining of Bkca (Kv1.1), Ito (Kv4.3)
and IKir (Kir2.1) channels in human atrial fibroblasts. Scale bar: 50
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