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Abstract: Nanoparticles (NPs) are usually treated as multifunctional agents combining several
therapeutical applications, like imaging and targeting delivery. However, clinical translation is still
largely hindered by several factors, and the rapidly formed protein corona on the surface of NPs
is one of them. The formation of protein corona is complicated and irreversible in the biological
environment, and protein corona will redefine the “biological identity” of NPs, which will alter the
following biological events and therapeutic efficacy. Current understanding of protein corona is still
limited and incomplete, and in many cases, protein corona has adverse impacts on nanomedicine, for
instance, losing targeting ability, activating the immune response, and rapid clearance. Due to the
considerable role of protein corona in NPs’ biological fate, harnessing protein corona to achieve some
therapeutic effects through various methods like biomimetic approaches is now treated as a promising
way to meet the current challenges in nanomedicine such as poor pharmacokinetic properties, off-
target effect, and immunogenicity. This review will first introduce the current understanding of
protein corona and summarize the investigation process and technologies. Second, the strategies
of harnessing protein corona with biomimetic approaches for nanomedicine design are reviewed.
Finally, we discuss the challenges and future outlooks of biomimetic approaches to tune protein
corona in nanomedicine.

Keywords: protein corona; nanomedicine; cell membrane; nanocorona; stealth effect;
endogenous protein

1. Introduction

With many excellent properties, nanoparticles (NPs) have been treated as promising
drug delivery systems for therapeutic purposes, like efficient and safe drug delivery with-
out off-target effects [1,2]. Even though much attention has been paid to the development of
NPs, there is still a huge gap between current NP therapy and efficient delivery systems [2].
One of the most critical factors that hinder the clinical translation of NP therapy is the
complicated and unpredictable interaction between NPs and biological fluids that occur
after the administration of NPs [3]. The substances in biological fluids, especially proteins,
will absorb on the surface of NPs and rapidly form an external layer called protein corona
through all kinds of nano-bio interactions and biochemical driving forces [4]. This layer
consists of many biomolecules, like albumin, complement protein, and apolipoprotein,
which will redefine the “biological identity” of NPs [5]. Not only will the physicochemical
properties of NPs change, including size, shape, and surface properties, but also their
biological fate and therapeutic effects, such as circulation time, biodistribution, stability,
immune system activation, cellular uptake, targeting effect, therapeutic efficacy, and toxic-
ity [6–8]. As Yi-Feng Wang et al. indicated, the protein corona will influence the cellular
transportation mechanism and intracellular distribution of NPs [9]. They suggested that
the interaction of cationic liposomes with cells would switch from energy-independent
membrane fusion to energy-dependent endocytosis under the presence of protein corona.
They also found that in serum-free conditions (without protein corona), the NPs are mainly
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distributed in the nucleus, different from the NPs with serum, which is mainly distributed
in lysosomes. Therefore, there is an urgent need to explore the rules and mechanisms of
protein corona formation and understand the influence of protein corona in NPs therapy,
which will provide guidance for the rational design of NPs and accelerate the clinical
translation speed of NP therapy.

The formation of protein corona is rapid, temporally dynamic, contextually dependent,
stochastic, and irreversible [2,10,11]. Current studies suggest that protein corona will be
established rapidly and then experience a dynamic process in the biological fluids, which
means that the composition will change over time [10,12]. In biological fluids, the proteins
with low affinity and high content will initially bind to the surface of NPs, and they will be
replaced by proteins with high affinity and low content as time goes by [13]. Similarly, the
protein corona will also experience a significant change during the process of intracellular
delivery. With several advanced analytical techniques, Chunying Chen’s team revealed
the dynamic evolution of the protein corona composition during cell transport for the
first time [14]. After entering the lysosomes and cytoplasm in the cell, there was a great
difference in NPs’ protein corona, considerably influencing cell glycolysis, cell energy
metabolism, and the cell lipid metabolism process. There are numerous factors influencing
the formation of the protein corona, and these factors can mainly be divided into two
categorized properties: NPs properties and biological environment properties [2,11,15–19],
which are listed in Figure 1. The source of the biological media (e.g., plasma) and protein
origins are also considered significant factors in protein corona formation. Around these
factors one of the primary factors is the proteome profile of the biological environment,
which is largely influenced by personal factors [20]. Hence, the concept of “personalized
protein corona” is widely accepted [19], which means that some personal factors, like
disease states, pregnancy, gender, and age, will also have a significant influence on protein
corona formation [21–23]. Since the role and impact of protein corona in NPs-based
therapy cannot be overlooked, exploring and understanding the influencing factors of
protein corona formation is a critical step in understanding the biological fate of NPs and a
prerequisite for the rational design of NPs-based therapy [24].

It is well known that the protein corona will redefine the “biological identity” of
NPs and significantly affect the NPs’ therapeutic effects [19]. However, the current un-
derstanding of the relationships between protein corona and the biological fates of NPs
is still fragmented and incomplete [2]. In many cases, protein corona is uncontrollable,
and it will result in adverse effects on NPs, for example, activating the immune system,
triggering complement activation, and opsonization, which will cause the quick removal
from the blood through the mononuclear phagocytic system (MPS) [25]. Jianbin Mo et al.
found that the protein corona around black phosphorus (BP) nanomaterials will induce
immunotoxicity and immune perturbation in macrophages and increase the uptake effi-
ciency of macrophages, largely influencing the circulation time and therapeutic effects of
BP therapy [26]. Another adverse influence of protein corona is the disability of targeting
ligands on the NPs’ surface. The functionalization of NPs’ surface for targeting ability is a
powerful and widely used method for improved therapeutic outcomes in NP therapy, but
the targeting ability may disappear when NPs enter the biological environment because
of protein corona [27,28]. Anna Salvati et al. showed that the transferrin-conjugated NPs
lost their targeting specificity when placed in biological fluids, because the protein corona
shields the transferrin on the NPs’ surface from binding to its receptors, resulting in the loss
of targeting ability [29]. Yazhen Wang and co-workers also revealed that the protein corona
under the cerebrospinal fluid would shield the targeting motif of transferrin-modified
NPs, cause the loss of active targeting specificity, and alter the interaction of NPs with
cells [30]. Besides influencing the therapeutical effect of NP therapy, the protein corona will
also be the mechanism of diseases in some cases. In the research of Zhenzhen Wang and
co-workers, they indicated that the specific composition in protein corona could mediate a
particular pathogenic process in a clinically relevant disease [31]. Specifically, they found
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that transforming growth factor β1 (TGF-β1) in the protein corona will subsequently induce
the development of lung fibrosis and exacerbate the occurrence of pulmonary fibrosis.
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Figure 1. The major factors that influence the formation of protein corona can be divided into two catego-
rized properties: NPs properties and biological environment properties. NPs properties mainly consist
of particle size, shape, surface properties, porous properties, surface charge, and mechanical properties.
Biological environment properties mainly consist of temperature, pH and ionic strength, exposure and
circulation time, shear flow stress, and pathological conditions [19]. Copyright 2022, Elsevier.

Even though many adverse influences of protein corona on NPs’ therapeutical effects
have been discovered and verified, the formation of protein corona is proven to be an
indispensable factor for some purposes in some cases [32]. Harnessing protein corona by
all kinds of methods becomes a promising way to improve the efficiency and expand the
applications of NPs therapy [33]. Recent studies have shown that the developed selective
organ targeting (SORT) NPs could achieve targeting delivery to non-liver tissues, and the
underlying mechanism was mainly the specific protein corona around the NPs [34,35].
The special components, called SORT molecules in these NPs, could determine which
proteins will avidly adsorb to the NPs’ surface. In other words, the SORT molecules will
endow the NPs with different protein corona and subsequently manipulate the following
biodistribution. Avoiding the formation or controlling protein corona composition also
shows the potential to increase the circulation time of NPs and avoid non-specific cellular
uptake. Poly (ethylene glycol) (PEG) has been widely used to suppress the formation
of protein corona for lower cellular uptake of NPs, and a recent study showed that the
effects of PEG not only result from the reduced protein corona formation but also from
the change of protein corona composition around NPs, which is essential to increase
blood circulation time [32]. The protein corona of the NPs modified with PEG comprises
a large number of clusterin proteins, which may be the major reason for the reduced
macrophage uptake. The protein corona can also confer the targeting ability of NPs when
certain proteins that have a high affinity to specific receptors can be recruited in protein
corona, which might be a potential strategy to overcome the shortcomings of the current
targeting delivery approaches. This mechanism is one of the factors that contribute to
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the success of Onpattro (patisiran), which is the first ever lipid nanoparticle-based short
interfering RNA drug for the treatment of hereditary amyloidogenic transthyretin (ATTRv)
amyloidosis [36–38]. These NPs formulations show remarkable affinity to the liver and high
hepatocyte accumulation, resulting from a large number of apolipoprotein E (ApoE) being
adsorbed into the protein corona. The ApoE in the protein corona can act as natural and
effective targeting ligands, which result in the uptake of NPs by endocytosis through ApoE-
dependent low-density lipoprotein receptors (LDLR) on the surface of hepatocytes [39].
Another example of controlling protein corona composition for targeting ability is the NPs
system modified with transferrin (Tf)-binding peptide, which was rationally designed
from several computational methods [40]. This peptide can effectively bind the Tf in the
serum and endow the NPs with Tf-abundant protein corona without altering the original
Tf biological function. The effect of protein corona modulation by this Tf-binding peptide
would confer the brain-targeting ability to NPs system, and this approach was widely used
in some following research [41–43].

As a novel and potential method, biomimetic nanotechnology has shown its power
and promise in drug delivery systems because it has the potential to overcome the obstacles
associated with current nanomedicine. Current NPs are mainly synthetic and usually
impeded by various physiological barriers and unexpected biological effects because of
their exogenous nature [44–46]. Natural substances used in biomimetic nanotechnologies,
such as viruses and cells, have evolved for some biological effects, which can be utilized in
nanomedicine to overcome the disadvantages of synthetic NPs. The biomimetic approach
is versatile with unlimited potential, and many strategies have been developed with the
biomimetic approach in nanomedicine [7,47–49]. The biomimetic approach aims to mimic
natural biological mechanisms and transfer specific natural functionalities to synthetic
nanoparticles to achieve therapeutic outcomes or avoid the adverse effects of current
synthetic nanomedicine [49]. For example, the NPs decorated with cell membranes from
different kinds of cells like erythrocytes (red blood cell [RBC]) can superiorly reduce
undesired immune responses, evade elimination by macrophages, and bypass systemic
clearance [50]. These NPs with RBC cell membranes show long circulation time and
gorgeous therapeutic efficacy [51]. In the case of viruses and bacteria, they have evolved to
evade the host immune system and enter a target cell, which is also an ideal approach for
certain biodistributions or targeting abilities [7]. The biomimetic approach refers to a wide
range, including cell membrane decoration [51], virus-like particles (VLPs) [52], exosome
vectors [53], endogenous protein coating [54], and natural ligands modification [55], and
there are more and more biomimetic strategies under research [44,45,49].

Taking the potential of biomimetic approaches and the non-negligible effects of pro-
tein corona in NP therapy into consideration, precisely controlling protein corona with
biomimetic approaches is a promising method to achieve some therapeutic purposes, like
avoiding the non-specific cellular uptake by macrophages and targeted delivery [56]. This
review will mainly focus on the current development of biomimetic approaches used in
NP therapy for controlling protein corona around the NPs. The general research processes
and investigation technologies for protein corona will be discussed first, and we will next
introduce the biomimetic approach for controlling protein corona. The strategy of the
biomimetic approach discussed in this review is divided into three parts, including cell
membrane decoration, endogenous protein coating, and biomolecule modification. Finally,
we will discuss the limitations of current biomimetic approaches for controlling protein
corona formation and ponders the challenges ahead in this field.

2. Investigation of the Protein Corona

The general research process utilized in the investigation of protein corona is shown
in Figure 2 [57]. This process can be generally divided into four steps, mixing or adminis-
tration, incubation, isolation, and characterization, and each step has unique and stringent
requirements. To simulate the real situations that NPs may encounter after administration
as closely as possible, the first step of protein corona investigation is choosing the appro-
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priate conditions to form protein corona, including incubation with suitable conditions
or administration in animal models or patients. This step might be the most crucial part
of the protein corona investigation because it determines the concrete situation of protein
corona that will be analyzed in the following steps. This step should consider numerous
factors, including but not limited to types of biological fluids, species, intended appli-
cation, administration route, disease, gender, and incubation temperate [2,57,58]. After
obtaining protein corona in relatively correct conditions, the following steps of protein
corona investigation involve the isolation, purification, and characterization of the protein
corona. The isolation and purification are also critical steps in the protein corona investi-
gation. There are also some critical requirements, such as preserving the original protein
corona composition during isolation and separating the NP–protein corona complex from
endogenous biomacromolecules like lipoproteins and extracellular vesicles [59–61]. The iso-
lation and purification techniques used to isolate the NP–protein corona complex from the
surrounding matrices include centrifugation, magnetism, and chromatographic methods.
Specifically, the most widely used isolation and purification methods consist of centrifuga-
tion, size exclusion chromatography, asymmetric flow-field-flow fractionation, magnetism
separation, and cross-linking, which have their own advantages and disadvantages [57,60].
Many factors should be considered when choosing the isolation methods, like the kinds
and physicochemical parameters of NPs, the surrounding matrix, possible unintended
interactions, and the desired fate of the protein corona [60]. The final step of protein corona
investigation is to characterize obtained protein corona with several analytical technologies,
like sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid
chromatography-tandem mass spectrometry (LC-MS/MS) [62].
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Figure 2. The general research process of the investigation of the protein corona. This process can be
divided into four steps, mixing or administration, incubation, isolation, and characterization, and
each step has special and important requirements [57]. Copyright 2020, American Chemical Society.

As discussed above, there is still a lack of understanding of several fundamental
principles of the behavior of NPs in vivo and their long-term biological effects. One of the
crucial reasons is the scarcity of high sensitivity, high resolution in situ analysis methods to
investigate the protein corona through time, and the development of advanced methodol-
ogy has become a bottleneck in the field of NPs and protein corona. Many analytical and
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biophysical techniques have been developed to investigate protein corona. The scope of
these technologies is primarily made up of four parts, including morphology and thickness;
identification and quantification; arrangement and conformation; affinity and formation
kinetics, which have been discussed in detail in the previous review [3] (Figure 3). The
combination of the techniques will be the future direction in this field. One example is the
method developed by Chunying Chen’s team [63]. To elucidate the role of NP–protein
interactions and the subsequent biological fates of NPs, they proposed a trinity research
strategy of in situ characterization, metabolic analysis, proteomics, and molecular simula-
tion to reveal the biodistribution, degradation, metabolism, and biochemical transformation
of NPs in vivo through the integration of a variety of advanced analysis techniques and
computational methods. Through this advanced method, they elucidate that the biodis-
tribution of NPs after intravenous injection is mainly mediated by the protein corona. To
be specific, they revealed that the apolipoproteins (e.g., ApoE, ApoJ) in the protein corona
mainly mediated the enrichment of NPs in Kupffer cells from the liver and red myeloid
macrophages from the spleen, which is similar to the mechanism of the example discussed
above [35,36]. Despite much research focusing on the formation mechanisms of the protein
corona, the influence factors of the protein corona, and related research techniques, there
is still a long way to fully understand protein corona and its biological effects with vigor-
ous and accurate methodological approaches and technologies [64]. The development of
protein corona characterization techniques will make a difference in the reproducibility
and transparency of NP therapy, minimize misinterpretations to the maximum extent, and
therefore accelerate the clinical translation speed of NP therapy [64].
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3. Biomimetic Approach to Harness Protein Corona

In order to rationally design NP therapies with good safety, biocompatibility, favorable
biodistribution, and high efficacy, it is necessary to precisely consider the interaction
between NPs and biological fluids and the formation of protein corona [65]. Harnessing
protein corona for particular therapeutic purposes is now treated as a promising strategy
in nanomedicine because an ideal protein corona can have positive effects like targeting
ability [33]. The biomimetic approach is now widely used in nanomedicine, especially in
NPs, also called bio-inspired NPs. The bionic components in bio-inspired NPs will largely
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alter the properties and identity of original NPs, resulting in an entirely different protein
corona and thus mediating the biological fates and therapeutic outcomes of NPs [44]. The
details of recent studies involving the biomimetic approach in nanomedicine to harness
protein corona are presented in Table 1. This section will discuss the current development
of bio-inspired NPs with good efficacy by controlling the protein corona, mainly divided
into cell membrane decoration, endogenous protein coating, and biomolecule modification.

Table 1. Summary of recent studies of biomimetic approaches in nanomedicine to harness pro-
tein corona.

Type Biomimetic Approach NPs Mechanism of the
Protein Corona Control Biological Effects Ref.

RBC membrane
decoration Fe3O4@RBC NPs Prevention of protein

corona formation

Prolonged circulation
time; CD47/SIRP-α
signaling pathway

[66]

RBC membrane
decoration RBC-IMNs Prevention of protein

corona formation
Enhanced CTC targeting

ability [67]

RBC membrane
decoration CuxO@EM-K Prevention of protein

corona formation

Prolonged circulation
time; Retaining

Aβ-targeting ability
[68]

RBC membrane
decoration PDA/BSA/CaCO3

Prevention of protein
corona formation Prolonged circulation time [69]

RBC membrane
decoration RBC@MMSNs Prevention of protein

corona formation Prolonged circulation time [70]

RBC membrane
decoration RBC-ENPs Prevention of protein

corona formation

Prolonged circulation
time; Excellent diffusion

ability
[50]

RBC membrane
decoration FA-RBC-UCNPs Prevention of protein

corona formation Retain targeting ability [71]

RBC membrane
decoration

HA&RBCm-
LCNPs

Prevention of protein
corona formation

Prolonged circulation
time; Enhanced specificity

to A549 cells
[72]

WBC membrane
decoration Leukosomes

Prevention of protein
corona formation;

Promotion of specific
proteins adsorption

Prolonged circulation time [73]

WBC membrane
decoration NA-Leuko Prevention of protein

corona formation

Prolonged circulation
time; Inflamed vasculature

Targeting
[74]

Platelet membrane
decoration

Platelet membrane-
cloaked

nanoparticles

Prevention of protein
corona formation

Prolonged circulation
time; Enhanced binding to

platelet-adhering
pathogens

[75]

Exosomes-based
decoration

Hybrid c(RGDm7)-
LS-GE/DOX

Prevention of protein
corona formation

Prolonged circulation
time; CD47/SIRP-α
signaling pathway

[76]

C
el

lm
em

br
an

e
de

co
ra

ti
on

Exosomes-based
decoration DTX@Ang-EM Prevention of protein

corona formation Prolonged circulation time [77]

An artificial corona made
of human plasma coating liposomes Prevention of protein

corona formation

Prolonged circulation
time; Reduced capture by

circulating leukocytes
[78]

Recombinant fusion
protein coating PCSNs Prevention of protein

corona formation

Prolonged circulation
time; Retaining targeting

specificity
[54]

cRGD modified BSA
coating TsR NPs Prevention of protein

corona formation
Enhanced targeting ability

to cancer [79]

ApoE coating Graphene
Maintaining a protein

corona rich in
dysopsonins

Prolonged circulation
time; Enhanced

enrichment in tumor
tissue

[80]
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Table 1. Cont.

Type Biomimetic Approach NPs Mechanism of the
Protein Corona Control Biological Effects Ref.

HSA coating DRI-S@HSA Prevention of protein
corona formation

Prolonged circulation
time; Specific tumor

targeting; Deep tumor
penetration

[81]

Surface-bound factor H or
SA coating

Graphene-based
nanomaterials

Prevention of protein
corona formation Stealth effect [82]

SA coating NR@SA, GTA Prevention of protein
corona formation

Reduction of macrophage
phagocytosis; Increasing

the interaction with tumor
cells

[83]

Clusterin coating PS-NPs, HES-NCs Reducing the IgG
absorption

Reduction of the cellar
uptake [84]

γ-globulins coating Silica NPs
Promoting a protein
corona enriched with

opsonins

Impeding the opsonins to
their target receptors [85]

Folic acid-modified BSA
coating

AuNR@EGFP–
BSAFA,

AuNR@RNaseA–
BSAFA

Prevention of protein
corona formation Prolonged circulation time [86]

hydrophobin HFBII Polystyrene NPs Prevention of protein
corona formation Reduced aggregation [87]

En
do

ge
no

us
pr

ot
ei

n
co

at
in

g

HSA coating HSA-PIMBs Prevention of protein
corona formation

Excellent enrichment of
CTC [88]

B
io
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ec
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es
m

od
ifi

ca
ti

on

Short nontoxic peptide
(SP) modification SP-sLip

Maintaining a protein
corona rich in

apolipoproteins A1, E, and J
Brain-targeted delivery [55]

Peptidomimetic D8
modification Liposomes Attenuating the natural

IgM absorption
Improved immune

compatibility [89]

Hyaluronic acid
modification HA-CS NPs Prevention of protein

corona formation Reduced immunogenicity [90]

Retinol modification RcP NPs
Recruiting the retinol

binding protein 4 (RBP) in
protein corona

Target delivery to hepatic
stellate cells (HSC) [91]

Aβ-CN peptide
modification PTX/Aβ-CN-PMs

Forming the
ApoE-enriched protein

corona
Brain-targeted delivery [92]

Phosphorylcholine
modification IONPs Prevention of protein

corona formation Stealth effect [93]

Dihydroartemisinin
modification DHA-NPs

Forming the
ApoE-enriched protein

corona

Facilitating the tumor
accumulation [94]

Trivalent cholesterol
modification Chol3-Td

Forming the
lipoprotein-associated

protein corona
Liver target delivery [95]

Brushed
phosphorylcholine

modification

bPC-grafted
IONPs

Prevention of protein
corona formation Stealth effect [96]

Starch modification SCS NPs Prevention of protein
corona formation

Prolonged circulation
time; [97]

Lipid modification GM3-AVN Prevention of protein
corona formation

Prolonged circulation
time; Retaining targeting

specificity
[98]

3.1. Cell Membrane Decoration

Cell membrane decoration is one of the most powerful and widely used methods in the
biomimetic approach. This decoration can endow NPs with many gorgeous properties by
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mimicking the natural functionality of various cell types, such as long circulation time and
reduced undesired immune responses [99,100]. According to the therapeutic requirements,
a variety of cell types have been considered for cell membrane decoration, including but
not limited to red blood cells (RBC), white blood cells (WBC), platelets, cancer cells, stem
cells, bacterium, and other unconventional cell sources [101]. Herein, we will summarize
the decorating approaches via RBC membrane, WBC membrane, platelets, and exosomes
since the decoration of these membrane types is more likely to function by controlling and
harnessing protein corona.

3.1.1. Red Blood Cell (RBC) Membrane Decoration

Red blood cell (RBC) membrane decoration is a popular and important method in
bio-inspired NPs, and the RBC membrane is usually treated as a natural long-circulation
delivery vehicle [102]. These biomimetic decorations have been shown to endow NPs
with longer circulation time and less uptake rate into MPS organs without unexpected
toxicity and accelerated clearance rate [103]. The ability of the RBC membrane is owed to
the abundant crucial self-markers, including CD47 proteins, CD59 proteins, peptides, and
glycans, whose original functions are protecting RBC from being cleared by the immune
system and giving the RBC a long circulation time [99].

Red blood cell (RBC) membrane decoration is a popular and important composition
in bio-inspired NPs, and RBC membranes are usually treated as natural long-circulation
delivery vehicles [102]. These biomimetic decorations have been shown to endow NPs with
longer circulation time and less uptake rate into MPS organs without unexpected toxicity
and accelerated clearance rate [103]. The ability of RBC membranes is owed to abundant
crucial self-markers, including CD47 proteins, CD59 proteins, peptides, and glycans, whose
original function is to protect RBC from being cleared by the immune system and give the
RBC a long circulation time [99].

Yunqiu Miao et al., developed a novel NPs system whose surface was decorated with
natural RBC membranes [50]. This RBC-mimic system was constructed based on RBC
membranes and poly (ethylene glycol) diacrylate (PEGDA) hydrogel nanoparticles, and due
to the RBC membrane, this system exhibited many gorgeous properties, including evading
the immune system efficiently, penetrating narrow tissue extracellular space of tumors and
accumulating in diseased tissues (Figure 4A). The protein corona of this system in vivo was
investigated with liquid chromatography-tandem mass spectrometry (LC-MS/MS), and
the results showed that this RBC-mimic system has the lowest immunoglobulin adsorption
in protein corona, which may be the primary reason for less immunogenicity, reduced
opsonization in macrophages and ultralong circulation time. Through in vivo tumor
penetration and an in vivo anti-tumor efficacy test, the efficacy of this RBC-mimic system
was certified.

Mengmeng Ma et al. also designed an intriguing bio-inspired NPs system with RBC
membrane decoration, which is used for clearance of peripheral Aβ associated with AD [68].
Recent research shows that the clearance of peripheral Aβ may be a promising way to
overcome the BBB obstacle for halting the progression of AD, but the effect is largely
influenced by the formation of protein corona and the activation of immune responses.
Therefore, they tried to introduce the RBC membrane to overcome the problems that came
from protein corona. The RBC membrane in this system plays a considerably significant
role: on the one hand, this decoration can prevent the formation of the protein corona,
which is necessary for the maintenance of Aβ-targeting capability to clear the Aβ associated
with AD; on the other hand, this decoration can minimize immunogenicity by the resistance
of protein corona formation, which is crucial for the effective absorbing Aβ (Figure 4B).
Through in vivo study, this system was proven to not only reduce the Aβ burden in the
blood and brain but also reverse learning and memory impairments.
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Figure 4. RBC membrane decoration to harness protein corona. (A) The RBC-mimic system
(RBC-ENPs) was constructed based on the RBC membrane and poly (ethylene glycol) diacrylate
(PEGDA) NPs. The RBC cell membrane decoration endowed this system with the ability of immune
escape by controlling the composition of the protein corona and deformation for better tumor penetra-
tion [50]. Copyright 2022, American Chemical Society. (B) A biomimetic system with RBC membrane
decoration (CuxO@EM-K). The RBC membrane would impede the formation of the protein corona
and minimize immunogenicity, facilitating the ability to adsorb Aβ efficiently for a much longer
time [68]. Copyright 2020, American Chemical Society. (C) The preparation and mechanism of
RBC-IMNs system for enhanced isolation of CTCs. (a) The RBC membrane was decorated onto the
IMSs before antibody modification; (b) The IMNs without the RBC decoration will absorb proteins
in biological fluids, and the protein corona will largely influence the isolation efficiency and cause
the off-target effect; (c) The IMNs with RBC membrane decoration will reduce the formation of the
protein corona, and therefore maintain the targeting ability of IMNs for CTCs isolation in biological
fluids [67]. Copyright 2019, American Chemical Society. (D) The RBC membrane decoration is an
ideal superior alternative to PEG for prolonged circulation time and escapes from clearance by the
immune system [66]. Copyright 2015 Wiley-VCH.

Another NPs system with RBC membrane decoration to harness protein corona was
fabricated by Qian-Fang Meng and co-workers [67]. The RBC decorated NPs system was
immunomagnetic micro/nanoparticles (IMNs), which have been frequently used to enrich
the rare circulating tumor cells (CTCs) from clinical blood samples for early diagnosis of
cancers and post-therapy evaluation. The greatest challenge the IMNs face in isolating
CTCs is the formation of protein corona in biological fluids because protein corona largely
hinders the interaction between IMNs and CTCs and decreases the targeting ability of
IMNs. Therefore, in this study, they tried to prevent the formation of protein corona and
preserve the targeting ability of IMNs by the RBC membrane decoration (Figure 4C). By
analyzing the protein corona formation in IMNs and RBC-IMNs along with CTC-isolation
performance between commercial Dynabeads and RBC-IMNs, they demonstrated that the
RBC-IMNs would not form protein corona and maintain targeting ability in the biological
environment, showing their excellent potential in clinical translation and application.

The study of Lang Rao et al. demonstrated that the RBC membrane decoration is
an ideal superior alternative to PEG [66]. The RBC membrane will not only prevent the
formation of protein corona around the NPs as PEG but also help NPs to escape immune
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clearance and improve the circulation time through the signal regulatory protein-alpha
(SIRP-α) of the CD47, the “do not eat me” marker on the RBC surface (Figure 4D). Compared
with PEG decoration, the system with RBC membrane decoration shows a longer circulation
time with pharmacokinetic studies in vivo. The in vivo toxicity of this NP system with
RBC membrane decoration was studied by blood biochemistry, hematology testing, and
histology analysis, showing the gorgeous potential of this NP system.

3.1.2. White Blood Cell (WBC) Membrane Decoration

The white blood cell (WBC) membrane is another cell membrane showing excellent
potential in bio-inspired NPs. [104] Numerous advantages of the RBC membrane have been
discussed above. Nevertheless, it lacks the targeting property, indicating the need for conju-
gating ligands if targeting ability is crucial and needed in precision medicine [99]. The WBC
shows inherent homing properties to inflammation or other diseased regions, which can
cover the deficiency of RBC in bio-inspired NPs [101]. According to the granularity and mor-
phology, WBC can be divided into five major types: neutrophils, monocytes/macrophages,
eosinophils, basophils, and lymphocytes [99]. The inherent homing property of WBC has
been taken advantage of in bio-inspired NPs, for example, macrophages (RAW 264.7) and
their tumor/inflammation homing ability [105]. Apart from a homing property, WBC
membranes also show the ability to control protein corona for intriguing therapeutic effects.
Claudia Corbo et al., fabricated biomimetic liposomes with WBC membranes called leuko-
somes, and this system showed a gorgeous ability to target inflamed endothelium and
avoid clearance by the immune system [73]. This system showed longer circulation time
and improved accumulation in inflamed tissues in vitro and in vivo compared with the
control group. Through a time-dependent quantitative and qualitative analysis of protein
corona around this bio-inspired NP system, the mechanism of this system was revealed.
The WBC membranes would affect the composition and amounts of protein corona, not
only hindering the nonspecific interactions through the masking effect but also facilitating
the adsorption of specific proteins and endowing the NPs with targeting ability (Figure 5A).
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Figure 5. WBC and platelet membrane decoration to harness protein corona. (A) Based on the WBC
membranes’ decoration, the biomimetic liposomes called leukosomes showed reduced nonspecific
interactions and more adsorption of specific proteins over others, resulting in the ability to target
inflamed endothelium and avoid clearance by macrophages [73]. Copyright 2017, American Chemical
Society. (B) Poly(lactic-co-glycolic acid) (PLGA) NPs were decorated with the platelet membrane,
showing reduced cellular uptake by macrophage cells and better therapeutic effects [75]. Copyright
2015, Springer Nature.

3.1.3. Platelet Membrane Decoration

Platelet originated from megakaryocyte progenitor cells and is also a widely explored
cell type for cell membrane decoration [100]. Similar to RBC, many self-markers exist in the
platelet membrane, which indicates that the platelet membranes can also be used to evade
complement-mediated immune activation for a long circulation time [99]. It is certified that
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the platelet can quickly respond to vascular damage, have tumor-targeting capabilities [106],
prolong blood circulation, and reduce hepatic uptake, making the platelet membrane an
intriguing biomimetic approach in NP therapy [107]. It is well known that the primary
function of platelet is hemostasis by inducing platelet aggregation with the presence of
Gp (glycoprotein) IIb/IIIa receptors, which makes it easy to coat the platelet membrane
onto all kinds of NPs and therefore achieve some therapeutic effects [99,108]. Che-Ming
J. Hu et al., fabricated a novel NP system decorated with a platelet membrane, showing
platelet-mimicking properties like enhanced binding to platelet-adhering pathogens [75].
The authors found that compared with non-decorated NPs, this decoration reduced cellular
uptake by macrophage cells and did not induce complement-mediated immune activa-
tion, which might contribute to the influence on protein corona formation (Figure 5B).
By experimental rat model of coronary restenosis and systemic bacterial infection, this
platelet-mimetic NP system with docetaxel and vancomycin was proven to have better
therapeutic efficacy.

3.1.4. Exosomes-Based Decoration

Recently, numerous studies have shown that exosomes hold promise as a new gen-
eration of biomimetic drug delivery systems due to their unique endogeneity and bioac-
tivity [53]. The exosomes contain many endogenous substances from all kinds of cells,
making them an ideal resource for developing bio-inspired NP systems [53,109]. Many
bio-inspired NP systems are decorated with exosomes for intriguing therapeutic effects
by controlling protein corona formation and composition. Zakia Belhadj et al., devel-
oped a combined “eat me/do not eat me” strategy with a bio-inspired NP system by
exosome-based decoration [76]. The CD47 was introduced into this NP system through
the decoration of CD47-expressing exosomes originating from human serum, which can
influence the formation of protein corona and show a strong ability to evade phagocytosis
by macrophages through the “do not eat me” signal of CD47 in the surface (Figure 6A).
Through the in vitro and in vivo tests, this system showed prolonged circulation time,
increased tumor accumulation, and enhanced therapeutic efficacy with fewer negative
influences on liver or spleen function. Another bio-inspired NP system used to harness
protein corona by exosome-based decoration was developed by Jun-Yong Wu et al. [77].
In their research, multifunctional exosome-mimetics (EM) were developed and decorated
with angiopep-2 (Ang) for enhancing glioblastoma (GBM) drug delivery by controlling
protein corona (Figure 6B). The exosome-based decoration makes the surface of this NP
system with lots of chimeric proteins, which could decrease the formation of the protein
corona, escape the phagocytosis by macrophages and retain its natural properties. This
system showed enhanced GBM targeting ability and excellent therapeutic effect because of
the combination of exosome-based decoration and Ang modification.

3.2. Endogenous Protein Coating

Besides cell membrane decoration, endogenous protein coating is another powerful
approach in bio-inspired NP therapy. Since the surface properties of NPs are one of the
major factors that determine the constitution of protein corona and the most abundant
component of protein corona is protein, the endogenous protein coating has also been
extensively studied to control the formation of functional protein corona because the pre-
coated endogenous protein can act as a biomimetic component on the surface of NPs for
some special therapeutic effects by affecting the protein corona [85]. Based on therapeutic
effects, the purpose of endogenous protein coating to harness protein corona can be mainly
divided into a stealth effect for prolonged circulation and lower immune activation and
targeting ability.
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and GBM targeting [77]. Copyright 2021, Springer Nature.

3.2.1. Endogenous Protein Coating for Stealth Effect

The strategy of endogenous protein coating is widely used for stealth effect, which
means regulating the NP-biological fluids interactions, preventing the NPs from clearance
by macrophages, and endowing the NPs with longer circulation time [78]. Jun Yong Oh
et al., presented an intriguing NP system with an endogenous protein coating strategy,
endowing this system with the stealth effect, which means maintaining the targeting ability
of the targeting ligands and prolonging the circulation time in blood by enabling escape
from MPS clearance [54]. In this NP system, the HER2-binding affibody worked as a
targeting ligand, and the biomimetic part, which consists of glutathione-S-transferase, was
pre-coated around this NP system for stealth effect (Figure 7A). The absorbed protein will
minimize the interaction between the NPs with biological fluids, prevent protein corona
formation, and prevent the internalization by macrophages. With confocal microscopy
imaging and cell viability analysis, the stealth effect of the recombinant fusion protein
in this system was proven, showing that this NP system was able to evade clearance by
macrophages, which is crucial for long circulation time and excellent therapeutic effects in
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nanomedicine. The targeting ability and therapeutic efficacy were also certified with cell
experiments and in vivo tumor model.

Another example of endogenous protein coating for the stealth effect by controlling
protein corona formation was shown by Domenik Prozeller et al. They used the stealth
protein clusterin (also called apolipoprotein J (ApoJ)) to coat the NPs, successfully pre-
venting the dominant IgG-adsorption and additionally reducing cellular internalization
(Figure 7B) [84]. The cell experiments showed that the pre-coating of clusterin resulted
in reduced unspecific cell uptake in vitro, which came from its ability to change the for-
mation and composition of the protein corona. Figure 7C presents the composition of
the protein corona in two different NP systems called (a) PS-NPs and (b) HES-NCs under
several conditions, including incubation with normal plasma, IgG-enriched plasma, or
IgG-enriched plasma after preincubation with clusterin. As shown in Figure 7C, compared
with the group of “IgG-enriched plasma,” there was a remarkable reduction in the amount
of immunoglobulins protein in the composition of the protein corona in the group of
“IgG-enriched plasma after preincubation with clusterin,” which might be the reason for
the stealth effect in this NP system.
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Figure 7. Endogenous protein coating for stealth effect. (A) The system with supramolecular
precoating shows the effect of protein corona shield by reducing the interaction between the NPs
and biological fluids and preventing the protein corona formation for retaining targeting ability [54].
Copyright 2018, Springer Nature. (B) The NP system with stealth protein clusterin pre-coated (bottom)
showed reduced cellular internalization despite being incubated in the artificially IgG-enriched citrate
plasma [84]. Copyright 2019 Wiley-VCH. (C) The composition of the protein corona in two different
NP systems called (a) PS-NPs and (b) HES-NCs under several conditions, including incubation with
normal plasma, IgG-enriched plasma, or IgG-enriched plasma after preincubation with clusterin.
This result was analyzed via LC-MS detected by a Pierce 660 nm protein assay [84]. Copyright
2019 Wiley-VCH. (D) The HSA precoating avoids the protein corona absorption and formation,
which is beneficial for improved anti-nonspecific absorption ability and enhanced CTC isolation
performance [88]. Copyright 2022, American Chemical Society.

Like RBC membrane decoration, the endogenous protein coating strategy can also
benefit the isolation of circulating tumor cell (CTC) enrichment and downstream analysis.
Albeit being treated as a promising CTC-isolation platform, the performance of immuno-
magnetic beads (IMBs) will be destroyed in the biological environment because protein
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corona may shield the targeting motif and reduce its effectiveness. Endogenous protein
coating for preventing protein corona formation is an intriguing method. By comparing
the four most abundant serum proteins, including human serum albumin (HSA), fibrino-
gen, immunoglobulin, and transferrin, Xiaoxi Zhou and co-workers found that the HSA
coating endows the IMBs with the highest specificity (CTC isolation performance), anti-
nonspecific absorption ability, anti-leukocyte absorption ability and excellent sensitivity
(Figure 7D) [88].

In addition to single endogenous protein coating, coating a complex of endogenous
protein can also be used to harness protein corona. Francesca Giulimondi et al. fabricated
a liposomes system pre-coated with an artificial corona made of human plasma proteins
(a complex of endogenous proteins). They found that the protein corona influenced by
the artificial corona in the biological environment will control the interaction between
liposomes with immune cells. Pre-coating was a novel strategy for escaping sequestration
by immune cells and endowing liposomes with prolonged circulation time in vivo [78].

3.2.2. Endogenous Protein Coating for Targeting Effect

Endogenous protein coating can also be used for targeting ability. For example,
transferrin (Tf) is treated as a targeting ligand for tumor, or brain targeting due to the
overexpress of the transferrin receptor (TfR) in cancer cells and the blood-brain barrier
(BBB) endothelial cells [110,111]. Previous studies have shown the adverse effects of protein
corona on targeting ligands in NP systems [28,29], and another study found that different
types of protein corona have different influences and effects on the targeting ability of NP
systems [112]. Therefore, by understanding the mechanism of the influences of protein
corona and precisely harnessing protein corona with several methods like endogenous
protein coating, it is promising to endow the NPs with gorgeous targeting ability.

Haiqiang Cao et al. developed a bio-inspired NP system called albumin biomimetic
nanocorona (DRI-S@HSA) [81]. Previous studies have certified the long circulation time of
albumin and the increased accumulation rate in tumors on account of the increased need
for albumin to obtain amino acids and energy [81]. Therefore, by exploiting the biomimetic
functions of serum albumin in this study, this bio-inspired NP system would possess pro-
longed blood circulation time, effective tumor-targeting capability, high accumulation rate,
and deep tumor penetration capability are crucial properties in cancer therapy (Figure 8A).
This system showed intriguing results in vivo: the biomimetic albumin coating brought
a 2.5 times improvement in tumor accumulation and considerably improved deep pene-
tration ability in tumors compared with the non-coating group. These bio-inspired NPs
significantly inhibited tumor growth and prevented lung metastasis of breast cancer.

Han Yang et al. showed another bio-inspired NP system pre-coated with cyclic RGDyK
peptide (cRGD) modified bovine serum albumin (BSA) for impeding the formation of the
protein corona, enhancing targeting ability to tumor cells, increasing delivery efficiency
of nucleic acid drugs and improving therapeutic effects [79]. By preventing the protein
corona formation, the pre-coating in this system played a dual role: enhancing the targeting
ability of cancer cells and reducing serum protein adsorption for a prolonged circulation
time (Figure 8B). Apart from the ability to harness protein corona and tumor targeting,
the bio-inspired pre-coating could also increase the stability of this NP system under the
lysosomal acid environment and reduce its cytotoxicity. The anti-cancer cell proliferation
and anti-tumor proliferation effects were studied in vitro and in vivo, proving that pre-
coating the functional biomimetic albumin is an excellent and promising strategy for better
drug delivery efficiency and therapeutic effects.
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Figure 8. Endogenous protein coating for targeting effect. (A) The design and schematic illustration
of the NP system (DRI-S@HSA) with endogenous protein albumin coating for long blood circulation
time and effective tumor-targeting capability [81]. Copyright 2017, Wiley-VCH. (B) A bio-inspired
NP system with cyclic RGDyK peptide (cRGD) modified bovine serum albumin (BSA) precoating
showed enhanced targeting ability to cancer cells and reduced serum proteins adsorption by reducing
the protein corona formation [79]. Copyright 2021, Elsevier.

Other endogenous proteins are used for harnessing protein corona, for example, the
ApoE protein. The role of ApoE in protein corona has been explored in the recent clinical
approved lipid nanoparticle-based short interfering RNA drug Onpattro, and there are also
other studies focusing on the role of ApoE coating. In the study of Xiang Lu et al., assisted
by the combination of experimental and computational methods, they found that ApoE
pre-coating on NP systems will change their pharmacokinetic characteristics and prolong
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the circulation time without increasing cytotoxicity, which could be mainly attributed to
their influence on the formation and composition of protein corona [80].

3.3. Biomolecules Modification

Despite being paid much attention to, the active targeting approach still suffers from
numerous obstructive factors, like the disability of the targeting effects. Few NPs with
active targeting developed to the clinical translation stage, which might be attributed to the
exogenous property or the rapid and complicated formation of protein corona [27,113]. In
some cases, the biological effects and functions of the introduced active targeting substances
in NP system will be impeded by protein corona, and the protein corona under the presence
of exogenous substances can even lead to the increased clearance of NPs by MPS because of
the activated immune system [54]. Apart from many inert (or unknown functions) plasma
proteins, many effective constituents can be utilized for several therapeutic effects, like
targeting delivery if NPs can recruit and retain specific proteins in the biological fluids [55].
Based on this, an elegant and promising alternative to traditional targeting methods is
modifying the formation or composition of protein corona by biomolecule modification
without affecting the functions of natural protein corona components. This strategy will
endow the NP system with selectivity and targeting ability from biological fluids, which
is another biomimetic approach to harness protein corona [40]. Compared with the tradi-
tional active targeting strategy, the biomolecule modification to harness protein corona has
numerous advantages, including but not limited to stability, less influence from protein
corona, low immune responses, and inflammatory reactions [43]. There are many kinds of
biomolecules used in this strategy, and in this section, we will mainly discuss biomimetic
peptide modification and other biomolecule modifications.

3.3.1. Biomimetic Peptides Modification

Biomimetic peptides, which means the peptides designed from natural protein in
some biological process for special therapeutic effects [114], have been widely used in
NPs modification to harness the protein corona. Zui Zhang et al., developed a novel bio-
inspired NP system with a short nontoxic peptide derived from Aβ1-42 for brain-targeted
delivery by controlling the protein corona component [55]. The biomimetic peptides (here
called SP) were derived from Aβ1-42 and devoid of neurotoxicity. As trans-BBB efflux
of Aβ into peripheral blood circulation is the significant pathway of physiological clear-
ance with ApoE, ApoJ, and ApoA1 as chaperones, the Aβ and its derived peptides like
SP could interact with the lipid-binding domain of the brain-targeting apolipoproteins
(i.e., ApoE, ApoJ, and ApoA1) when placed on the NPs’ surface, therefore precisely modu-
lating the composition and functions of the protein corona. Due to the SP, the abundant
brain targeting apolipoproteins in the protein corona had the correct direction for multiple
receptors recognition and therefore, facilitating the brain transport via LRP1/LRP2/SR-B1
mediated transcytosis. Through many experiments, the concept discussed above was
certified, and this NP system was proven to have excellent brain targeting ability and
intriguing anti-cancer effect without the problem of immune compatibility.

Zhe-Ao Zhang et al. also designed a biomimetic peptide-modified NP system for
brain target delivery by controlling the composition of protein corona [92]. The biomimetic
peptide used in this study was the 11-amino acid fragment amyloid β-protein (Aβ)25–35
(called Aβ-CN peptide), a widely used substitute for the full-length peptide Aβ1–42. Similar
to the example discussed above, this bio-inspired NP system with the modification of
the Aβ-CN peptide could also form an ApoE-enriched protein corona. The receptor-
binding domain of the ApoE would bind the low-density lipoprotein receptor (LDLr) and
LDLr-related protein one receptor (LRP1r) with high affinity in the blood-brain barrier
and glioma and therefore facilitate the brain-targeted delivery (Figure 9A). The in vivo
fluorescence imaging of orthotopic glioma-bearing mice treated with saline, DiR/PMs,
and DiR/Aβ-CN-PMs at 1 h, 2 h, 4 h, 24 h, and 36 h was exhibited in Figure 9B. The
DiR/Aβ-CN-PMs group showed the strongest fluorescence intensity in the brain at any
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given time point, showing the good brain-targeting ability of this NP system. Through
various experiments, including the protein corona characterization, in vitro and in vivo
experiments, the tumor-targeting efficacy and anti-glioma effects were investigated in this
research, showing the excellent potential of the brain-targeting ability by harnessing the
protein corona.

Another example of biomimetic peptides for controlling the protein corona composi-
tion in NPs therapy is a peptide called CDX, which is derived from the loop II region of the
snake neurotoxin candoxin and shows potential in brain-targeted drug delivery on account
of its high binding affinity with the nicotine acetylcholine receptors (nAChRs) [115]. The
nAChRs are highly expressed on the capillary endothelium of the brain, and its ligands,
like snake neurotoxin candoxin and its biomimetic peptide CDX, were believed to endow
NP systems with peptide-based transvascular delivery to the brain. Based on CDX, another
peptide called DCDX was developed, which is the retro-inverso peptide analog of CDX.
DCDX peptide shows better stability in the biological environment (like the serum), signif-
icantly higher transcytosis efficiency in the blood-brain barrier monolayer, and stronger
targeting efficiency than CDX peptide [116]. Nevertheless, the NP systems modified with
DCDX were proven immunogenic, making it an inappropriate modification ligand in NPs
therapy. In the study of Juan Guan and co-workers, they tried to understand the rule
and mechanism of the interaction between biological fluids and DCDX functionalized NP
systems, and they found that the low immune compatibility of DCDX-modified NPs might
come from the enhanced absorption of IgM in the protein corona [89]. The increased IgM
in protein corona will bring about many adverse effects, like rapid clearance by MPS and
enhanced immunogenicity, and therefore, it is necessary to design a peptide maintaining
brain-targeting ability with good immune compatibility. By the computer-aided means,
Rosetta peptide dock program in this research, they successfully developed a peptide called
D8 based on DCDX for modification in brain-targeting NP systems with improved immune
compatibility and reserved brain-targeting ability. The design rule of D8 is modulating the
composition of protein corona and reducing its affinity with IgM.

In the research of Mohamadreza Amin et al., they designed a novel NP system with
a biomimetic peptide called TAT peptide, which was derived from the transactivator of
transcription (TAT) [117]. This peptide has a lot of advantages, including the simplicity of
sequence, low cost of preparation and conjugation, and activity against kinds of cancer
cells, which enable it to attract lots of attention in NP therapy. In their research, they
found that when installed with 100 TAT peptides per NP, the endosomal escape will not be
promoted, and the clearance of the TAT peptide containing NPs will be effectively reduced,
which results from the protein corona on the TAT peptide containing NPs. The protein
corona will not influence the targeting ability of TAT peptides and pharmacokinetics or
biodistribution of NPs. On the contrary, the protein corona in the TAT peptide-containing
NPs will shield the active moieties, effectively reduce the clearance of the TAT peptide-
containing nanoparticles, and balance pharmacokinetics and tumor penetration through
interference with avidity.

In addition to the peptide discussed above, there are still many biomimetic peptides
developed for special therapeutic effects by harnessing protein corona, like angiopep-2
(Ang) [77] and cyclic RGDyK peptide (cRGD) [79], which have been discussed above.

3.3.2. Other Biomolecules Modification

Besides peptides, many other biomolecules have been used to modify the NP system
to control the protein corona conformation and composition, including but not limited to
polysaccharides, cholesterol, and phospholipids.

In the study of Zhengping Zhang et al., they fabricated a novel NP system with
retinol modification [91]. The retinol molecules have a high binding affinity with retinol-
binding protein 4 (RBP4), and the complex of retinol and RBP4 can play a significant role in
directing the NPs to hepatic stellate cells (HSC), which is considerable in the progression of
hepatic fibrosis. In this NP system, the retinol molecules on the surface could facilitate the
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formation of protein corona composed of relative abundant RBP and therefore showed high
targeting ability to HSC and exhibited remarkable therapeutic performances (Figure 10A).
This modification could also change the hydrophilicity of the NPs, preventing them from
clearance by the immune system. With a CCl4-induced murine liver fibrosis model, this
NP system with an antisense oligonucleotide (ASO) could effectively direct the NPs into
HSC in the liver with excellent targeting ability and therefore suppress the ameliorated
hepatic fibrosis for satisfactory therapeutic effects by inhibiting the expression of collagen
I. The representative of H&E and Sirius red staining of liver tissue sections was shown in
Figure 10B. The blue areas indicated the proliferating HSCs, and the red areas indicated the
collagen deposition in the fibrotic liver tissues. The ASO (anti-Col1) was designed to inhibit
the expression of collagen I, and the “anti-NC” represented the control group without the
inhibition ability of “anti-Col1”. This finding showed a significant improvement in this NP
system with the antisense oligonucleotide (ASO) compared with the naked ASO group.

Another study utilizing biomolecule modification to harness protein corona was con-
ducted by Kyoung-Ran Kim and co-workers. They fabricated a DNA tetrahedron platform
with trivalent cholesterol conjugation (Chol3-Td) [95]. Cholesterol is of significance in
biology, especially in the process of lipid metabolism and lipoprotein delivery. The in-
troduction of cholesterol will vastly increase the interaction between the NP system and
lipoproteins in serum, forming the protein corona with abundant lipoproteins that will
facilitate the targeting delivery to the liver because many of the liver cells highly express
related lipoprotein receptors, like scavenger receptor class B type 1 (SR-B1) and low-density
lipoprotein receptors (LDLRs) (Figure 10C). The concept of harnessing the protein corona
was proven by proteomic analysis of the protein corona absorbed in this NP system, and
one of the most abundant compositions in the protein corona was lipoproteins. To evaluate
the therapeutic potential of this NP system, they tried to deliver ASO targeting TGF-β1
mRNA with Chol3-Td for treating liver fibrosis in the mouse model and compared the
potency of ASO@Chol3-Td with the clinically approved liver-targeting ligand, trivalent
N-acetylgalactosamine (GalNAc3). The result showed that this system was a promising
drug delivery system because it could effectively deliver ASO to the liver, downregulate
the expression of TGF-β1 mRNA and protein in the liver for the alleviation of liver fibrosis
damage, and showed a similar target-gene silencing effect in vitro and in vivo compared
with clinically approved liver-targeting ligand GalNAc3 (Figure 10D).

Bo Huang et al. also designed a biomolecules modification NPs system with ampho-
teric natural starch-stabilized core-shell, which could be treated as a powerful alternative
to typical anti-fouling materials such as PEG and zwitterionic polymers for steal effect [97].
The starch modification formed tightly entangled outermost shells combined with strong
hydrophilic properties and steric repulsion, which could prevent the formation of protein
corona around the NPs and, therefore, enable the NP system to have a longer circulation
time in the biological environment. In this study, they also certified that this system could
be further functionalized by targeting ligands such as antibodies for additional targeting
ability and cell internalization capabilities without influencing protein corona formation
in vivo.
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Figure 9. Biomimetic peptides modification to harness protein corona. (A) The Aβ-CN peptide
modification will capture the ApoE in the biological fluids and form the ApoE-enriched protein
corona for brain-targeting [92]. Copyright 2021, Springer Nature. (B) The in vivo fluorescence
imaging of orthotopic glioma-bearing mice treated with saline, DiR/PMs, and DiR/Aβ-CN-PMs at
different time points [92]. Copyright 2021, Springer Nature.
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Figure 10. Other biomolecules modification to harness protein corona. (A) The schematic diagram of
the NP system with retinol molecule modification. The retinol can selectively recruit the RBP4 and
form a functional protein corona with numerous RBP4, directing the NPs-PC complex to the HSC
in the liver and endowing this NP system with excellent drug delivery efficiency and therapeutic
effects [91]. Copyright 2015, American Chemical Society. (B) The representative of H&E and Sirius
red staining of liver tissue sections. The blue areas indicate the proliferating HSCs, and the red
areas indicate the collagen deposition in the fibrotic liver tissues [91]. Copyright 2015, American
Chemical Society. (C) The NP system with trivalent cholesterol conjugation (Chol3-Td) for ASO
in vivo hepatocyte delivery. The cholesterol modification will enhance interaction with lipoproteins in
serum and promote the formation of the lipoprotein-associated protein corona. This functional protein
corona will facilitate the targeting of ASO delivery to the liver through the interaction with lipoprotein
and related receptors like SR-B1 and LDLRs [95]. Copyright 2022, American Chemical Society.
(D) Comparison of ASO@Chol3-Td with GalNAc3-ASO through estimating the potency of ASO (a)
in HepG2 cells in vitro and (b) in liver fibrosis mice in vivo. ***, P < 0.001; ns, nonsignificant [95].
Copyright 2022, American Chemical Society.

4. Concluding Remarks and Future Outlook

The properties of NPs and biological milieu factors will determine the formation
and composition of the protein corona, and protein corona endows NPs with their new
“biological identity”, largely influencing their behaviors in the biological environment and
therapeutic effects. Since the considerable roles of the protein corona, harnessing the protein
corona with biomimetic approaches is intriguing in nanomedicine as a way to overcome
the current obstacles from design to clinical translation, such as pool biocompatibility,
off-target effect, toxicity, immunogenicity, and instability. For instance, several examples
discussed above try to form an ideal protein corona and endow NPs with the stealth effect
for long circulation time and low immunogenicity with biomimetic approaches like cell
membrane decoration. However, this concept still has a long way to go to achieve practical
nanomedicine for clinical translation.

The first problem in developing NP systems to harness the protein corona is the com-
prehensive understanding of the formation mechanism, dynamic characteristics, composi-
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tion, and biological effects of the protein corona. All are fundamental factors in controlling
protein corona for practical therapeutic effects in nanomedicine [24]. The gap between the
actual protein corona and our understanding mainly comes from the high complexity and
heterogeneity of protein corona and the pool technologies we can utilize. Numerous factors
will have a significant influence on protein corona, including but not limited to experimen-
tal conditions, species, gender, pathobiology, and individual variation [118]. However, the
investigation tools are still too rough to fully consider these factors, which makes it difficult
to characterize, understand, and utilize the protein corona. For example, in the research
of Wei Xiao et al., the in vitro and in vivo protein corona of the same NPs had different
impacts on receptor targeting, lysosomal escape, and BBB transcytosis, which means that it
is inappropriate to study protein corona in vitro alone in some research [28]. In addition,
some articles summarized the significant differences between protein corona forming ex
vivo and in vivo and emphasized the importance of correct experimental conditions in
protein corona research [119,120].

Another challenge is precisely establishing and characterizing the designed NP system
in vitro and in vivo [121]. The complexity of the fabrication process and preparation meth-
ods of NP systems with biomimetic approaches presents a serious challenge to researchers
because the NP systems can play the expected therapeutic role we hope only if they can be
constructed precisely. The stability, reproducibility, and homogeneity of the biomimetic
NP system also pose a challenge to clinical translation [122]. In the laboratory research and
development stage, the product preparation process can be optimized and repeated easily.
However, during the scale-up phase, given the sophisticated productive process of NPs,
ensuring consistency of quality from batch to batch and developing a protocol for assessing
repeatability between batches quickly and accurately becomes challenging [123,124]. These
inconsistency issues will influence the result of the clinical study, contribute to potential
biases, and ultimately impact the following stage of optimization and clinical translation.
It will be the future trend to achieve the same effect from laboratory to clinic and realize
the large-scale commercialization of nanomedicine products, and a promising method
is simplifying the NP systems [125,126] and developing robust and versatile fabrication
approaches [127].

On the one hand, the NP systems with simplified design and components will not only
reduce the demand for production technology and equipment but also reduce the clinical
research workload for accessing the biocompatibility of several components and reduce
the cost of production because of the fewer components [128]. In addition, the progress
of advanced synthetic techniques using high-precision fabrication, such as microfluidic
technology and 3D printing, will help the large-scale commercialization of nanomedicine
products realize inexpensive and standardized development, showing promise for the
reproducibility of nanomedicine studies and application [124]. Considering the subse-
quent large-scale preparation in the early stage of designing NP systems may also endow
nanomedicine with better practical significance and application.

As for the characterization methods in nanomedicine, even though they have been
well developed in the past, most of them still took a circuitous route to help us fully
understand the NP systems we make, which hinders us from designing and developing
new NP systems [129,130]. NP systems that function through the protein corona will also
pose an external requirement to characterization methods since they must function under
the presence of protein corona, and therefore it is necessary to provide comprehensive NP
properties after the formation of the protein corona. In addition, based on the intended
utility and the dynamic feature of the protein corona, continued characterization may
be crucial and necessary for comprehensively understanding the therapy results of NP
systems [130]. General standardization for comparing NP systems with different materials,
fabrication processes, and other significant conditions is also an obstructive factor in the
development of NP systems [131].

In summary, the protein corona can largely alter the biological fate of NPs, including
circulation time, biodistribution, and toxicity. In turn, harnessing protein corona with
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biomimetic approaches is a promising method for designing novel nanomedicine. By
precisely controlling the formation and composition of the protein corona, the NP system
can achieve many intriguing properties, such as a lower uptake rate into MPS organs,
longer circulation time, and targeting ability. Until now, lots of researchers have achieved
excellent therapeutic effects with this strategy, but there are still thousands of problems
that should be considered and solved before fully understanding and taking advantage of
the protein corona, like the mechanism of the protein–NP interaction and protein corona
formation under different conditions, the advanced fabrication, and accurate characteriza-
tion methods.
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