
Send Orders for Reprints to reprints@benthamscience.net

Current Genomics, 2021, 22, 583-595 583

1389-2029/21 $65.00+.00 © 2021  Bentham Science Publishers

RESEARCH ARTICLE

Exploring the Lethality of Human-Adapted Coronavirus Through Align-
ment-Free Machine Learning Approaches Using Genomic Sequences

Rui Yin1,2,*, Zihan Luo3 and Chee Keong Kwoh1

1School of Computer Science and Engineering,  Nanyang  Technological  University,  50  Nanyang  Avenue,  639798,
Singapore; 2Department of Biomedical Informatics, Harvard University, Boston, MA 02138, USA; 3School of Electron-
ic Information and Communications, Huazhong University of Science and Technology, Wuhan, 430074, China

A R T I C L E  H I S T O R Y

Received: August 26, 2021
Revised: December 02, 2021
Accepted: December 14, 2021

DOI:
10.2174/1389202923666211221110857

Abstract: Background: A newly emerging novel coronavirus appeared and rapidly spread world-
wide and World Health Organization declared a pandemic on March 11, 2020. The roles and char-
acteristics of coronavirus have captured much attention due to its power of causing a wide variety
of infectious diseases, from mild to severe, on humans. The detection of the lethality of human
coronavirus is key to estimate the viral toxicity and provide perspectives for treatment.

Methods: We developed an alignment-free framework that utilizes machine learning approaches
for an ultra-fast and highly accurate prediction of the lethality of human-adapted coronavirus using
genomic sequences. We performed extensive experiments through six different feature transforma-
tion and machine learning algorithms combining digital signal processing to identify the lethality
of possible future novel coronaviruses using existing strains.

Results: The results tested on SARS-CoV, MERS-CoV and SARS-CoV-2 datasets show an aver-
age 96.7% prediction accuracy. We also provide preliminary analysis validating the effectiveness
of our models through other human coronaviruses. Our framework achieves high levels of predic-
tion performance that is alignment-free and based on RNA sequences alone without genome anno-
tations and specialized biological knowledge.

Conclusion: The results demonstrate that, for any novel human coronavirus strains, this study can
offer a reliable real-time estimation for its viral lethality.
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1. INTRODUCTION
Coronaviruses  are  positive,  single-stranded RNA virus

and have been identified in humans and animals. They are
categorized into four genera: α, β, γ and θ [1]. Previous phy-
logenetic analysis revealed a complex evolutionary history
of  coronavirus,  suggesting  ancient  origins  and  crossover
events that can lead to cross-species infections [2, 3]. Bats
and birds are a natural reservoir for coronavirus gene pool
[4]. The mutation and recombination play critical roles that
may enable cross-species transmission into other mammals
and humans [5]. Human coronavirus (HCoV) was first identi-
fied  in  the  mid-1960s  [6],  and  up  to  now,  seven  types  of
coronavirus  can  infect  people.  Four  of  them,  i.e.,  HCoV-
-229E, HCoV-NL63, HCoV-OC43 and HCoV-HKU1, usual-
ly cause mild to moderate upper-respiratory tract  illnesses
like  common  cold  when  infecting  humans  [7].  The  other
three  members  include  severe  acute  respiratory  syndrome
coronavirus  (SARS-CoV) and middle east  respiratory syn-
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drome coronavirus (MERS-CoV) and the most lately severe
acute  respiratory  syndrome coronavirus  2  (SARS-CoV-2).
They all belong to Betacoronavirus that led to the epidemics
or pandemics [8-10].

Emerging  in  November  2002  in  Guangdong  province,
China,  SARS  caused  8,096  human  infections  with  774
deaths by July 2003 [11]. MERS was first reported in Saudi
Arabia in September 2012 and finally resulted in 2,494 hu-
man infections  by  November  2019  [12]  Recently,  a  novel
coronavirus named SARS-CoV-2 is emerging and spreading
to 215 countries or territories on June 12, 2020, leading to
7,390,702 confirmed cases with 417,731 deaths according to
the  World  Health  Organization  [13].  Though  precautions
such as lockdown of cities and social distance have been tak-
en  to  curb  the  transmission  of  COVID-19,  it  spreads  far
more quickly than the SARS-CoV and MERS-CoV diseases
[4, 14]. To make matters worse, the number of infected cas-
es still increases rapidly and the global inflection point about
COVID-19  is  unknown.  Like  other  RNA  viruses,  e.g.  in-
fluenza virus [15], coronaviruses possess high mutation and
gene recombination rates [16], which makes constant evolu-
tion of this virus with the emergence of new variants. From
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SARS in  2002  to  COVID-19  in  2019,  coronaviruses  have
caused high morbidity and mortality, and unfortunately, the
fast and untraceable virus mutations take the lives of people
before the immune system can produce the inhibitory anti-
body [17] Currently, no miracle drug or vaccines are avail-
able to treat or prevent the humans infected by coronavirus-
es [18, 19]. Therefore, there is a desperate need for develop-
ing approaches to detect the lethality of coronaviruses not on-
ly for SARS-CoV-2 but also the potential new variants and
species.  This would facilitate the diagnosis of coronavirus
clinical severity and provide decision-making support.

The detection of viral lethality has already been explored
in influenza viruses [20, 21]. Through a meta-analysis of pre-
dicting the virulence and antigenicity of influenza viruses,
we can infer the lethality of the virus timely to improve the
current influenza surveillance system. Regarding the risk of
novel emerging coronavirus strains, much attention has been
captured  to  investigate  the  lethality  or  clinical  severity  of
new emerging coronavirus. Typically, epidemiological mod-
els are certainly built to estimate the lethality and the extent
of undetected infections associated with the new coronavirus-
es.  Bastolla  suggested  an  orthogonal  approach  based  on  a
minimum number of parameters robustly fitted from the cu-
mulative data easily accessible for all countries at the John
Hopkins  University  database  to  extrapolate  the  death  rate
[22]. Bello-Chavolla et al. proposed a clinical score to evalu-
ate  the  risk  for  complications  and  lethality  attributable  to
COVID-19 regarding the  effect  of  obesity  and diabetes  in
Mexico [23]. The results provided a tool for quick determina-
tion  of  susceptibility  patients  in  a  first  contact  scenario.
Wang et al. leveraged patient data in real-time and devise a
patient information based algorithm to estimate and predict
the death rate caused by COVID-19 for the near future [24].
Aiewsakun  et  al.  performed  a  genome-wide  association
study on the genomes of COVID-19 to identify genetic varia-
tions that might be associated with the COVID-19 severity
[25]. Moreover, Jiang et al. established an artificial intelli-
gence framework for data-driven prediction of coronavirus
clinical severity [26]. Saha et al. proposed a deep learning
framework  to  identify  an  unknown  viral  sequence,  using
Long Short Term Memory (LSTM) [27]. Lopez-Rincon et
al. designed a classification and specific primer for accurate
detection  of  SARS-CoV-2  with  convolutional  neural  net-
works [28]. The development of computational and physic-
s-based approaches has relieved the labors  of  experiments
by utilizing epidemiological and biological data to construct
the  model.  However,  direct  evaluation  of  potential  novel
coronavirus strains for their lethality is crucial when clini-
cians are forced to make difficult decisions without past spe-
cific  experience  to  guide  clinical  acumen.  Inferring  the
lethality of novel coronavirus is possible by identifying the
patterns from a large number of coronavirus sequences.

In this paper, we propose an alignment-free framework
that can leverage machine learning approaches to infer the
lethality of human-adapted coronavirus. The main contribu-
tion is that we formulate the problem of estimating the lethal-
ity of human-adapted coronavirus through machine learning
approaches based on genomic nucleotide, which could assist

biologists or virologists for the investigation of coronavirus
with new insights. By appropriate feature transformation, we
can encode genomic nucleotides into numbers that allow us
to convert it into a prediction task. The experimental results
suggest our models deliver accurate prediction of lethality
without prior biological knowledge. We also provide prelimi-
nary  analysis  validating  the  effectiveness  of  our  models
through  other  human  coronaviruses.

2. METHODS

2.1. Problem Formulation
The pandemic of novel coronaviruses has caused thou-

sands of fatalities, making tremendous treats to public health
worldwide. The society is deeply concerned about its spread
and  evolution  with  the  emergence  of  any  potential  new
variants that would increase the lethality. Typically, lethality
refers to the capability of causing death. It is usually estimat-
ed as the cumulative number of deaths divided by the total
number of confirmed cases. Among all the human-adapted
coronaviruses, MERS-CoV caused the highest fatality rate
of 34.5% [29], followed by the SARS-CoV with 9.2% fatali-
ty rate [30] In comparison, COVID-19 indicates a lower mor-
tality rate of 5.5% [13]. The lethality rate of COVID-19 is
likely to decrease with better treatment and precautions. In
this paper, we mainly focus on these three types of human-a-
dapted coronaviruses and define the degree of viral in terms
of historical  fatality rates.  As a result,  MERS-CoV strains
are high lethal, while SARS-CoV and SARS-CoV-2 strains
are middle and low lethal, respectively.

2.2. Data Collection and Preprocessing
Genomic nucleotide sequences of three different coron-

aviruses with the human host are downloaded from the Na-
tional  Center  for  Biotechnology  Information  on  April  30,
2020  [31].  Duplicate  sequences  and  incomplete  genomes
with a length smaller than 20000 are removed from the col-
lection to address the possible issues raised from sequence
length  bias.  Some  SARS-CoV  strains  from  the  laboratory
are included that are cultivated in Vero cell cultures to en-
rich the training samples. Finally, we end up with 321, 351,
1638 samples for MERS-CoV, SARS-CoV and SARS-CoV-
-2, respectively. In addition, we also collect the genomic da-
ta  of  other  four  human coronaviruses  with  27,  64,  32  and
142 distinct strains for HCoV-HKU1, HCoV-NL63, HCoV-
-229E and HCoV-OC43, respectively. Apart from the four
symbolic bases (A, C, T, G) of each strain, we have degener-
ated base symbols that are an IUPAC representation [32] for
a position on genomic sequences, which could denote multi-
ple  possible  alternatives.  These  degenerate  base  symbols
contain W (A, T), S (C, G), M (A, C), K (G, T), R (A, G), Y
(C, T), B (C, G, T), D (A, G, T), H (A, C, T), V (A, C, G),
N(A, C, T, G), where the letters in the bracket are alternative
nucleotide representing degenerate bases. We randomly sub-
stitute these degenerate bases so that genomic sequences can
be  mapped  into  discrete  numerical  representation  through
feature transformation.
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2.3. Feature Transformation
Numerical  representations  have  been  successfully  em-

ployed in the field of bioinformatics [33, 34], mapping bio-
logical sequences into real-value vector space where the in-
formation or pattern characteristic of the sequence is kept in
order. This is important as the existing machine learning ap-
proaches can only deal with vectors but not sequence sam-
ples. Several methods are proposed that convert genomic se-
quences into numerical vectors, e.g., the fixed mapping be-
tween nucleotides and real numbers without biological signi-
ficance [35], based on physio-chemical properties [36], de-
duction from doublets or codons [37], and chaos game repre-
sentation  [38].  To  accommodate  comprehensive  analysis
and comparison, we adapt different types of numerical repre-
sentations for biological RNA sequences. Randhawa et al.
[39] showed that “Real”, “Just-A” and “Purine/Pyrimidine
(PP)”  numerical  representation  yield  better  performance
over other methods for DNA classification, which are includ-
ed for analyzing genomic data. The electro-ion interaction
potential (EIIP) and nearest-neighbor based doublet are in-
corporated that are based on physio-chemical properties and
nearest-neighbor values, respectively. Apart from the afore-
mentioned one-dimensional  representation,  we have  intro-
duced 2D Chaos Game Representation (CGR) into feature
transformation of original sequences.

The real number representation is a fixed transformation
technique through which we obtain values of four bases as:
adenine (A) = -1.5, thymine (T) = 1.5, cytosine (C) = 0.5,
and guanine (G) = -0.5 [40]. It is efficient in finding a com-
plementary strand of DNA/RNA sequence and can endure
complementary  property.  “Just-A”  method  maps  the  four
bases into binary classification as the presence of adenine is
labeled  1,  while  others  are  0  [41].  PP  representation  is  a
DNA-Walk  model  that  shows  nucleotides  sequences  in
which a step is taken upwards if the nucleotide is pyrimidine
with  T/C  =  1,  or  downward  if  it  is  purine  with  A/G  =  -1
[42].  EIIP  describes  the  distribution  of  the  energy  of  free
elections along with nucleotide sequences that a single EIIP
indicator  sequence  is  formed  through  replacing  its  nu-
cleotides,  where  A=0.1260,  C=0.1340,  G=0.0806,  and
T=0.1335  [43].  The  sequence-to-signal  mapping  for  near-
est-neighbor  based  doublet  representation  is  illustrated  in
another study [37], where the last position is followed by the
first in the sequence. Lastly, CGR is a method proposed by
Jeffrey [44] that has been successfully used for a visual rep-
resentation of genome sequence patterns and taxonomic clas-
sification  [45,  46].  The  CGR  images  of  RNA/DNA  se-
quences are drawn in a unit square. The four vertices of the
square are labeled by four nucleotides. The first nucleotide
of the sequence is plotted halfway between the center of the
square and the vertex representing this nucleotide. The next
base  is  mapped  into  the  image  that  the  coordinate  is  as-
signed halfway between the  previous  point  and the  vertex
corresponding to the previous nucleotide. The mathematical
formulation of the successive points that calculates the coor-
dinates in the CGR of the sequences is described below:

(1)

where Cix and Ciy denote the X and Y coordinates of the
vertices  matching  the  nucleotide  at  position  i  of  the  se-
quence,  respectively.

2.4. Model Construction
Machine learning has been utilized in many aspects of vi-

ral genomic analysis, e.g., antigenicity prediction of viruses
[20], genome classification of novel pathogens [46], reassort-
ment  detection  [47],  receptor  binding  analysis  [48]  and
vaccine recommendation [49], etc. With increasingly avail-
able genomic sequences,  it  will  play more critical  roles in
helping biologists analyze large, complex biological data for
prediction and discovery. In this work, we provide a compre-
hensive analysis for the lethality prediction of potential new
human-adapted  coronaviruses  via  alignment-free  machine
learning  approaches.  We  follow  a  similar  protocol  in  the
studies [39] and [50], adapting it to fit our setting as follows.
We utilize the retrospective way to train and test the model
since  the  isolation  time  of  viral  strains  are  available.  For
each type of coronavirus, the samples isolated from earlier
times are used to train the model, while those generated in re-
cent times are for testing. The time threshold will be deter-
mined based on the condition that divides training and test-
ing  set  in  a  rough  0.8:0.2  ratio.  The  retrospective  test  en-
ables our models to infer the lethality of coronavirus for any
new strains that could emerge in the near future. Six differ-
ent  types of  numerical  representations are implemented in
comparison  with  the  predictive  performance  of  machine
learning models. The proposed methods not only contain tra-
ditional machine learning models but also deep learning tech-
niques in combination with Discrete Fourier Transform for
genome analysis. Traditional machine learning models con-
sist of logistic regression (LR), random forest (RF), K-near-
est  neighbor  (KNN)  and  neural  network  (NN)  [51],  while
three variants of convolutional neural networks (CNN) are
leveraged.  The  CNN  models  contain  AlexNet  [52],  VGG
[53] and ResNet [54].

Logistic regression is a supervised machine learning al-
gorithm  that  is  a  linear  regression  but  for  classification
problems.  Random forest  is  an  ensemble  learning  method
that  operates by constructing a multitude of decision trees
for classification and regression tasks. k-nearest neighbors al-
gorithm is a non-parametric classification method where the
function is only approximated locally that the object being
assigned  to  the  class  most  common  among  its  k  nearest
neighbors. Neural networks are computing systems with in-
terconnected nodes that work much like neurons in the hu-
man brain, which can recognize hidden patterns and correla-
tions in raw data, cluster and classify it, and over time contin-
uously  learn  and  improve.  Convolutional  neural  networks
are very similar to ordinary neural network made up of neu-
rons that have learnable weights and biases. The major dif-
ference is that CNN architectures allow us to encode certain
properties  into  the  architecture,  which  makes  the  forward
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function  more  efficient  to  implement  and  significantly  re-
duce the amount of parameters in the network.

Following the choices of five one-dimensional numeri-
cal representation for viral sequences, digital signal process-
ing is introduced through Discrete Fourier Transform (DFT)
techniques. We assume that the number of input sequence is
n and all the sequences have the same length l sequence Si =
(Si (0), Si (2),..., Si (l - 1)), where 1 ≤ i ≤ n, Si (k) ϵ {A, C, T,
G} and 0 ≤ k ≤ l - 1, the corresponding discrete numerical
representation is formulated as:

(2)

where f  (Si  (k)) denotes the numerical value after map-
ping by function f (.) at the position k of nucleotide sequence
Si. The signal Ni computed after DFT is represented as vec-
tor Fi. The formulation of Fi is presented below. We define
that the magnitude vector that corresponds to the signal Ni as
Mi, Mi is the absolute value of Fi.

(3)

Typically,  the  length  of  numerical  digital  signal  Ni  is
equal to the magnitude spectrum Mi that is originated from
the  length  of  the  genomic  sequence.  However,  the  input
genome sequences are in different lengths; thus they need to
be length-normalized after DFT. Median length-normaliza-
tion is leveraged for the input digital signals using zero padd-
ing.  We  employ  anti-symmetric  padding  that  begins  from
the last position if the input sequences are shorter than the
median length, these short signals are extended to the me-
dian length with zero-padding, while the longer sequences
are truncated after the median length.

As  for  the  two-dimensional  numerical  representation,
i.e., CGR, a point that corresponds to a sequence of lengthl
will be contained within a square with a side of length 2-l.
We assume a square CGR image is generated with a size of
2k x 2k matrix, where k is the parameter that determines the
size of the image. The frequency of occurrence of any oli-
gomer  in  a  sequence  can  be  obtained  by  partitioning  the
CGR  space  into  small  squares.  Therefore,  the  number  of
CGR points in each unit square of 2k x 2k grid is equal to the
number  of  occurrences  of  all  possible  k-mers  in  the  se-
quence. By counting the frequency of CGR points, it is possi-
ble to calculate oligonucleotide frequencies at various grid
resolutions.  We  define  the  element  aj  as  the  number  of
points  that  are  located  in  the  corresponding  sub-square  j,
where 1 ≤ j ≤ 22k. Each sequence will be mapped into a 2k x
2k dimensional vector space based on CGR.

2.5. Implementation and Evaluation
We implement all the models by Scikit-learn [55] and Py-

Torch [56]. We utilize the retrospective method to train and
test the model since the isolation time of viral strains is avail-

able.  For  each  type  of  coronavirus,  the  samples  generated
from strains isolated before the year N are used to build the
model, while those generated after the year N are for testing.
The year N is determined based on the condition that divides
training and testing set in a rough 0.8:0.2 ratio. The 5-fold
cross-validation is performed in the training process and the
independent testing set is used for validation of our models.
This test can truly reflect the ability of the models in applica-
tions to predict viral lethality for future strains. The parame-
ters are set by default with traditional machine learning mod-
els  (Supplementary  Materials  S1).  For  all  deep  learn-
ing-based models, we apply stochastic gradient descent with
a minimum batch size of 64 for optimization. The drop-out
(rate = 0.5) strategy is carried out with a 0.001 learning rate
and all the models are fit for 50 training epochs. The predic-
tive performance is evaluated by accuracy, precision, sensi-
tivity, and F1 score of all models in the prediction tasks of
coronavirus lethality.

3. RESULTS

3.1.  Genome  Composition  of  SARS-CoV,  MERS-CoV
and SARS-CoV-2

We first analyzed the composition of the RNA genome
of the three human-adapted coronaviruses. Fig. (1) portrays
the average distribution and variance of the nucleotides. We
can observe that the proportion of A and T (in replacement
of U) is high, while C and G are relatively low for all human
coronaviruses. Interestingly, it is suggested that the high T
and low C proportions of human coronaviruses are quite vari-
able and act like communicating vessels. T goes up when C
decreases and vice versa. The composition of T ranges from
0.139 to 0.552 while C makes the opposite movement from
0.374 to 0.107, respectively, among all human coronavirus.
If we look into individual types, the SARS-CoV-2 as a novel
human  pathogen  follows  some  typical  composition  of  nu-
cleotides  but  it  is  also  characterized  by  some  differences.
We found that SARS-CoV-2 presents a higher variance com-
pared  with  MERS-CoV and  SARS-CoV.  This  is  probably
the rapid and widespread transmission of SARS-CoV-2 ac-
celerates  its  evolution  when  infected  with  humans.  More
strains are generated differently from their  ancestor  clade.
However, it is more pronounced of the nucleotide bias in the
unpaired regions of the structured RNA genome, which may
indicate  a  certain  biological  function  of  these  special  se-
quence signatures. Some studies have revealed that a clear
difference  in  the  magnitude  of  the  nucleotide  bias  of  the
coronavirus genomes is likely to relate to the mechanism of
subgenomic mRNA synthesis and the exposure of single-s-
tranded RNA domains [57, 58]. The evidence shows that cy-
tosine  discrimination  and  deamination  against  CpG  dinu-
cleotides are the driving force that outlines the coronavirus-
es over evolutionary times [59]. It is indicated that the atypi-
cal nucleotide bias could reflect distinct biological functions
that are the direct cause of the characteristic codon usage in
these viruses [60]. Therefore, the analysis of the nucleotide
and codon usage in coronaviruses can not only exhibit the
clues  on  potential  viral  evolution  but  also  improves  the
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Fig. (1). Composition of nucleotide sequence for SARS-CoV, MERS-CoV and SARS-CoV-2. (A higher resolution / colour version of this
figure is available in the electronic copy of the article).

understanding of the viral regulation and promotes vaccine
design.
3.2. K-mer-based Classifier Study

Studies have investigated the role of k-mer frequency for
the  fast  and  accurate  classification  of  viral  genomes  [61].
We experiment with values for k-mer of length k = 1, 2, ..., 7
on different classifiers to measure the prediction accuracy.
To explore the k-mer frequency patterns in distinct coron-
aviruses, we curate independent testing set to assess the per-
formance. Fig. (2) shows the predictive accuracy across sev-
en machine learning algorithms, at different values of k. Fig.
(2) portrays the performance curves by deep learning mod-
els (in the left), and the results via traditional machine learn-
ing models (in the right). Overall, our proposed methods ob-
tain an average accuracy of 0.956. However, we can observe
the traditional machine learning methods exceed 0.98 in ac-
curacy at all k values, whereas there is a different story for
deep learning models. It is shown that VGG-19 achieves the
best results, while the accuracy could be as low as 0.8 using
ResNet-34 when k = 2. We can conclude that for these data
the traditional  machine learning methods outperform deep
learning models almost at all levels of k  with less fluctua-
tion. As a result, the k-mer value 6 is used for the results of
experiments with CGR representation.

3.3. Comparative Performance
We analyzed the effect on viral lethality prediction via

different numerical representations for RNA sequences us-
ing  machine  learning  approaches.  The  dataset  used  is  the
same as those in Fig. (2). The results along with the average
scores  for  all  numerical  representations  and classifiers  are
summarized in Table 1. As can be observed from Table 1,
for all numerical representations, the average scores are high
over all measures. The best performance is achieved when
using CGR representation, which yields an average accuracy
of 0.985 in the testing set. Surprisingly, we can obtain an av-
erage accuracy of 0.967 even with a single nucleotide numer-
ical representation “Just-A”. At the individual classifier lev-
el, traditional machine learning methods display an apparent
advantage  over  deep  learning  models.  Logistic  regression
and neural network can achieve 100% accuracy for all nu-
merical  representations,  whereas  the  prediction  accuracy
ranges from 0.679 to 0.993 implemented by Resnet34, VG-
G19  and  AlexNet.  At  this  point,  this  is  probably  because
deep learning algorithms need a large amount of data to un-
derstand the pattern. In addition to performing higher accura-
cy, machine learning models are computationally cheaper in
this task, e.g.  in CGR representation, it  takes much longer
time for  deep learning  models than  classical
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Fig. (2). The prediction accuracy across seven machine learning classifiers at different values of k (A higher resolution / colour version of
this figure is available in the electronic copy of the article).

machine learning methods on average (Supplementary Mate-
rials S2). Overall, our results suggest that all these numerical
representations are effective for modeling to differentiate the
degree of the lethality of human coronavirus.
3.4. Validation on other Human Coronaviruses

We test the ability of our models to identify the lethality
of  other  different  human  coronaviruses,  i.e.,  HCoV-229E,
HCoV-NL63, HCoV-OC43, and HCoV-HKU1. The training
process is implemented on the former three types of coron-
avirus data. For every test dataset, we use CGR as the numer-
ical representation with all classifiers to predict the lethality.
Interestingly, the results show that, on average, 28 out of 32
HCoV-229E,  59  out  of  64  HCoV-NL63,  134  out  of  142
HCoV-OC43 and 25 out of 27 HCoV-HKU1 strains identi-
fied have closer lethality with SARS-CoV-2, while the rest
strains are labeled middle or high. This suggests that, over-
all, other test human coronaviruses have lower severity than
MERS-CoV  and  SARS-CoV.  Evidence  has  revealed  that
HCoV-OC43 and HCoV-HKU1 are associated with mild to
moderate upper respiratory tract illness with about 0.1% fa-
tality [62]. These infections may be asymptomatic and are
considered the second common cause of cold [63]. Similar-
ly, it has been well documented that the majority of HCoV-
-NL63 infections are mild in humans, though occasionally,
this coronavirus causes pneumonia or central nervous sys-
tem  diseases  in  susceptible  individuals  [64].  During  2009
and 2016, it accounted for about 0.5% of all acute respirato-
ry tract infections in hospitalized patients from Guangzhou,
China, but few death cases are reported [65]. HCoV-229E is

a  close  relative of  HCoV-NL63 and it  will  lead to  similar
symptoms [66].

Fig. (3) displays the CGR plots of different sequences of
human coronavirus  at  the  value  of  6  for  k-mer  frequency.
The CGR plots visually indicate that the genomic signature
of the SARS-CoV-2 isolate Wuhan-Hu-1 (Fig. 3c is closer
to the genomic signature of the SARS-CoV coronavirus iso-
late Canada (Fig. 3a, followed by the strain of MERS-CoV
Betacoronavirus England 1 isolate (Fig. 3b. Moreover, the
other four human coronaviruses from (Fig.  3d, e,  f  and g)
presents similar visual patterns, which are different from the
former three types. Given the CGR plots of human coron-
aviruses, we further explore the trace of their origin and rela-
tion through phylogenetic analysis. We randomly select five
complete genomes from each type containing the reference
strain. The phylogenetic tree is constructed based on all pair-
wise distance with maximum likelihood techniques for the
dataset. The results in Fig. (4) present a clear separation of
seven clusters and relationships within the clusters. The aver-
age  inter-cluster  distances  confirm  that  SARS-CoV-2  se-
quences  are  closest  to  the  species  of  SARS-CoV (average
distance 0.486), followed by MERS-CoV (4.782), which are
far away from other four human coronaviruses. We also find
that  HCoV-OC43  and  HCoV-HKU1,  HCoV-229E  and
HCoV-NL63 may originate from the same ancestor with the
genetic distance 1.842 and 2.779, respectively. But there is
no  evidence  indicating  the  situation  that  the  two  different
species of human coronavirus will present similar lethality if
they are genetically close.
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Table 1. The performance for the lethality prediction of human-adapted coronaviruses via seven different classifiers. Average results
for each numerical representation are in bold.

Numerical
Representation Model

Training Data - Testing Data
Accuracy Precision Recall F-score Accuracy Precision Recall F-score

Real

LR 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
KNN 0.999 1.000 0.999 0.999 0.984 0.994 0.983 0.988
NN 0.999 0.998 1.000 0.999 1.000 1.000 1.000 1.000
RF 0.998 0.998 1.000 0.999 1.000 1.000 1.000 1.000

ResNet34 0.964 0.990 0.990 0.990 0.979 0.992 0.986 0.989
VGG19 0.961 0.989 0.989 0.989 0.981 0.988 0.988 0.988
AlexNet 0.671 0.841 0.841 0.841 0.679 0.893 0.670 0.765
Average 0.941 0.973 0.974 0.973 0.946 0.981 0.946 0.961

Nearest neighbor
based doublet

LR 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
KNN 0.998 0.999 0.996 0.998 0.981 0.993 0.981 0.987
NN 0.999 0.998 1.000 0.999 1.000 1.000 1.000 1.000
RF 0.998 0.998 1.000 0.999 1.000 1.000 1.000 1.000

ResNet34 0.966 0.991 0.991 0.991 0.977 0.991 0.988 0.989
VGG19 0.946 0.981 0.981 0.981 0.967 0.987 0.984 0.986
AlexNet 0.857 0.936 0.936 0.936 0.714 0.902 0.712 0.796
Average 0.966 0.986 0.986 0.986 0.948 0.981 0.952 0.964

EIIP

LR 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
KNN 0.998 0.999 0.995 0.997 0.981 0.993 0.981 0.987
NN 0.998 0.997 0.999 0.998 1.000 1.000 1.000 1.000
RF 0.999 0.997 0.998 0.997 1.000 1.000 1.000 1.000

ResNet34 0.962 0.989 0.989 0.989 0.972 0.989 0.980 0.984
VGG19 0.940 0.978 0.978 0.978 0.979 0.992 0.989 0.990
AlexNet 0.839 0.927 0.927 0.927 0.848 0.949 0.936 0.942
Average 0.962 0.983 0.983 0.983 0.968 0.989 0.983 0.986

PP

LR 0.999 0.999 1.000 0.999 0.995 0.998 0.995 0.997
KNN 0.999 1.000 0.998 0.999 0.981 0.993 0.981 0.987
NN 0.999 0.998 1.000 0.999 1.000 1.000 1.000 1.000
RF 0.999 0.999 0.998 0.999 0.998 0.999 0.998 0.998

ResNet34 0.963 0.989 0.989 0.989 0.977 0.991 0.985 0.988
VGG19 0.943 0.980 0.980 0.980 0.993 0.997 0.994 0.996
AlexNet 0.662 0.837 0.837 0.837 0.681 0.894 0.669 0.765
Average 0.937 0.971 0.971 0.971 0.946 0.981 0.946 0.961

Just-A

LR 0.999 0.999 1.000 0.999 1.000 1.000 1.000 1.000
KNN 0.998 0.999 0.996 0.998 0.986 0.994 0.985 0.990
NN 0.999 0.998 1.000 0.999 1.000 1.000 1.000 1.000
RF 0.999 0.998 1.000 0.999 1.000 1.000 1.000 1.000

ResNet34 0.969 0.992 0.992 0.992 0.960 0.984 0.969 0.977
VGG19 0.969 0.992 0.992 0.992 0.984 0.989 0.992 0.991
AlexNet 0.842 0.928 0.928 0.928 0.841 0.942 0.933 0.938
Average 0.967 0.986 0.986 0.986 0.967 0.987 0.982 0.985

CGR

LR 1.000 1.000 1.000 1.000 0.995 0.998 0.995 0.997
KNN 0.999 1.000 0.999 0.999 0.993 0.997 0.993 0.995
NN 0.999 0.998 1.000 0.999 1.000 1.000 1.000 1.000
RF 0.999 0.997 0.998 0.999 0.995 0.998 0.995 0.997

ResNet34 0.975 0.996 0.996 0.996 0.934 0.975 0.933 0.954
VGG19 0.948 0.982 0.982 0.982 0.993 0.997 0.994 0.996
AlexNet 0.955 0.986 0.986 0.986 0.988 0.995 0.992 0.994
Average 0.982 0.994 0.994 0.994 0.985 0.994 0.986 0.990
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Fig.  (3).  The visualization of  Chaos Game Representation plots  of  references of  seven human coronavirus at  k  = 6 of  (a)  SARS-CoV-
/NC_004718.3/Severe acute respiratory syndrome-related coronavirus/Canada, (b) MERS-CoV/NC_038294.1/Betacoronavirus England 1,
Middle East respiratory syndrome-related coronavirus/United Kingdom, (c) SARS-CoV-2/NC_045512.2/Severe acute respiratory syndrome
coronavirus 2 isolate Wuhan-Hu-1/China, (d) HCoV-OC43/JN129835.1/Human coronavirus OC43 strain HK04-02, China/Betacoronavirus
1, (e) HCoV-HKU1/NC_006577.2/Human coronavirus HKU1, (f) HCoV-229E/JX503060.1/Human coronavirus 229E isolate 0349, Nether-
lands, (g) HCoV-NL63/JQ765575.1/Human coronavirus NL63 strain NL63/DEN/2005/1876, USA. The vertices of the plot are assigned A
(top left), T (top right), C (bottom left), G (bottom right). (A higher resolution / colour version of this figure is available in the electronic
copy of the article).
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Fig. (4). The phylogenetic tree using maximum likelihood generated pairwise distance matrix shows the hierarchical classification between
different human coronaviruses.

4. DISCUSSION
We provided  a  comprehensive  quantitative  analysis  to

predict the lethality of human-adapted coronavirus with six
different  numerical  representations of  RNA sequences ap-
plied in machine learning models. The models are computa-
tional efficiency because they are alignment-free. Compared
with alignment-based methods, multiple sequence alignment
is not needed with the leverage of DFT techniques. The ex-
periment results show that most of the models have achieved
rapid and accurate predictions for  the lethality of  new hu-
man-adapted  coronavirus.  We  validated  our  results  by  a
quantitative analysis based on the construction of the phylo-
genetic  tree,  which  reveals  the  evolutionary  relationships
among all human coronaviruses based upon genetic informa-
tion.  Coronaviruses  are  usually  thought  to  cause  mild  and
non-lethal  symptoms  in  humans  before  the  outbreak  of
SARS-CoV in 2003. The high pathogenicity of SARS-CoV,

MERS-CoV and newly SARS-CoV-2 captures surgent inter-
ests and concerns of the family of coronavirus. Timely analy-
sis of genomic sequences of novel strains requires quick se-
quence similarity comparison with thousands of known spe-
cies,  which  are  generally  performed  by  alignment-based
methods. However, these methods are time-consuming and
sometimes  challenging  in  cases  where  homologous  se-
quence  continuity  cannot  be  ensured.  The  application  of
alignment-free approaches has addressed this issue that can
handle a large number of sequences effectively.

Previous studies have elucidated that  the origin of this
SARS-CoV-2 stems from bats [10, 67]. Early sequencing of
SARS-CoV-2  strains  revealed  over  99%  similarity  with
some bat-like coronavirus, indicating these infections result
from a recent cross-species event [68]. Bats are regarded as
the natural reservoir of viruses and cross-species transmis-
sion to mammals [4, 69]. Before the emergence of SARS-



592   Current Genomics, 2021, Vol. 22, No. 8 Yin et al.

CoV-2,  it  was  uncovered  that  the  coronavirus  SARS-Cov
and  MERS-CoV  have  also  originated  from  bats  [70,  71].
The phylogenetic analyses assist in identifying the relation-
ships  between  SARS-CoV-2  and  other  coronaviruses
through the nucleotide and amino acid sequence similarities.
The continuous human-to-human transmission has been con-
firmed and asymptomatic cases have continued to increase
[72, 73]. There is a desperate need for strict precautions to
prevent  the  spread  of  the  virus  and  protect  public  health.
Vaccines and miracle drugs are the most efficient ways of
fighting  against  this  crisis.  Currently,  the  development  of
vaccines  has  been  into  Phase  3  trials  in  some  countries,
while the human ACE2 receptor has been identified as the
potential  receptor for COVID-19 and serves as a potential
target for treatment [74, 75]. Nevertheless, with the circula-
tion of bat-related coronavirus and geographic coverage, it is
critical to monitor the evolution of coronavirus. Currently,
seven known types of coronavirus can infect humans. Novel
strains of these coronaviruses can likely arise and attack hu-
man again through reassortment and mutation when two dif-
ferent or more strains co-infect the same host. Preparation is
necessary  to  prevent  potential  epidemics  and  pandemics
caused by a novel coronavirus. As a result, our work paves
the basis for surveillance by inferring the lethality of any po-
tential human coronaviruses that may emerge in the future.

This study is subject to a variety of limitations. The defi-
nition  of  classifying  the  degree  of  coronavirus  lethality  is
mainly based on the mortality rate. We assume that the high-
er the mortality, the more lethal for the virus, and thus make
three categories of the lethality level for all viruses with a
different threshold. However, our estimation for these values
lies  within  the  range  of  fatality  rate  from  the  literature,
which we do not have sufficient data to obtain and parame-
terize the case-structured model, especially for viruses with
few samples. Besides, some other factors such as innate im-
mune system and comorbidities could make a significant im-
pact on the lethality of virus when infecting humans. More-
over, the limited data points for the human coronavirus pale
the high predictive accuracy, as most of the machine learn-
ing algorithms possess a superb generation ability to discov-
er inherent patterns from training samples, particularly in the
small dataset. But like typical machine learning approaches,
our models are not qualified to provide a direct and accessi-
ble explanation that explicitly interprets why a certain coron-
avirus  strain  is  more  lethal  to  humans.  Some  rule-based
methods or clinical study might provide a better rationale for
their results.

CONCLUSION
We provide a comprehensive analysis through alignment-

free machine learning-based methods for the prediction of
the lethality of existing human-adapted coronavirus. The re-
sults show that on average, CGR, EIIP, and Just-A represen-
tations perform better than others, with an average accuracy
of 0.985, 0.968 and 0.963, respectively. Interestingly, tradi-
tional machine learning methods display obvious merit both
in computational efficiency and performance than deep learn-
ing models on this task. Validation of other types of human

coronavirus in combination with phylogenetic analysis fur-
ther demonstrates our predictive results. We hope this work
would  facilitate  the  research  of  COVID-19  for  biologists
and clinicians that are in the frontline to detect the lethality
of new emerging variants of SARS-CoV-2. Future work in-
cludes  the  construction  of  novel  coronavirus  surveillance
and in vitro evaluation of the computational models.
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