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prognostic biomarker
correlating with CD8+ T cell
exhaustion in clear cell renal
cell carcinoma
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Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China, 5University of Chinese
Academy of Sciences, Beijing, China
Aberrant sialylation is frequently observed in tumor development, but which

sialyltransferases are involved in this event are not well known. Herein, we

performed comprehensive analyses on six ST3GAL family members, the a-2,3
sialyltransferases, in clear cell renal cell carcinoma (ccRCC) from public

datasets. Only ST3GAL5 was consistently and significantly overexpressed in

ccRCC (n = 791 in total), compared with normal kidney tissues. Its

overexpression was positively correlated with tumor stage, grade, and the

poor prognosis in ccRCC patients. Gene Ontology and Kyoto Encyclopedia of

Genes and Genomes pathway enrichment analyses indicated the involvement

of ST3GAL5 in tumor immunoregulation. Then we revealed that ST3GAL5

expression showed a positive correlation with CD8+ T cell infiltration, using

multiple tools on TIMER2.0 web server. Notably, ST3GAL5 overexpression was

further identified to be associated with expression signature of CD8+ T cell

exhaustion in ccRCC samples from three datasets (n = 867 in total; r > 0.3, p <

0.001). In our own ccRCC cohort (n = 45), immunohistochemistry and

immunofluorescence staining confirmed that ST3GAL5 overexpression was

accompanied by high CD8+ T cell infiltration with the increased exhaustion

markers. Altogether, ST3GAL5 as a promising prognostic biomarker with CD8+

T cell exhaustion in ccRCC is indicated.

KEYWORDS

sialylation, clear cell renal cell carcinoma, ST3GAL5, CD8+ T cell exhaustion,
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Introduction

Kidney cancer is one of the common malignancies in

urologic system. Approximately 430,000 individuals are

diagnosed annually with kidney cancer and over 179,000

patients die of it worldwide (1). Clear cell renal cell carcinoma

(ccRCC) accounts for ~70% of kidney cancer cases and the

majority of kidney cancer-related deaths (1–3). Though localized

ccRCC can be treated with surgery, about 30% ccRCC patients

will relapse and develop metastasis, which is lethal with a 5-year

survival rate of less than 15% (2, 3). Single-cell RNA sequencing

reveals enrichment of terminal exhausted CD8+ T cells in

advanced ccRCC, indicating that immune dysfunction has

become an attractive characteristic of advanced ccRCC (4).

Sialylation is an important glycosylation modification and

involved in many biological processes, including cell-cell

recognition and adhesion (5). Aberrant sialylation on cell

surface is considered as a malignant feature of cancer cells,

mediating tumor cells survival, invasion, migration and immune

evasion (6–8). In many cancers, high level of sialylation on the

surface of cancer cells is associated with high malignant potential

and poor clinical outcome of patients, indicating that sialic acid

is a potential therapeutic target (9). Many studies show that the

abnormal high levels or activities of sialyltransferases are

associated with the progression of several tumors (10). In

breast cancer, higher serum sialyltransferases levels and

activities were strongly linked with higher tumor stage, which

enabled them as the biomarkers for monitoring tumor

progression and therapeutic effect (11).

Sialyltransferases are divided into four subfamilies: a-2,3
sialyltransferases (ST3GAL1-6), a-2,6 sialyltransferases

(ST6GAL1-2 and ST6GALNAC1-6), and a-2,8 sialyltransferases

(ST8SIA1-6) (5). The increased level of a-2,3-sialylated glycan

was implicated in chemoresistance of cholangiocarcinoma cells to

5-FU and glioma stemness maintenance (12, 13). Moreover, a-
2,3-sialylated prostate-specific antigen (PSA) could serve as a

better diagnostic marker than conventional ones (total PSA or

PSA density) in prostate cancer patients (14). Correspondingly,

ST3GAL family members have been reported to be involved in the
Abbreviations: BP, Biological Processes; CC, Cellular Components; ccRCC,

Clear Cell Renal Cell Carcinoma; CI, Confidence Interval; CSCs, Cancer

Stem-like Cells; CTLA4, Cytotoxic T-lymphocyte Associated protein 4; DFS,

Disease-Free Survival; EGFR, Epidermal Growth Factor Receptor; G 1-4,

grade 1-4; GO; Gene Ontology; GSVA, Gene Set Variation Analysis; HR,

Hazard Ratio; IF, Immunofluorescence; IHC, Immunohistochemistry;

KEGG, Kyoto Encyclopedia of Genes and Genomes; KIRC, Kidney Renal

Clear Cell Carcinoma; MAPK, Mitogen Activated Kinase-Like Protein; MF,

Molecular Function; OS, Overall Survival; PDCD1/PD-1, Programmed Cell

Death 1; PD-L1, Programmed Cell Death 1 Ligand 1; ST3GAL1-6, ST3 beta-

galactoside alpha-2,3-sialyltransferase 1-6; TCGA, The Cancer Genome Atlas;

TCR, T Cell Receptor; TGF-b1, Transforming Growth Factor-b1; ZEB1, Zinc

Finger E-box Binding Homeobox 1.
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progression of many cancers and become the potential diagnostic

and/or prognostic biomarkers in certain cancer patients (15–17).

For example, ST3GAL1 could be a promising therapeutic target in

melanoma owing to its role in promoting tumor metastasis (18).

ST3GAL3, 4 and 6 increased the biosynthesis of sialyl Lewis x

(SLex) antigen, an important tumor-associated antigen associated

with poor survival in cancer patients (19, 20). ST3GAL6 was

identified as a potential biomarker to predict clinical outcomes in

bladder cancer patients, and its overexpression was associated

with basal subtype and required for cancer cells invasion (17).

Moreover, ST3GAL1 promoted tumor immune evasion by

mediating the sialylation of CD55 (21).

In this study, six ST3GAL family members were investigated

by comprehensive analysis in ccRCCs using their expressional

levels from multiple public datasets. ST3GAL5 overexpression

was identified to successfully predict poor prognosis and CD8+ T

cell exhaustion in ccRCC, which was further validated in our

own cohort using immunohistochemistry and immunofluorescence

staining methods.
Materials and methods

Differential expression analyses in ccRCC
on Oncomine platform

The mRNA levels of ST3GAL family members in ccRCC

samples from five publish data (Jones et al. (2005) (22); Gumz et

al. (2007) (23); Beroukhim et al. (2009) (24); Higgins et al. (2003)

(25); Yusenko et al. (2009) (26)) were analyzed by online

Oncomine tool (https://www.oncomine.org). The parameters

were set as follows, data type: mRNA expression; analysis type:

cancer vs. normal; gene rank = all; fold change ≥ 1.5; p < 0.05,

using Student’s t-test.
Data source

The data for gene expression and clinical information were

downloaded from NCBI GEO database (GSE66272 (27),

GSE53757 (28), GSE36895 (29), GSE105261 (30) and

GSE73731 (31)), TCGA-KIRC (https://portal.gdc.cancer.gov/),

and cBioPortal (https://www.cbioportal .org/). CD8+

immunofluorescence intensities and RNA-sequencing data

were obtained from Braun et al. (2020) (32).
Kaplan-Meier survival analysis

The samples were evenly divided into low and high

expression groups, according to mRNA level of ST3GAL

family members or immune score by xCell algorithm from

TIMER2.0 (https://www.timer.cistrome.org/) (33). Kaplan-
frontiersin.org
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Meier survival curves with log-rank test were applied to analyze

overall survival (OS) and disease-free survival (DFS) in ccRCC

patients. p < 0.05 was considered as statistically significant. The

significance of gene relationship with OS/DFS was measured by

hazard ratio (HR) and 95% confidence interval (CI) in Cox

Proportional-Hazards Model. HR > 1, was considered as an

increased risk.
Gene ontology and Kyoto encyclopedia
of genes and genomes pathway
enrichment analyses

The co-expressed genes with ST3GAL5 in TCGA-KIRC

dataset were identified by Spearman’s correlation analysis from

cBioPortal (https://www.cbioportal.org/) using r ≥ 0.3 as a cut-

off value. GO and KEGG pathway enrichment analyses were

performed respectively using DAVID online tool (https://www.

david.ncifcrf.gov/). According to the p-valve list, the top 30

enriched GO terms, including 10 biological processes (BP), 10

cellular components (CC) and 10 molecular function (MF)

categories, as well as 15 KEGG pathways were presented by

bubble diagrams to show their relations to ST3GAL5

gene expression.
Analyses by TIMER2.0 web server

The relative values of immune score and infiltration

estimation fraction of immune cells for TCGA-KIRC were

obtained by xCell algorithm from TIMER2.0 (http://timer.

cistrome.org). Immune score is an experimental score obtained

by dividing the sum of these infiltration estimation fraction of B

cell, CD4+ T cell, CD8+ T cell, eosinophil, macrophage, mast cell,

monocyte, neutrophil, NK cell and myeloid dendritic cell by 1.5.

Heatmaps were plotted using FPKM of ST3GAL5 gene, immune

score and infiltration estimation fraction by Cluster 3.0

software (34).

To evaluate the correlation of ST3GAL5 expression with

CD8+ T cell infiltration in TCGA-KIRC, xCell, MCP-counter,

quanTIseq, and EPIC algorithms were respectively used. In brief,

the gene name (ST3GAL5) and T cell CD8+ were input in the

“Immune Association” module to assess their correlation by

Spearman analysis using Rho value. Scores of CD8+ T cell

infiltration were adjusted by cell purity for xCell and MCP-

counter algorithms; no adjustment for CD8+ T cell infiltration

score was required for quanTIseq and EPIC algorithms.
Exhaustion signature score for CD8+T cells

The genes used for CD8+ T cell exhaustion signature were

obtained from Kfoury et al. (2021) (35) and listed in Table S1.The
Frontiers in Immunology 03
CD8+ T cell exhaustion signature scores were then calculated using

Gene Set Variation analysis (GSVA) in R package. GSVA was used

to estimate variation of gene set enrichment over samples

population in a non-parametric and unsupervised manner.
Clinical samples

Forty-five ccRCC samples were from Shanghai Pudong

Hospital (Shanghai, China) with the approval by the Ethics

Committee of Shanghai Pudong Hospital and the written

informed consents of corresponding patients.
Immunohistochemistry and
immunofluorescence staining

IHC staining on paraffin-embedded sections performed as

described previously (36). Briefly, ccRCC paraffin sections were

deparaffinized, antigen retrieval in citrate buffer (pH 6.0), blocked,

incubated respectively with anti-ST3GAL5 (1:1,000; 14614-1-AP;

Proteintech, Rosemont, IL), anti-CD8 (1:5,000; 66868-1-Ig;

Proteintech) and anti-PD-1 (1:5,000; 18106-1-AP; Proteintech),

and visualized by DAB detection kit (DAB-2031; MXB

Biotechnologies, Fuzhou, China). Normal rabbit IgG (KIT-9707;

MXB Biotechnologies) and mouse IgG (KIT-9701; MXB

Biotechnologies) were used as negative controls. Images were

acquired by a slide scanner (NanoZoomer 2.0-HT;

HAMMATSU, Japan) and analyzed by NDP serve slide

distribution and management software (HAMMATSU). The IHC

score was the multiplication of the intensity value (0-3) and the

positive ratio value (0-3) of ST3GAL5 immunoreactive cells. The

number of PD-1 and CD8 positive cells were enumerated.

For IF staining, sections were deparaffinized, antigen

retrieval, blocked and incubated with primary antibodies, anti-

CD8 (1:5,000; 66868-1-Ig; Proteintech) or anti-PD-1 (1:5,000;

18106-1-AP; Proteintech), at 4°C overnight. These sections were

then incubated with Alexa Fluor 488-conjugated goat anti-rabbit

IgG(H+L) second antibody (1:1,000; AS053; ABclonal, Wuhan,

China) or Alexa Fluor 555-conjugated goat anti-mouse IgG(H+L)

second antibody (1:1,000; AS057; ABclonal). DAPI (28718-90-3;

BBI Life Science, China) was used to stain the nuclei. The

fluorescence images were acquired by Inverted Zeiss LSM880

laser scanning confocal microscope (Zeiss, Germany).
Statistical analysis

GraphPad Prisms 7.0 software (GraphPad Software, San

Diego, CA) was used for statistical analysis. Data were

presented as means ± standard deviations (SD). For data

comparisons between two groups, Student’s t-test was used;

for data comparisons among groups more than two, one-way
frontiersin.org
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ANOVA test was used. The Pearson correlation analysis was

utilized to analyze the correlations between variables. For

survival analysis, log-rank test was performed. Chi-square test

and Fisher exact test were used to assess the associations of the

expression level of ST3GAL5 or the density of CD8+ and PD-1+

cell with clinicopathological parameters in ccRCC samples from our

own cohort. The p value less than 0.05 was regarded statistically

significant for all analyses.
Results

The mRNA levels of ST3GAL family
members in ccRCC and normal kidney
tissues

To explore the role of ST3GAL family members in ccRCC

patients, we compared their mRNA levels between ccRCC and

normal kidney tissues from Oncomine database. It was shown

that the mRNA level of ST3GAL5 was significantly up-regulated

in ccRCCs in four datasets and down-regulated in one dataset,

compared with normal kidney tissues; while the levels of

ST3GAL1, 4 and 6 were down-regulated in ccRCC tissues and

no significant expression changes of ST3GAL2 and 3 were

observed in ccRCC tissues (Figure 1A, Table 1). We then

analyzed the mRNA levels of ST3GAL family members in

another five ccRCC datasets (GSE66272, GSE53537, GSE36895,

GSE105261 and TCGA-KIRC), containing 693 ccRCC samples

and 203 normal kidney samples in total. Consistently, both

upregulation of ST3GAL5 and downregulation of ST3GAL6 in

ccRCC samples were identified in all five datasets (Figures 1B–D

and Supplementary Figure 1). We noticed that ST3GAL5

upregulation (p < 0.001) and ST3GAL6 downregulation (p <

0.001) were confirmed in ccRCC tissues (n = 530), comparing

with their paired normal kidney tissues (n = 72), from TCGA-

KIRC dataset (Figure 1E).
ST3GAL5 overexpression was positively
associated with tumor development in
ccRCC

In order to study whether the expression of ST3GAL family

members was related to tumor development in ccRCC, their

mRNA levels were analyzed in TCGA-KIRC and GSE73731

datasets, which contain the corresponding clinicopathological

information. In TCGA-KIRC dataset (n = 522 in total),

ST3GAL5 mRNA expression was significantly elevated in

higher grades ccRCC (G2-G4), compared with that in low

grade (G1) (p = 0.0005; Figure 2A , upper panel) .

Overexpressed ST3GAL5 in higher stage ccRCC (II-IV) was

also shown (p = 0.0006; Figure 2A, lower panel). However,
Frontiers in Immunology 04
ST3GAL6 expression did not exhibit significant correlations

with tumor grade and tumor stage. In GSE73731 dataset (n =

256 in total), upregulated ST3GAL5 (p < 0.0001) and ST3GAL6

(p = 0.0099) was positively correlated only with tumor grade in

ccRCC, respectively (Figure 2B). Altogether, these data indicated

that ST3GAL5 overexpression might be positively associated

with ccRCC development.
Overexpressed ST3GAL5 was correlated
with poor prognosis of ccRCC patients

The correlation between expression of ST3GAL family

members and outcome of ccRCC patients was then tested in

TCGA-KIRC dataset. The patients with OS information (n =

530) were divided into two groups based on mRNA levels of

ST3GAL members (median value as the cutoff). The Kaplan-

Meier survival analysis showed that high level of ST3GAL3 and

ST3GAL5 mRNA were inversely associated with OS (p=0.0026,

HR=1.583 for ST3GAL3; p = 0.0144, HR = 1.455 for ST3GAL5;

Figure 3A). The correlation between high level of ST3GAL4 and

ST3GAL5 mRNA and short DFS time were also shown

(p=0.0015, HR=1.781 for ST3GAL4; p = 0.0263, HR = 1.498

for ST3GAL5; Figure 3B) in the patients with DFS information

(n = 433). The correlation between increased ST3GAL5 mRNA

level and poor prognosis in ccRCC patients was suggested.
ST3GAL5 might be involved in tumor
immunoregulation

To explore the regulatory network of ST3GAL5, 645 genes

co-expressed with ST3GAL5 identified by Spearman correlation

analysis using cBioPortal online tool (r ≥ 0.3, Table S2). GO

molecular function enrichment analysis of these genes further

revealed the prominent immune signatures, cytokine signatures

and receptor signatures. T cell-relevant pathways, such as T cell

co-stimulation, T cell proliferation, T cell activation, T cell

receptor signaling pathway and T cell receptor complex, were

especially noticed (Figure 4A). KEGG pathway analysis of these

genes also showed the prominent presence of inflammation

response signature (Figure 4B). Since xCell is a webtool that

performs cell type enrichment analysis from gene expression

data for 64 immune and stroma cell types, including T cell (37),

we used it to calculate the immune score of ccRCC samples from

TCGA-KIRC dataset (n = 530). The positive association between

immune score and ST3GAL5 mRNA level expression in ccRCC

patients was demonstrated by Pearson correlation analysis (r =

0.4379, p < 0.001) (Figure 4C). Consistent with the result in

Figure 3A, high immune score was related to a poor OS by the

Kaplan-Meier survival analysis (Figure 4D). The involvement of

ST3GAL5 in tumor immunomodulation was thus indicated.
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ST3GAL5 was positively correlated with
the infiltration of CD8+ T cells in ccRCC

To dissect which type of immune cell populations might be

associated with ST3GAL5 expression, xCell tool on TIMER2.0

web server was applied in TCGA-KIRC dataset (n = 530,

Figure 5A). As expected, positive correlations of ST3GAL5

expression with immune cells were shown that 15 immune cell

population (r ≥ 0.2, p < 0.05), including CD8+ T cells (r = 0.3208,

p < 0.001), T cell CD8+ central memory (r = 0.3306, p < 0.001), T

cell CD8+ effector memory (r = 0.3106, p < 0.001) and

macrophage (r = 0.3518, p < 0.001). Since T cell-related
Frontiers in Immunology 05
signatures (Figure 4A) and pathways (Figure 4B) were

enriched for ST3GAL5 overexpression in ccRCC patients,

herein relationship between ST3GAL5 expression and tumor-

infiltrated CD8+ T cells were further analyzed by TIMER2.0, a

web server provides comprehensive analysis and visualization

functions of tumor infiltrating immune cells (33). Positive

correlations between ST3GAL5 mRNA level and infiltrating

level of CD8+ T cells in TCGA-KIRC dataset were estimated

significantly by four different algorithms, including xCell (Rho =

0.229, p < 0.001), MCP-counter (Rho = 0.206, p < 0.001),

quanTIseq (Rho = 0.254, p < 0.001) and EPIC (Rho = 0.342,

p < 0.001) (Figure 5B). Considering that Braun and colleague
A

B

D

E

C

FIGURE 1

The transcription levels of six ST3GAL members in ccRCC and normal kidney tissues. (A) Differential mRNA expression analyses in ccRCC on
Oncomine platform. The numbers of ccRCC datasets with significant different expression levels of ST3GAL family members were shown (blue,
downregulated; red, upregulated). (B-D) Comparison of the mRNA expression levels of ST3GAL family members in ccRCCs (T) and normal
kidneys (N) in GSE66272 (B; T = 27, N = 27), GSE53757 (C; T = 72, N = 72) and TCGA-KIRC (D; T = 530, N = 72). (E) Comparison of the mRNA
expression levels of ST3GAL family members in paired normal (N) and ccRCCs (T) tissues (n=72). ***, p < 0.001; ns, p ≥ 0.05.
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had assessed the cell density of CD8+ T cells in tumor center and

margin of ccRCC by immunofluorescence staining, along with

gene expression profiling of ccRCC samples by RNA-sequencing

(32), we analyzed their above data and found that ST3GAL5

mRNA level was positively associated the density of both central

and marginal CD8+ T cells in their ccRCC cohort (Figure 5C).
Correlations between ST3GAL5 mRNA
level and CD8+ T cell exhaustion
in ccRCC

The common paradigm of CD8+ T cell infiltration is divided

into three types, that is “immune infiltrated”, “immune

excluded” and “immune desert” (38). In most solid tumors,

high tumor-infiltrating CD8+ T cells (immune infiltrated)

predict good clinical outcomes treated with PD-1 blockade,

while immune exclusion or immune desert is associated with

resistance to these therapies (38–40). However, our data showed

that high expression of ST3GAL5 was associated with poor

prognosis of ccRCC patients (Figures 3A, B) and enrichment

of CD8+ T cells in ccRCC (Figures 5A-C). This “paradox”

encouraged us to make further evaluation on the function of

tumor-infiltrated CD8+ T cells.

In the Braun’s report (32), OS and PFS of ccRCC patients did

not show significant difference between the “immune infiltrated”

type, the “immune excluded” and “immune desert” types (p >

0.05). Moreover, the clinical benefit of anti-PD-1 treatment had
Frontiers in Immunology 06
no significant difference between the “immune infiltrated” type

and the non-“immune infiltrated” types. Their results suggested

that the complicated paradigm of CD8+ T cell infiltration might

not improve the prognosis nor the clinical outcomes of PD-1

blockade in ccRCC patients. Whether other features of tumor-

infiltrated CD8+ T cells could be used as the prognosis indicator

of ccRCC was thus investigated.

Previous study reported that the effector function of tumor-

infiltrating CD8+ T cells were impaired in ccRCC leading to the

cell progression to exhaustion stage, which might account for

tumor resistance to PD-1 blockade (4). These exhausted CD8+ T

cells displayed persistent high expression of multiple inhibitory

receptors, especially PD-1 (41). Therefore, we obtained the CD8+

T cell exhaustion profile using GSVA method (35), and analyzed

its association with ST3GAL5 expression in ccRCC public

datasets. The positive correlation between ST3GAL5 mRNA

level and CD8+ T cell exhaustion signature score was shown in

TCGA-KIRC (r = 0.3309, n = 530), GSE53757 (r = 0.4906, n =

72), and GSE73731 (r = 0.3397, n = 265), respectively (p<0.001

for all three datasets; Supplementary Figure 2A). Four “CD8+ T

cell exhaustion”-associated genes by suppression T cell activity

and promotion tumor immune escape were selected, including

PDCD1 gene which encodes PD-1 protein, CD274 gene which

encodes PD-L1 protein, CTLA4 gene (an important exhaustion

feature of lymphocyte (41)), and CD86 gene whose encoding

protein as the ligand of CTLA4 (42). Their associations with

ST3GAL5 expression were further assessed. The positive

correlations of mRNA levels between ST3GAL5 and PDCD1
TABLE 1 The mRNA levels of ST3GAL family members on Oncomine platform (ccRCC vs. normal kidney tissues).

Gene symbol Type of ccRCC vs normal kidney tissue ccRCC (n) Normal (n) Fold change p value Source and/or reference

ST3GAL1 ccRCC 23 23 -3.270 8.47E-19 Jones Renal Statistics (22)

ccRCC 10 10 -3.206 0.001 Gumz Renal Statistics (23)

Non-Hereditary ccRCC 27 11 -1.899 0.003 Beroukhim Renal Statistics (24)

Hereditary ccRCC 32 11 -1.879 0.004 Beroukhim Renal Statistics

ST3GAL2 NA NA NA NA NA NA

ST3GAL3 NA NA NA NA NA NA

ST3GAL4 ccRCC 24 3 -3.681 0.005 Higgins Renal Statistics (25)

ccRCC 10 10 -2.916 1.53E-5 Gumz Renal Statistics

Hereditary ccRCC 32 11 -1.870 4.50E-5 Beroukhim Renal Statistics

ST3GAL5 ccRCC 22 3 1.797 0.016 Higgins Renal Statistics

ccRCC 23 23 1.658 3.14E-11 Jones Renal Statistics

ccRCC 26 5 2.280 4.25E-4 Yusenko Renal Statistics (26)

ccRCC 10 10 -2.281 0.008 Gumz Renal Statistics

Non-Hereditary ccRCC 27 11 2.009 4.79E-7 Beroukhim Renal Statistics

ST3GAL6 ccRCC 26 5 -1.621 0.023 Yusenko Renal Statistics

ccRCC 23 23 -1.743 1.11E-4 Jones Renal Statistics

ccRCC 10 10 -1.623 0.001 Gumz Renal Statistics

Non-Hereditary ccRCC 27 11 -2.378 1.77E-8 Beroukhim Renal Statistics

Hereditary Clear ccRCC 32 11 -2.118 5.61E-8 Beroukhim Renal Statistics
NA, Not Available.
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(r = 0.3575, n = 530), CD274 (r = 0.3018, n = 530), CTLA4 (r =

0.39, n = 524) and CD86 (r = 0.4127, n = 530) were identified in

TCGA-KIRC dataset (p < 0.001 for all four genes; Supplementary

Figure 2B). Similar results were also observed in GSE73731 dataset

(p < 0.001 for all four genes, n = 265; Supplementary Figure 2C).

These results from public datasets implied that ccRCC patients

with ST3GAL5 overexpression might be prone to display CD8+ T

cell exhaustion.
ST3GAL5 overexpression was associated
with the exhaustion of CD8+ T cells in
ccRCC samples of our cohort

To validate above results from public datasets by multiple

bioinformatics analyses, we collected 45 ccRCC samples with
Frontiers in Immunology 07
different tumor stages from Shanghai Pudong Hospital (Table S3).

IHC staining for ST3GAL5, CD8, and PD-1 proteins were performed

in these samples, with rabbit IgG and mouse IgG as negative controls

(Supplementary Figure 3A). In addition, strong signals for ST3GAL5,

CD8 and PD-1 were detected in cancer regions, while very weak and

few positive signals for ST3GAL5, CD8 and PD-1 were observed in the

adjacent normal kidney regions on the same field (Supplementary

Figure 3B). Hence, these data above indicated that the IHC signals for

ST3GAL5, CD8 and PD-1 were specific and reliable. Next, we found

that the ccRCC patients with high tumor stage (Stage II and III) (case 2

in Figure 6A) showed increased protein levels of ST3GAL5, CD8 and

PD-1, compared to those with low tumor stage (Stage I) (case 1 in

Figure 6A). Of note, CD8+ T cells were significantly enriched in both

center and margin of tumors with ST3GAL5 high expression in our

cohort (Figure 6A), which was consistent with that in Braun’s cohort

(Figure 5C). Quantification of these proteins was then performed for
A

B

FIGURE 2

The expression levels of ST3GALs were correlated with the pathological stage and grade of ccRCC patients. (A) Correlations between mRNA
expression levels of ST3GALs and tumor development in ccRCCs from TCGA-KIRC. Upper panel for tumor grade, Grade 1 = 14, Grade 2 = 227,
Grade 3 = 206, Grade 4 = 75; Lower panel for tumor stage, Stage I = 265, Stage II = 57, Stage III = 123, Stage IV = 82. (B) Correlations between
mRNA expression levels of ST3GALs and tumor development in ccRCCs from GSE73731. Upper panel for tumor grade, Grade 1 = 22, Grade 2 =
90, Grade 3 = 95, Grade 4 = 49; Lower panel for tumor stage, Stage I = 41, Stage II = 12, Stage III = 28, Stage IV = 44.
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ST3GAL5 IHC score, CD8+ cell density and PD-1+ cell density. It was

shown that the elevated IHC score for ST3GAL5 and the densities of

CD8+ and PD-1+ cells were positively correlated with high tumor stage,

respectively (p < 0.05; Figure 6B). Furthermore, the protein expression

levels of ST3GAL5 and the density of CD8+ cells and PD-1+ cells were

positively correlated with each other in ccRCC tissues (r > 0.7, p <

0.001; Figure 6C), suggesting the presence and exhaustion of CD8+ T

cells in ccRCC sampleswith high stage. IF co-staining for CD8 andPD-

1 was thus performed in ccRCC samples with low and high expression

of ST3GAL5, respectively. In ST3GAL5high samples, fluorescence

intensities for CD8 and PD-1 were much higher than those in

ST3GAL5low samples. Remarkable increased co-localization of CD8

andPD-1 proteinswere observed in ST3GAL5high samples (Figure 6D),

indicating the positive association between ST3GAL5 expression and

exhausted CD8+ T cells in ccRCC tissue.
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In conclusion, we have demonstrated that ST3GAL5 could

be used as a prognostic biomarker for ccRCC, predicting the

effector function of CD8+ T cells.
Discussion

Aberrant sialylation on tumor cell surface and hyperactivity

of sialyltransferases are common characteristics of cancers, often

taken as a hallmark in many cancers (9). In our study, we

comprehensively analyzed the expression and prognostic

relevance of ST3GAL family members in multiple independent

ccRCC datasets, revealing that ST3GAL5 could be a potential

prognostic biomarker. High expression of ST3GAL5 predicted

poor clinical outcomes in ccRCC patients. Moreover, ST3GAL5
A

B

FIGURE 3

Prognostic values of six ST3GAL family members in ccRCCs. (A) and (B), Kaplan-Meier plot of overall survival (A; n = 530) and disease-free
survival (B; n = 433) in ccRCC patients from TCGA-KIRC dataset stratified by ST3GALs mRNA expression.
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expression was positively associated with immune infiltration

and CD8+ T cell exhaustion.
ST3GAL5 functions as a synthase for glycosphingolipid GM3, a

precursor of a- and b- and c- series gangliosides, which participates

in various cellular processes, such as cell proliferation and

differentiation, and integrin-mediated cell adhesion (43, 44). In

line with our aforementioned findings in ccRCCs, the increase of

ST3GAL5 expression was observed in CD44hi/CD24lo breast cancer

stem-like cells (CSCs), compared with non-CSC population (45),

while the enzymatic activity of ST3GAL5 is required for TGF-b1-
induced ZEB1-dependent epithelial-to-mesenchymal transition

(46). On the contrary, the metabolite GM3 can interfere with

EGFR dimerization and suppress its activity through its binding

with N-glycans of EGFR (47). Hence, it is not surprising that the

downregulation of ST3GAL5 was reported in bladder cancer (48).

Its downregulation can also promote radioresistance of melanoma

cells by the activation of MAPK signaling and chemoresistance of

acute myeloid leukemia via the activation of PI3K/AKT signaling

(49). Overall, the role of ST3GAL5 in carcinogenesis is cancer-

type dependent.
Frontiers in Immunology 09
In addition, it was also reported that ST3GAL5 was

expressed in non-epithelia cells, such as immune cells and

adipose stromovascular cells (50, 51). Considering the

infiltrating immune cells in the tumor areas, we could not

entirely exclude the contribution of the ST3GAL5 expression in

non-tumor cells to the conclusion on its overexpression in the

ccRCCs by the transcriptomic data in TCGA-BLCA and GEO

datasets alone. To address this concern, we carried out IHC

assays and our data clearly demonstrated that ccRCC cells

displayed higher ST3GAL5 protein expression levels than

adjacent normal epithelial cells in the same section. Taken

together, in future it is necessary to characterize the roles of

ST3GAL5 in cancer cells and nonmalignant cells in the tumor

stroma during ccRCC development.

Our study further revealed that ST3GAL5 overexpression in

ccRCC is significantly associated with immune infiltration

(including CD8+ T cells, macrophages and B cells) and CD8+ T

cell exhaustion, suggesting its overexpression may influence tumor

immune microenvironment. Usually the tumor-infiltrated CD8+ T

cells fully or partly lose their effector function because of the
A B

DC

FIGURE 4

Involvement of ST3GAL5 in tumor immunoregulation of ccRCC. (A) and (B) Gene Ontology (GO) enrichment analysis (A) and Kyoto
Encyclopedia of Genes and Genomes (KEGG) analysis (B) of 645 genes co-expressed with ST3GAL5 from TCGA-KIRC dataset. BP, biological
processes; CC, cellular components; MF, molecular function. (C) The correlation between ST3GAL5 mRNA expression and immune score by
xCell tool in TCGA-KIRC dataset (n = 530). (D) Kaplan-Meier plot analysis of overall survival in ccRCC patients from TCGA-KIRC dataset stratified
by xCell immune score.
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progression to a stage of exhaustion (41), which were frequently

detected in many human cancers (4, 35). The exhausted CD8+ T

cells show the persistent high expression of multiple inhibitory

receptors (such as PD-1 and CTLA4), transcriptional and epigenetic

reprogramming, metabolic dysregulation, and loss of effector

function (41). Though immunotherapy via blocking PD-1/PD-L1

interaction is usually effective to partially reinvigorate the CD8+ T

cells inside tumor, unfortunately, in advanced ccRCCs there were

no association between CD8+ T cell infiltration and clinical benefit

to anti-PD-1 therapy (32, 52, 53). Previous study reported that

tumor-derived gangliosides suppress the cytotoxicity of CD8+ T

cells by impeding TCR-induced lytic granule release (54). In
Frontiers in Immunology 10
addition to CD8+ T cells, the infiltrating macrophages and B cells

inside tumors were also significantly associated with ST3GAL5

levels in cancer cells. Previous study reports a co-evolution between

CD8+ T cells exhaustion and tumor-associated macrophage, i.e.

tumor-associated macrophages promote the progression of CD8+ T

cell exhaustion by long-lasting synapses with CD8+ T cells, and in

return the exhausted CD8+ T cells shape myeloid cell recruitment

and contribute to tumor-associated macrophage maturation (55).

As for B cells, it is one of the major tumor-infiltrating immune cells

in several solid tumors. However, the function of B cells on tumor

development is controversial. On one hand, B cells possess the

tumor suppressive effects on the promotion of T cell response, and
A

B

C

FIGURE 5

ST3GAL5 was positively correlated with CD8+ T cell infiltration in ccRCC. (A) The correlations between ST3GAL5 mRNA expression and
infiltration fractions of different immune cells by xCell in TCGA-KIRC dataset using Pearson correlation analysis (n = 530). (B) The correlation
between ST3GAL5 mRNA expression and the infiltration level of CD8+ T cell by xCell, MCP-counter, quanTIseq and EPIC algorithms in ccRCC
samples from TCGA-KIRC (n = 533). (C) The correlation between ST3GAL5 mRNA expression and CD8+ T cells density in tumor center (left
panel) and in tumor margin (right panel) in ccRCC sample from Braun DA cohort (32).
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A

B

D

C

FIGURE 6

ST3GAL5 overexpression was associated with the exhaustion of CD8+ T cells in ccRCC samples of our cohort. (A) The representative IHC
staining for ST3GAL5, CD8 and PD-1 in human ccRCC specimens. Case 1, low expression of ST3GAL5; Case 2, high expression of ST3GAL5.
Scale bar, 250 mm; scale bar in inset, 50 mm. (B) Correlations between tumor stage and ST3GAL5 protein level (left panel), CD8+ cell density
(middle panel), and PD-1+ cell density (right panel) in human ccRCC specimens (n = 45). Stage I, n = 18; Stage II-III, n = 27. (C) The correlations
between ST3GAL5 level and CD8+ cell density (left panel), between ST3GAL5 level and PD-1+ cell density (middle panel), and between CD8+

and PD-1+ cell density (right panel), in human ccRCC specimens (n = 45). (D) Immunofluorescence co-staining of CD8 (red) and PD-1 (green) in
human ccRCC specimens with low (upper panel) and high (lower panel) expression of ST3GAL5. DAPI (blue) was used for nuclei staining. Scale
bar, 50 mm.
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on the other hand, B cells promote the tumor progression by

secreting immunosuppressive cytokines (56). A recent study

identified three B cell subpopulations in ccRCC biopsies and a

B2M subpopulation played an essential pro-metastatic role in

ccRCCs (57). Therefore, in future functional assays are needed to

investigate whether the enzymatic activity of ST3GAL5 and its

metabolite GM3 are indispensable for T cell exhaustion, as well as

other immune cells. Overall, further studies on how ST3GAL5

modulates the pathogenesis of ccRCC and CD8+ T cells exhaustion

are expected.
Conclusion

In summary, our data indicated that ST3GAL5 could be a

potential prognostic biomarker for clinical outcomes andmight be

a potential indicator of CD8+ T cell exhaustion in ccRCC patients.
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20. Gomes C, Osório H, Pinto MT, Campos D, Oliveira MJ, Reis CA.
Expression of ST3GAL4 leads to SLe(x) expression and induces c-met activation
and an invasive phenotype in gastric carcinoma cells. PloS One (2013) 8:e66737.
doi: 10.1371/journal.pone.0066737

21. Lin WD, Fan TC, Hung JT, Yeo HL, Wang SH, Kuo CW, et al. Sialylation of
CD55 by ST3GAL1 facilitates immune evasion in cancer. Cancer Immunol Res
(2021) 9:113–22. doi: 10.1158/2326-6066.CIR-20-0203
Frontiers in Immunology 13
22. Jones J, Otu H, Spentzos D, Kolia S, Inan M, Beecken WD, et al. Gene
signatures of progression and metastasis in renal cell cancer. Clin Cancer Res (2005)
11:5730–9. doi: 10.1158/1078-0432.CCR-04-2225

23. Gumz ML, Zou H, Kreinest PA, Childs AC, Belmonte LS, LeGrand SN, et al.
Secreted frizzled-related protein 1 loss contributes to tumor phenotype of clear cell
renal cell carcinoma. Clin Cancer Res (2007) 13:4740–9. doi: 10.1158/1078-
0432.CCR-07-0143

24. Beroukhim R, Brunet JP, Di Napoli A, Mertz KD, Seeley A, Pires MM, et al.
Patterns of gene expression and copy-number alterations in von-hippel lindau
disease-associated and sporadic clear cell carcinoma of the kidney. Cancer Res
(2009) 69:4674–81. doi: 10.1158/0008-5472.CAN-09-0146

25. Higgins JP, Shinghal R, Gill H, Reese JH, Terris M, Cohen RJ, et al. Gene
expression patterns in renal cell carcinoma assessed by complementary DNA
microarray. Am J Pathol (2003) 162:925–32. doi: 10.1016/S0002-9440(10)63887-4

26. Yusenko MV, Kuiper RP, Boethe T, Ljungberg B, van Kessel AG, Kovacs G.
High-resolution DNA copy number and gene expression analyses distinguish
chromophobe renal cell carcinomas and renal oncocytomas. BMC Cancer (2009)
9:152. doi: 10.1186/1471-2407-9-152

27. Liep J, Kilic E, Meyer HA, Busch J, Jung K, Rabien A. Cooperative effect of
miR-141-3p and miR-145-5p in the regulation of targets in clear cell renal cell
carcinoma. PloS One (2016) 11:e0157801. doi: 10.1371/journal.pone.0157801

28. von Roemeling CA, Radisky DC, Marlow LA, Cooper SJ, Grebe SK,
Anastasiadis PZ, et al. Neuronal pentraxin 2 supports clear cell renal cell
carcinoma by activating the AMPA-selective glutamate receptor-4. Cancer Res
(2014) 74:4796–810. doi: 10.1158/0008-5472.CAN-14-0210

29. Peña-Llopis S, Vega-Rubı́ n-de-Celis S, Liao A, Leng N, Pavı́ a-Jiménez A,
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