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Abstract

Cheatgrass (Bromus tectorum L.) is an invasive annual grass (Poaceae) that has colo-
nized large portions of the Intermountain West. Cheatgrass stand failures have been
observed throughout the invaded region, the cause of which may be related to the
presence of several species of pathogenic fungi in the soil or surface litter. In this me-
tabarcoding study, we compared the fungal communities between sites that have and
have not experienced stand failure. Samples were taken from the soil and surface litter
near Winnemucca, Nevada, and in Skull Valley, Utah. Our results show distinct fungal
communities associated with stand failure based on both geography and sample type.
In both the Winnemucca and Skull Valley surface litter, there was an elevated abun-
dance of the endophyte Ramimonilia apicalis in samples that had experienced a stand
failure. Winnemucca surface litter stand failure samples had an increased abundance
of a potential pathogen in the genus Comoclathris. Skull Valley surface litter stand
failure samples had an increased abundance of an undescribed new species in the
Rustroemiaceae family which is responsible for the so-called bleach blonde syndrome
in cheatgrass, while the soils had an increased abundance of potential pathogens in
the genera Olpidium and Monosporascus.
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1 | INTRODUCTION

Cheatgrass (Bromus tectorum L.) is an invasive annual grass (Poaceae)
that has colonized large portions of Intermountain Western North
America. Native grass stands depleted by overgrazing have been
replaced by this invader (Mack, 1981). Originating in Eurasia, cheat-
grass has spread quickly in the dry climate found in the Intermountain
West. Cheatgrass will often establish itself in the open spaces be-
tween native plants (Ziska et al., 2005) where it provides a flamma-

ble layer of plant litter in midsummer that drastically increases the

frequency and intensity of rangeland wildfires (Brooks et al., 2004).
Historically, in sagebrush ecosystemes, fire intervals ranged between
60 and 110 years; however, once an area is invaded by cheatgrass, in-
creased fuel loads shorten the fire interval to 3-5 years (Whisenant,
1990). Following a burn, enough cheatgrass seeds survive that in
the following years, cheatgrass comes to dominate the community
(Beckstead et al., 2011). As cheatgrass spreads, more landscapes are
converted to cheatgrass monoculture in areas that were once domi-
nated by sagebrush (Ziska et al., 2005). By accelerating the fire cycle,

and displacing native plants, the invasion of cheatgrass represents
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a major threat to the biological diversity in the regions it invades
(D'Antonio & Vitousek, 1992).

Stand failure is a common but poorly understood naturally oc-
curring phenomenon in cheatgrass monocultures. Also known
as ‘die-off’, stand failure occurs when complete mortality of both
germinating seeds and preemergent seedlings prevents all seedling
establishment. When stand failures occur, large areas previously
occupied by a cheatgrass monoculture become largely empty of
any visible vegetation. Stand failures represent a natural form of
cheatgrass control and can provide an opportunity for native plant
restoration (Meyer et al., 2014). For example, when native grass
seeds were planted in a stand failure area, native grasses were able
to outcompete cheatgrass in the following years (Baughman et al.,
2016). Since stand failures were first observed in the 1930s, sev-
eral hypotheses for the occurrence of stand failures have been put
forth, ranging from abiotic factors such as weather to some differ-
ent fungal agents such as Microdochium nivale and Ustilago bullata
(Klemmedson & Smith, 1964; Meyer et al., 2010; Piemeisel, 1938).
Several fungal species have been identified that act as pathogens
toward cheatgrass, including Pyrenophora seminiperda, Epicoccum ni-
grum, an undescribed species of Fusarium belonging to the Tricinctum
group (Fusarium Link sp. n., FTSG) and an undescribed new species
in the family Rutstroemiaceae which is responsible for so-called
bleach blonde syndrome (Meyer et al., 2016). Pyrenophora semi-
niperda, E. nigrum, and FTSG are pathogens that kill seeds in the
seed bank and are potential stand failure causal agents (Beckstead
et al., 2007; Meyer et al., 2016; Stewart et al., 2009). Nevertheless,
Baughman and Meyer (Baughman & Meyer, 2013) suggested that
P. seminiperda may not be a direct cause of stand failure because of
its inability to kill rapidly germinating seeds. They concluded that it
could play a role in the rate of post-stand failure recovery through
its impact on dormant seeds in the carryover seed bank. Both FTSG
and E. nigrum can kill rapidly germinating, nondormant seeds, es-
pecially under conditions of low water potential, and have been
demonstrated to significantly reduce stand emergence under field
conditions (S. Meyer, unpublished data). The new Rutstroemiaceae
species is a crown-infecting pathogen that leaves cheatgrass plants
stunted and straw-colored, with inflorescences that fail to mature.
When the disease reaches epidemic levels in stands, it can cause the
plants to collapse en masse and form a mat of thick dense litter. As
the new Rutstroemiaceae species does not impact seeds or seedling
emergence, if it is a causal agent in stand failure, its effects must
be indirect. It is possible that the dense litter left behind by the dis-
ease could create an environment that promotes the attack of other
pathogenic fungi (Meyer et al., 2016).

The ability of known fungal pathogens to cause cheatgrass mor-
tality suggests they may play a role in stand failure. Despite the work
done on specific cheatgrass pathogens, the fungal community asso-
ciated with stand failures and with cheatgrass seedbeds, in general,
is poorly understood. The objective of the present research was to
use a metabarcoding approach to understand the fungal community
structure in soils where cheatgrass dominates and where stand fail-
ures have occurred. Our goal was to elucidate the causal agents of

stand failures and the potentially complex interactions among plant
pathogens and non-pathogenic fungi that may influence their im-
pact. We wished to test the hypothesis that whatever causes stand
failure persists in the soil and is manifested as a difference in fungal
community composition between stand failure and non-stand fail-
ure sites. We chose sampling sites in Skull Valley, Utah, and near
Winnemucca, Nevada based on modeling using remote sensing
technology (Weisberg et al., 2017). We reasoned that community
differences common to the Utah and Nevada study areas, separated
by hundreds of miles, would reflect shared, biologically important
differences between stand failure and non-stand failure sites. Our
strategy was to combine PacBio long-read sequencing of the ITS1
and ITS2 regions for maximizing taxonomic identification capability
with high-yield lllumina sequencing of the ITS1 region alone for max-

imizing depth of coverage.

2 | MATERIALS AND METHODS

2.1 | Collection of environmental samples

A remote sensing method, with access to the Landsat archive
(https://www.usgs.gov/land-resources/nli/landsat), was used to
find locations near Winnemucca, Nevada and within Skull Valley,
Utah that have experienced stand failure in the past 30 years.
(Weisberg et al., 2017). A total of 19 sites were identified, 10 near
Winnemucca and nine in Skull Valley, based on the year when a
stand failure last occurred (Appendix 1, Table A1). The year of the
most recent stand failure at each of these sites ranged from 1990 to
2015, with two sampling sites at each location where no-stand fail-
ure has been detected since Landsat data became available. At each
site, nine samples of surface litter and soil were collected at ran-
domly selected points along each of four 10-meter transects. Soil
samples were collected by pressing a tin can 6 cm diameter x 2.5 cm
height into the soil until flush with the surface, then lifting the can
and soil out with a small trowel and storing in a small paper sack.
The surface litter was removed and placed in a separate paper sack
before soil sample removal. For both litter and soil, three pools of
three samples each were created for each transect, yielding a total
of 12 soil and 12 litter pools at each site. Soil and surface litter pools
were dried at room temperature for 2 weeks and homogenized sep-
arately using a coffee grinder. DNA was extracted from 100 g of
each homogenized pool using a Quick-DNA Fecal/Soil Microbe Kit

(Zymo Research).

2.2 | Preparation of the long-read reference library
Of the 19 sites where samples were collected, 12 were chosen to
provide DNA sequence information for a taxonomic reference li-
brary by producing 20 super-pools (Appendix 1, Table A1). Soil DNA
and surface litter DNA super-pools for each of the eight sites were
created by combining equal amounts of DNA extracted from the 12
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individual pools described in the previous section. For the two sites
where no-stand failure has been detected, single soil and litter pools
were made from all samples collected at each location. Each of the
20 DNA super-pools was used to create an individual DNA sequenc-
ing library by PCR amplifying the ITS1 and ITS2 regions as well as
the intercalary 5.8S gene using AccuPrime Pfx DNA polymerase
(Invitrogen) with ITS4 and ITS5 primers (White et al., 1990). For li-
brary preparation and sample identification, the primers were modi-
fied by adding 20 unique PacBio barcode tails (Appendix 1, Table
A2). The following conditions were used for PCR: initial denaturation
at 95°C for 3 min, 25 cycles of denaturation (95°C for 30 s), annealing
(52°C 30 s), and extension (72°C 1 min) and a final extension step at
72°C for 5 min. The PCR products were cleaned using a Zymo DNA
Clean and Concentrator kit (Zymo Research). The 20 libraries were
submitted to the BYU DNA Sequencing Center for sequencing on
a PacBio Sequel platform using a standard Amplicon protocol with
SMRTbell adapters. Subsequent analysis was done using Qiime2
version 2018.4. Demultiplexed sequences from read files were im-
ported into a single-end QIIME2 artifact. Chimeric sequences were
removed, sequences were dereplicated, and ASVs were identified at
97% similarity using vsearch (Rognes et al., 2016). Taxonomy was as-
signed using the QIIME Naive Bayes classifier (Bokulich et al., 2018)
and the UNITE version 8.0 fungal database (Nilsson et al., 2018) as
a reference. The sequences and their taxonomic assignments were
combined with a downloaded version of the UNITE fungal database
to use for the taxonomic assignment of Illumina sequences as de-

scribed below.

2.3 | Short-read sequencing

All individual samples were used to prepare the Illumina short-read
library. With two types of samples per site (surface litter and soil),
12 replicates in each sample type, and 19 sites, there were a total of
456 samples. Using a two-step PCR strategy (Cruaud et al., 2017),
the ITS1 region of the fungal genome was amplified, followed by bar-
coding and multiplexing. AccuPrime Pfx DNA polymerase was used
for all amplifications. In the first step, the ITS1 region was ampli-
fied using primers ITS2-KYO2 and ITS1-F_KYO1 (Toju et al., 2012)
and the following parameters: initial denaturation at 95°C for 3 min,
followed by 25 cycles consisting of denaturation (95°C for 30 s), an-
nealing (52°C 30 s), and extension (72°C 1 min) and a final extension
step at 72°C for 5 min. In the second PCR, step barcodes were added
to the amplified region (Appendix 1, Table A3 and A4) using parame-
ters identical to the first step except that there were 12 cycles rather
than 25, and the annealing temperature was 55°C instead of 52°C.
Samples were pooled and submitted to the BYU DNA Sequencing
Center for 2 x 250 sequencing on an lllumina HiSeq 2500 platform
using custom sequencing primers ITS2-KYO2 and ITS1-F_KYO1
(Toju et al., 2012). After sequencing, reads were automatically de-
multiplexed and returned as paired-end reads. The lllumina reads
are available in the Short Read Archive of GenBank under project
PRIJNA668186.

Open Access,

The sequenced reads were imported into QIIME2 where the
paired-end reads were joined, chimeric sequences were removed,
sequences were dereplicated, and ASVs were called using the
DADAZ2 pipeline (Callahan et al., 2016). Using the QIIME2 Naive
Bayes classifier (Bokulich et al., 2018), a combined database of the
previous PacBio runs, and the UNITE database (Nilsson et al., 2018),
each ASV was assigned a taxonomic identity. Sequences that were
not found in at least 12 samples were removed. Samples were rar-
efied to 10,000 reads per sample, to maximize reads per sample and
minimize sample loss (Appendix 2, Figure B1). After rarefying the
data, the rarefied tables were subsetted individually before per-
forming analyses. The groups were as follows: (1) all samples; (2)
soil samples from Skull Valley; (3) surface litter samples from Skull
Valley; (4) soil samples from Winnemucca; and (5) surface litter sam-

ples from Winnemucca.

2.4 | Analysis of the long- and short-read
sequence data

Using the ASV table created from the Illlumina sequencing, weighted
and unweighted Unifrac distance matrices were calculated in
QIIME2 (Caporaso et al., 2010) and used in principal coordinate
analysis (PCoA) plots and for PERMANOVA. PERMANOVA was per-
formed using the R vegan package (Oksanen et al., 2019). Using anal-
ysis of composition of microbiomes (ANCOM) (Mandal et al., 2015),
ASV tables from each of the four primary sample groups were tested
for differences in the composition of microbiomes between sample
treatments. To find differences in fungal abundances of previously
hypothesized causes of stand failure (Meyer et al., 2016) that may
have been missed due to ANCOM's multiple comparison correction,
we performed Wilcoxon signed-rank tests in R. The Faith phyloge-
netic diversity (Faith, 1992) and Shannon diversity (Pielou, 1966)
were calculated in QIIME2.

3 | RESULTS

3.1 | Soil fungal communities vary with soil type,
geographic location, and history of stand failure

We used a two-step approach to sequencing the fungal DNA in the
sampled soils. First, we created a reference library of sequences
in the samples by sequencing an amplicon of the fungal ITS1 and
ITS2 regions, as well as the intercalary 5.8S gene as a single read
using PacBio sequencing technology. Ten pools of samples from the
surface litter and ten pools of samples from the soil were gener-
ated from 10 of the 19 sampling locations (Appendix 1, Table A1).
Sequencing of the ITS amplicons from these pools yielded 123,664
reads (per pool mean 6182 + 1440 reads; median 6319 reads) and
614 fungal operational taxonomic units (OTUs). Using the UNITE
database, taxonomic assignments were made to the species level
for 28% of OTUs (Appendix 1, Table A5). In the second step, we
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sequenced the ITS1 amplicons for each soil sample individually on
the lllumina HiSeq platform yielding 13,000,017 reads (per pool
mean 28,509 + 67,274 reads; median 8677 reads). After quality fil-
tering, the reads were assigned to a total of 525 amplicon sequence
variants (ASVs). Use of the ITS1/2 reference set increased assign-
ment of reads at the species level from 37.99% to 43.82% (Appendix
1, Table A5). Rarefaction curves suggested adequate saturation of
the sampling (Appendix 2, Figure B1). Of all ASVs, 84% were as-
signed to just 30 taxonomic groups, primarily from the Ascomycota
and Basidiomycota (Appendix 1, Table Aé; Appendix 2, Figure
B2), and just 3 ASVs were ‘core’, or present in all rarefied samples
(Appendix 1, Table A7). Some ASVs were also detected that corre-
spond to the new Rutstroemiaceae species, FTSG, E. nigrum, P. semi-
niperda, U. bullata, and Microdochium sp., all of which are known
pathogens of cheatgrass (Klemmedson & Smith, 1964; Meyer et al.,
2016; Piemeisel, 1938). Overall, the taxa identified by the analysis
follow expected norms and included candidate species that could
potentially have been responsible for cheatgrass stand failures in the
affected areas.

PERMANOVA and principal coordinate analysis (PCoA) were
used to define the factors that contributed to variation in the sam-
pling site fungal communities (Figure 1). Fungal microbiota composi-
tion varied significantly with each sample type (soil or surface litter),
location (Skull Valley, UT, USA or Winnemucca, NV, USA), and history
of stand failure (yes or no) according to both of the weighted and
unweighted Unifrac distance metrics examined (Table 1). Because
sample type and location were each significant covariates in the
analysis, the data were split into four sampling groups to focus on
the variation in fungal communities arising from stand failure history
(Table 2). These individual analyses showed significant differences in
fungal community composition of the surface litter with stand fail-
ure in both Skull Valley and Winnemucca, except for the Skull Valley
samples when analyzed by weighted Unifrac distance. In contrast,

there were no significant differences in the fungal composition of
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soil samples from either Winnemucca or Skull Valley by either met-
ric. Together, these results suggest that in areas that experienced a
cheatgrass stand failure, the fungal communities of surface litter are
more strongly impacted by the causal conditions than are the soil
communities.

Analysis of composition of microbiomes (ANCOM) revealed
specific ASVs that varied in abundance with stand failure in the
surface litter at each site (Table 3). Among these, just two ASVs
were more abundant in stand failure sites versus no-stand fail-
ure litter samples at both Winnemucca and Skull Valley: one as-
signed to the class Tremellomycetes and another to the species
Ramimonilia apicalis. None of the known cheatgrass pathogens
varied significantly between stand failure and non-stand failure
sites. We also used ANCOM to identify fungal ASVs that varied
with sample type and location, independent of stand failure, re-
vealing 103 and 30 ASVs that varied significantly with location
(Appendix 1, Table A8), and sample type (Appendix 1, Table A9),
respectively. These included FTSG having a greater abundance
in soils, and Winnemucca having a greater abundance of the new

Rutstroemiaceae species.

3.2 | «-Diversity varies minimally with sample
type, but not location or stand failure history

Faith and Shannon diversity metrics were used to test for differ-
ences in a-diversity in the fungal communities within the year, sam-
ple type, location, and history of stand failure (Appendix 2, Figures
B3 and B4). The soil samples had larger Faith and Shannon diversity
index values than surface litter, indicating a greater diversity of fungi
present in the soil compared to the surface litter. Also, Winnemucca
samples had higher Shannon diversity values than did samples from
Skull Valley. All other differences, including with history of stand
failure, were non-significant. Together, these data reveal greater

© No Recorded Stand Failure
® Has Experienced a Stand Failure

= Skull Valley Surface Litter

= Skull Valley Soil

=™ Winemucca Surface Litter
Winemucca Soil

00 02 04 —04
Principle Coordinate 2 (7.2%)

FIGURE 1 Principal coordinate plots of ITS1 ASVs, including (a) the first two principal coordinates and (b) the two principal coordinates, 2
and 5, that best show visual separation of the samples by the two main variables
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Weighted Unweighted
df ss Ms R R? p df ss Ms F R? p
Sample type 1.07 1.07 6.66 0.03 0.005 1 1 1 10.14 0.04 0.001
Location 1.33 1.33 8.3 0.04 0.001 1 1.35 1.35 13.73 0.06 0.001
Stand failure 0.38 0.38 2.36 0.01 0.054 1 0.3 0.3 3.02 0.01 0.001
history
Location*Stand 0.55 0.55 3.45 0.01 0.014 1 0.27 0.27 2.76 0.01 0.001
failure histroy
Residuals 211 33.9 0.16 0.91 211 20.71 0.1 0.88
Total 215 37.232 1 215 23.62 1
Abbreviations: df, degrees of freedom; F, F statistics; MS, mean of squares; p, p-value; Rz, R? value; SS, sum of squares.
TABLE 2 Subsampled PERMANOVA results
Weighted Unweighted
df 3 MS F R? p df SS MS F R? p
Winnemucca soil
Stand failure 1 0.19 1.88 1.16 0.02 0.28 1 0.14 0.14 1.54 0.03 0.052
history
Residuals 49 7.92 0.16 0.98 49 4.58 0.09 0.97
Total 50 8.11 1 50 4.72 1
Winnemucca surface litter
Stand failure 1 0.30 0.30 1.87 0.03 0.09 1 0.16 0.16 1.54 0.02 0.04
history
Residuals 64 10.36 0.16 0.97 64 6.51 0.10 0.98
Total 65 10.66 1 65 6.67 1
Skull valley soil
Stand failure 1 0.17 0.17 1.16 0.03 0.3 1 0.22 0.22 2.30 0.05 0.002
history
Residuals 40 5.74 0.14 0.97 40 3.86 0.10 0.95
Total 41 591 1 41 4.09 1
Skull valley surface litter
Stand failure 1 0.63 0.63 3.74 0.06 0.018 1 0.24 0.24 2.52 0.04 0.001
history
Residuals 5 9.20 0.17 0.94 55 5.27 0.10 0.96
Total 56 9.82 1 56 5.51 1

taxonomic diversity in soil versus surface litter samples and greater
diversity in the Winnemucca samples than Skull Valley.

3.3 | Long-term signal in fungal community
composition

One hypothetical expectation is that there is a linear change in the
abundance of specific, possibly causal, fungal species with time from
stand failure. If so, the fungal communities at sites with recent ver-
sus distant stand failures might be expected to be very different in
composition. We tested if this was the case in our data by examin-
ing the difference between each stand failure site, relative to the

control no-stand failure sites, with time. We used weighted Unifrac
distances for this analysis (Appendix 2, Figure B5). Weighted Unifrac
distances of surface litter, but not soil, samples from both Skull Valley
and Winnemucca varied significantly over time. At Winnemucca,
only the 2015 site differed in distance to the non-stand failure sites,
whereas at Skull Valley, all years that had experienced a stand failure
differed from the non-stand failure sites.

An alternative hypothesis to linear change with time is that the
fungal community is permanently changed following stand fail-
ure. If this were the case, all sites that experienced a stand fail-
ure would be more closely related to each other than to the sites
that had never experienced a stand failure. To test this hypothesis,
we compared the Unifrac distances of samples from each year to
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all other samples, binned into stand failure or non-stand failure
3 groups (Appendix 2, Figure B6). Unweighted Unifrac distances in
g Skull Valley, but not Winnemucca, sites consistently showed that
< <

c = = E years affected by a stand failure were more similar to other stand

'%_ 5 - S - B failure sites than to sites that had not experienced a stand failure.
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FIGURE 2 The abundance of the undescribed Rutstroemiaceae
species. Log abundance in samples that have (yes) and have not (no)
had a stand failure in the past

divergence from samples collected in areas that never experienced
a die-off (Skull Valley, UT). Because this effect was detected using
weighted, but not unweighted Unifrac distances, this implies there
are significant differences in the abundances of fungal species of
sites affected by stand failure compared to those not affected by
stand failure (Appendix 2, Figure B4). The community effects appear
to be limited to the surface litter and more prevalent in Skull Valley,
though the reasons for this are unknown and may be related to the
soil composition or chemistry, the environment, elevation, or other
uncharacterized factors.

In at least some sites that are affected by a stand failure,
the fungal community showed changes that persist for at least
28 years (Appendix 2, Figure B5). As these results were seen in the

unweighted, but not weighted distances, they may affect the pres-
ence, but not abundance, of key community members.

More abundant ASVs at stand failure sites could be implicated
as causal agents of stand failure; alternatively, as organisms whose
growth was promoted by stand failure. Other interpretations are
that other fungi differentially abundant in the different locations
were separate and independent causes of stand failure; or that fun-
gal communities surveyed in years after stand failure do not directly
reflect the causes of stand failure. Despite this, our data still suggest
that cheatgrass stand failure has long-term effects on the fungal
community of surface litter up to 28 years after a stand failure.

4.3 | Fungi with increased abundances

A shared finding between the two geographic areas is that R. apica-
lis (GenBankID MK281667.1) and an unidentified fungus belonging
to the class Tremellomycetes (GenBanklD MK281810.1) are more
abundant at stand failure sites in both study locations. The envi-
ronmental consequences of R. apicalis presence are unknown, but
it has been identified previously as a rock-inhabiting fungus in Spain
(Egidi et al., 2014), in the brain tissue of Alzheimer patients (Alonso
et al., 2017), and as an endophyte in cheatgrass communities (Ricks
& Koide, 2019). Endophytes live within plants, mostly without caus-
ing disease; however, with varying environmental conditions, en-
dophytes can change to pathogens (Jia et al., 2016; Rai & Agarkar,
2016), and we cannot rule out that environmental cues could trigger
R. apicalis to act as a pathogen toward cheatgrass. Conversely, we
favor an explanation where the Tremellomyctes ASV grows oppor-
tunistically under stand failure conditions. There is little evidence
of fungi of this class being pathogenic toward any type of plant, al-
though they can be pathogenic toward animals and other fungi (van
der Klei et al., 2011). Therefore, it seems more likely to us that the
fungus belonging to the Tremellomycetes interacts with the stand
failure fungal community in a way that allows it to thrive, although
the mechanisms for such actions are currently unknown.

The new Rutstroemiaceae species is the only known cheatgrass
pathogen (Meyer et al., 2016) that displayed greater abundance in
stand failure versus no-stand failure sites in our study (Figure 2).
These data suggest it may have had a role in stand failure in at least
two distinct locations in the Intermountain West.

5 | CONCLUSIONS

Overall, this study gives a greater understanding of the fungal dynam-
ics within cheatgrass soils and surface litter. Fungi found commonly
in these environments have been identified. Our analysis confirmed
key differences in the overall community composition, as well as the
abundance of individual members of the fungal community, in areas
that did or did not experience cheatgrass stand failure. Most differ-
ences with stand failure were concentrated in the surface litter and
were geography-specific. The increased abundance of R. apicalis in
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the surface litter of both Skull Valley and Winnemucca was a shared
difference between locations. Additionally, the abundance of fungal
pathogens such as Olpidium sp., Monosporascus sp., and Comoclathris
sp. warrants further investigation to determine whether these are
causal agents of stand failure. Together, these findings provide insight
into the fungal community of a largely unstudied system.

There has been considerable debate over the use of ITS1 or ITS2
as a marker for taxonomic identification in fungal metabarcoding,
including potential biases introduced by the selection of primers
used to amplify these regions (Bellemain et al., 2010; Blaalid et al.,
2013; Ihrmark et al., 2012; Li et al., 2020; Monard et al., 2013; Toju
et al.,, 2012; Yang et al., 2018). Our choice to sequence the entire
ITS region using the PacBio platform was motivated by the inher-
ent limitations of taxonomic identification using ITS1 or ITS2 alone.
Nevertheless, we recognize that the choice of ITS1 rather than ITS2
in our second sequencing step on the lllumina platform may have
introduced biases that caused us to miss important species that are
causal to stand failure.

Another limitation of our design is that by the time we had sam-
pled each of our post-stand failure soils, cheatgrass was growing
abundantly in all locations. Stand failure is temporary, after which
cheatgrass communities recover and quickly fill the space. This usu-
ally rapid re-colonization means that there are few or no areas of
sustained cheatgrass stand failure. It may also mean that we should
not have expected to find fungal pathogens responsible for the stand
failure in these areas unless the recovery growth of cheatgrass is of
pathogen-resistant cheatgrass lineages. An interesting idea for future
study would be to collect samples from areas experiencing a stand
failure in real time, and test whether specific pathogens are common
to these areas. Such additional studies could find the use of our PacBio
reference, or the description of common fungal organisms across a

variety of conditions and soil types, a useful benchmark comparison.
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APPENDIX A

TABLE A1 GPS coordinates of sampling locations along with

years in which stand-failures were detected

Year GPS
Skull Valley, Utah

None 40.1419 112.668
None 40.13996 -112.641
1990 40.1388 -112.711
2008 40.17711 -112.728
2009 40.39453 -112.948
2010 40.2752 -112.631
2013 40.32838 -112.777
2014 40.34031 -112.686
2015 40.29299 -112.77
Winnemucca, Nevada

None 40.69066 -117.894
None 40.6989 -117.899
1990 40.69205 -117.938
2003 40.68962 -117.964
2009 40.69183 -117.959
2009 40.69305 -117.923
2010 40.69839 118.044
2013 40.69445 -117.938
2014 40.68664 -117.983
2015 40.68791 -117.966

Reference®

xb
Xb

X X X X

X X X X

2An X indicates locations where samples were used to generate the

long-read reference library.

bSamples from these two sites were combined to generate a single

pooled sample.

“Samples from these two sites were combined to generate a single

pooled sample.

TABLE A2 PacBio Barcodes used for
surface litter and soil samples

Years of detected stand
failure

Utah
None
2010
2013
2014
2015

Nevada
None
2010
2013
2014
2015

Soil

GTGTGAGATATATATC
ACACACAGACTGTGAG
GCAGACTCTCACACGC
ATGCTCACTACTACAT
CGCATCTGTGCATGCA

GCTCGTCGCGCGCACA
GCGCGATACGATGACT
ACTCTCGCTCTGTAGA
CTGCGCAGTACGTGCA
GAGATACGCTGCAGTC
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Litter

TCAGACGATGCGTCAT
TCAGACGATGCGTCAT
TCACACTCTAGAGCGA
GTACACGCTGTGACTA
TGCTCGCAGTATCACA

TATCTCTGTAGAGTCT
TCTATGTCTCAGTAGT
TGCGAGCGACTCTATC
GACAGCATCTGCGCTC
CAGTGAGAGCGCGATA
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TABLE A3 Forward primers used in lllumina sequencing

Forward primers

GGCCATAT
AGAGCAGT
ACCTGTTC
TATAGCGC
GTACGATC
CACTTCTG

Reverse primers

CCGCTTAT
CTACAGCA
AACGTTGC
AGGAGTTG
GGATCCAT
ACTCTGTC
CATGTGCA
ACCTTGCT
AACGAACG
CAACCTAG

TTCGATGG
CTCTAGAG
CAGACTCA
GTAGAGGT
AGTGGTGA
ATGGCCTA

GAAGCAAC
GTGTCTCT
AGGAACCA
GAGTCAGA
GTGAGTGA
CCTAGGAT
TGACTGTG
TTGCTACC
GTACCAAC

GTGTCACA
AACCGGTT
AGTGTCTG
CAGTCTCT
GTGTTCTC
AGTCTGTG

TCGTACCT
AAGGATGC
GGTTGCAT
GTGTAGTC
TTCGTTCG
TGTGAGAG
GTACCTAG
CATCACCT
CGTTCCTA

ACGTGATC
TGGTCAAC
CTTGGTAG
ATCGGCAT
TGAGGACA
AACCTTCC

GAGAGAGA
GTAGACCT
GTTGCTAG
AGAGCACA
CAAGCAAG
CTTGGTAG
AACCAACC
GAGTACAG
TGTGTGAC

TABLE A5 The percentage of reads assigned to each taxonomic
level using data from PacBio sequencing and the UNITE database
to create a reference library and Illumina sequencing data and the
UNITE database with (+) or without (-) the reference library

Taxonomic level
Species

Genus

Family

Order

Class

Phylum
Kingdom

PacBio

28.49
71.48
87.75
93.40
94.84
96.17
98.52

llumina
+reference

43.82
78.50
83.23
88.35
91.98
92.37
99.92

llumina
-reference

37.99
41.88
43.01
45.94
46.58
74.74
99.99

TGTCGACA
TCTCACTG
CAGATGTC
CACAACAC
ATCGTTCC
ACCAGTAC
AGAGACAC
TTCCATGC
GAGTAGAC

TABLE A4 Reverse primers used in
Illumina sequencing
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TABLE A7 lllumina ASVs found in every sample
Taxonomy
Phylum Class Order Family Genus Species
Ascomycota Dothideomycetes Pleosporales Lentitheciaceae Keissleriella
Ascomycota Dothideomycetes Pleosporales Sporormiaceae Preussia

Basidiomycota

Tremellomycetes

Tremellales

Bulleribasidiaceae

Vishniacozyma V. globispora
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FIGURE B1 Rarefaction curve, representing the number of ASVs found at each rarefaction level
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FIGURE B2 Krona Chart. Visualization of the taxonomic
assignment of sequencing reads. The inner ring is phylum; then
class, order, family, genus, species. The outer ring represents ASVs
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FIGURE B3 Comparison of Faith Diversity between groups. (a) Comparing diversity of differing years in which a stand failure occurred.
(b) Comparing the diversity of both sample types. (c) Comparing the diversity between both locations, Skull Valley Utah and Winnemucca
Nevada. (d) Comparing the diversity between samples that have experienced a stand failure in the past (Yes) and those that have not (No)
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FIGURE B4 Comparison of Shannon Diversity between groups. (a) Comparing diversity of differing years in which a stand failure
occurred. (b) Comparing the diversity of both sample types. (c) Comparing the diversity between both locations, Skull Valley Utah and
Winnemucca Nevada. (d) Comparing the diversity between samples that have experienced a stand failure in the past (Yes) and those that
have not (No)
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FIGURE B5 Unifrac distances to non-stand failure. The weighted unifrac distance of each year to sites that had never had a stand failure
(NDO). Above each box shows the groupings by multicomp analysis. (a) Surface litter from Winnemucca, Nevada., (b) shows the soil from
Winnemucca Nevada, (c) shows the surface litter from Skull Valley Utah and (d) shows the soil from Skull Valley Utah
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FIGURE Bé Distances of samples from each year to samples all stand failure sites (Ex. 1990 _ DO) compared with samples of all non-
stand failure sites (1990_NDO). (a) Skull Valley Soil (b) Skull Valley Surface Litter (c) Winnemucca Soil (d) Winnemucca Surface Litter



