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Abstract Generation of tolerogenic peripheral regulatory T (pTreg) cells is commonly thought to

involve CD103+ gut dendritic cells (DCs), yet their role in commensal-reactive pTreg development is

unclear. Using two Helicobacter-specific T cell receptor (TCR) transgenic mouse lines, we found that

both CD103+ and CD103– migratory, but not resident, DCs from the colon-draining mesenteric

lymph node presented Helicobacter antigens to T cells ex vivo. Loss of most CD103+ migratory

DCs in vivo using murine genetic models did not affect the frequency of Helicobacter-specific

pTreg cell generation or induce compensatory tolerogenic changes in the remaining CD103– DCs.

By contrast, activation in a Th1-promoting niche in vivo blocked Helicobacter-specific pTreg

generation. Thus, these data suggest a model where DC-mediated effector T cell differentiation is

‘dominant’, necessitating that all DC subsets presenting antigen are permissive for pTreg cell

induction to maintain gut tolerance.

Introduction
The intestinal immune system is required to balance maintaining tolerance to commensal bacteria

while preserving the capability of mounting an inflammatory response to pathogenic bacteria. Com-

mensal bacterial induction of tolerogenic peripheral regulatory T (pTreg) cells, and not pro-inflam-

matory effector T cells, appears to be important for preserving immune homeostasis and health and

preventing the development of inflammatory bowel disease (IBD) (Blander et al., 2017; Imam et al.,

2018; Shale et al., 2013).

A substantial body of evidence suggests that the process by which naı̈ve CD4+ T cells are

selected to be pTreg vs effector T cells is directed by specific conventional dendritic cell (cDC) sub-

sets. For example, cDC1s direct the differentiation of Th1 T cells through their production of IL-12.

In a similar fashion, subsets of cDC2s have been shown to be important for both Th2 and Th17 dif-

ferentiation (Durai and Murphy, 2016).

In the intestine, CD103+ cDCs comprising both CD103+ CD11b– cDC1s and CD103+ CD11b+

cDC2s are commonly thought to induce the differentiation of pTreg cells from naı̈ve T cells

(Hasegawa and Matsumoto, 2018; Scott et al., 2011; Takenaka and Quintana, 2017;

Tanoue et al., 2016). The studies that initially characterized this subset as the predominant pTreg
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cell-inducting subset of cDCs were primarily done in vitro and determined that the pTreg cell-induc-

ing properties of mixed CD103+ CD11b– cDC1 and CD103+ CD11b+ cDC2 populations were depen-

dent on TGF-b, the retinoic acid-producing enzyme retinaldehyde dehydrogenase (RALDH), and the

tryptophan-catabolizing enzyme indoleamine 2,3-dioxygenase (IDO) (Coombes et al., 2007;

Huang et al., 2013; Matteoli et al., 2010; Sun et al., 2007). Importantly, the early studies examin-

ing CD103+ cDCs (Coombes et al., 2007; Sun et al., 2007) were performed before it was appreci-

ated that this population included both cDC1s and a subset of cDC2s. These early studies also did

not discriminate between migratory and resident cDC subsets in the mesenteric lymph nodes (MLN)

or between CD11c+ cDCs and macrophages in the colon lamina propria (cLP), therefore confound-

ing comparisons of CD103+ and CD103– cDC subsets in pTreg induction (Coombes et al., 2007;

Huang et al., 2013; Matteoli et al., 2010; Sun et al., 2007). In addition to these in vitro experi-

ments, in vivo studies have suggested that CD103+ cDC1s and cDC2s are important for ovalbumin

(OVA)-specific pTreg cell differentiation in a model of oral tolerance. Esterhazy et al. used

Zbtb46Cre::Irf8fl/fl mice to deplete cDC1s and Mazzini et al. used Itgax-Cre::Gja1fl/fl mice to delete

Connexin 43 in all CD11c+antigen presenting cells (APCs), finding a defect in antigen presentation

by small intestine CD103+ CD11b+ cDC2s; however, the conclusion that CD103+ cDC1s and cDC2s

are critical may have been confounded by the deletion of these targeted genes in all cDC subsets

(Esterházy et al., 2016; Mazzini et al., 2014). Finally, Welty et al. showed that depletion of CD103+

cDC1s and cDC2s in CD207-DTA::Batf3–/– mice resulted in decreased polyclonal CD4+ T cell num-

bers in the small intestine lamina propria, including Treg cells (Welty et al., 2013). Although this lat-

ter study cannot address whether CD103+ cDC1s and cDC2s contributed to pTreg cell induction vs

maintenance, these data add to the body of literature supporting the notion that CD103+ cDC1s

and cDC2s are important for pTreg cell induction.

Recently, this prevailing concept that CD103+ cDC1s and cDC2s are the primary inducers of

pTreg cells in the intestine has been challenged. One study of colonic tolerance to OVA enema

showed that protection against delayed-type hypersensitivity (DTH) could be mediated by CD103–

CD11b+ cDC2s (Veenbergen et al., 2016). As the draining LN of OVA enema are the iliac and cau-

dal LNs, which naturally lack CD103+ CD11b+ cDC2s, the use of Batf3–/– mice eliminated the only

CD103+ cDCs in these LNs, the CD103+ cDC1s. The notion that CD103– CD11b+ cDC2s are suffi-

cient for inducing OVA-specific Treg cells was supported by in vitro experiments, but in vivo OVA-

specific Treg induction after OVA enema in Batf3–/– mice was not assessed. Similarly, we previously

found that colonic Helicobacter-specific pTreg cell differentiation was unaffected in Batf3–/– mice

(Nutsch et al., 2016). However, one caveat of our study is that Batf3-deficiency may only result in a

partial decrease in cDC1s in intestinal tissues (Tussiwand et al., 2012) and does not eliminate

CD103+ CD11b+ cDC2s in the MLN draining more proximal portions of the GI tract. Another study

found that MHC Class II expression in CX3CR1+ mononuclear phagocytes, thought to be a subset

apart from CD103+ cDC1s and cDC2s (Bogunovic et al., 2009), is required for pTreg cell induction

in oral tolerance and that CX3CR1+ mononuclear phagocytes are required for pTreg cell differentia-

tion in commensal tolerance in Rag2–/– host mice (Kim et al., 2018). These studies therefore argue

that non-CD103+ DCs are important or redundant for Treg cell development. However, it is possible

that the ‘tolerogenic’ cDC subset differs for oral or per rectum administered soluble proteins vs. nat-

urally colonized commensal bacterial antigens. Thus, the importance of cDC subsets for the induc-

tion of intestinal pTreg cells remains an open area of study (Mowat, 2018).

Previously, we identified two colonic T cell clones (CT2 and CT6) that undergo pTreg cell differen-

tiation in response to distinct Helicobacter (H.) species, H. typhlonius or H. apodemus, respectively

(Chai et al., 2017). Colonic Helicobacter species reside in close proximity to the intestinal epithelium

within the mucous layer in the crypts (Recordati et al., 2009) and are classified as pathobionts that

cause inflammation in susceptible hosts, yet are pervasive in healthy hosts (Fox et al., 1999;

Taylor et al., 2007). At homeostasis, Zbtb46+ cDCs are essential for presenting H. typhlonius and H.

apodemus to naı̈ve T cells in the colon-draining distal MLN (dMLN); naı̈ve Helicobacter-specific T

cells are not activated in vivo in the absence of cDCs (Chai et al., 2017; Lathrop et al., 2011;

Nutsch et al., 2016). However, the specific cDC subset that presents Helicobacter antigens to naı̈ve

T cells and mediates pTreg cell selection remains unknown.

Here, we examine the role of cDC subsets in presenting antigens from Helicobacter to naı̈ve T

cells and how they influence naı̈ve T cell differentiation. Our data argue against the hypothesis that

CD103+ cDC1s and cDC2s represent specialized cDC subsets required for presentation of gut
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commensal antigens and pTreg cell induction. Rather, our data support the notion that unlike certain

cDC functions, induction of commensal-specific Treg cells in the periphery is not restricted to a spe-

cific migratory cDC subset. These data support a model in which pTreg cell development is ‘reces-

sive’ such that all cDCs presenting cognate antigen to a given naı̈ve T cell must be permissive for

the induction of FOXP3, and that the presence of antigen-carrying cDCs that induce canonical effec-

tor T cell development ‘dominantly’ blocks pTreg cell generation.

Results

Migratory cDCs present Helicobacter antigens during homeostasis
If a specific subset of cDCs facilitates the conversion of commensal-specific T cells into pTreg cells,

then this subset should present Helicobacter antigens on MHC Class II. We therefore sought to

determine the cDCs that present Helicobacter antigens in vivo. First, we asked whether Helicobacter

antigens are presented by cDCs resident in the dMLN vs those that migrate from the colon. Lymph

node resident cDCs may acquire soluble antigens either from lymphatic drainage from the colon or

transfer from migratory cDCs (Allan et al., 2006; Hor et al., 2015; Sixt et al., 2005). In contrast,

migratory cDCs have been shown to pick up antigens in the intestine lamina propria through a vari-

ety of mechanisms and then move through afferent lymphatics to the draining MLN (Cerovic et al.,

2013; Farache et al., 2013; Mazzini et al., 2014; McDole et al., 2012; Worbs et al., 2006).

To directly examine which of these cDC subsets are loaded with Helicobacter antigen in vivo, we

sorted resident (MHC IIint CD11chi) and migratory (MHC IIhi CD11cint) cDCs (Satpathy et al., 2012)

from the dMLN and co-cultured them with naı̈ve Helicobacter-specific T cell receptor (TCR) trans-

genic cells that recognize H. typhlonius (CT2) or H. apodemus (CT6) (Figure 1—figure supplement

1A; Chai et al., 2017). TCR activation was assessed by CD25 upregulation. We observed that migra-

tory cDCs were much more efficient than resident cDCs at activating both CT2 and CT6 TCR trans-

genic T cells, as assessed by the percentage of activated CD25+ cells and CD25 median

fluorescence intensity (MFI), a measurement for magnitude of activation within individual cells

(Figure 1A). When exogenous autoclaved Helicobacter antigens were added to the cultures, resi-

dent cDCs were actually more efficient than migratory cDCs at activating naı̈ve T cells, confirming

that resident cDCs are fully capable of antigen uptake, processing, and presentation (Figure 1B).

Migratory cDC stimulation of T cells was MHC Class II-dependent, as it could be blocked by addition

of monoclonal anti-MHC Class II blocking antibody to the culture (Figure 1—figure supplement

1B). In summary, these ex vivo data show that migratory, but not resident, cDCs in the dMLN pres-

ent Helicobacter antigens during homeostasis.

We then addressed whether genetic ablation of a receptor necessary for efficient cDC migration

would affect CT2 and CT6 T cell activation in vivo. Ccr7–/– mice lack a critical chemokine receptor for

cDC trafficking to the lymph node and therefore lack most migratory cDCs in the dMLN

(Mikulski et al., 2015; Ohl et al., 2004; Satpathy et al., 2012). One week after transfer of naı̈ve

TCR transgenic cells into Ccr7+/– or Ccr7–/– mice, we observed a striking decrease in T cell activation,

as measured by the number of recovered CT2 and CT6 cells in the dMLN after adoptive transfer, as

well as a decrease in the induction of Foxp3+ CT2 and CT6 cells (Figure 1C). A caveat of these

results is that CCR7 is required for the development of normal lymphoid organ architecture and T

cell entry into lymph nodes, resulting in altered immune responses in host mice (Förster et al.,

2008). Nevertheless, these in vivo Ccr7–/– results are consistent with the ex vivo cDC results

described above, and together these data demonstrate an important role of migratory cDCs in the

activation of naı̈ve Helicobacter-specific T cells.

All migratory cDC subsets present Helicobacter antigens
We next asked which subset(s) of migratory cDCs are capable of activating naı̈ve CT2 and CT6 T

cells. For these studies, we sorted single positive CD103+ CD11b– (CD103+ SP) cDC1, double posi-

tive CD103+ CD11b+ (DP) cDC2, and single positive CD103– CD11b+ (CD11b+ SP) cDC2 subsets of

migratory cDCs. We assessed cDC purity using Zbtb46GFP mice (Figure 2—figure supplement 1A),

which express GFP in cDC lineage cells as well as monocyte-derived cDCs during inflammation, but

not in macrophages (Satpathy et al., 2012). This revealed that about 15–25% of CD103– CD11b+

sorted cells are F4/80lo/intZbtb46GFP– (Figure 2—figure supplement 1A) and likely represent a

Russler-Germain et al. eLife 2021;10:e54792. DOI: https://doi.org/10.7554/eLife.54792 3 of 29

Research article Immunology and Inflammation

https://doi.org/10.7554/eLife.54792


0

5

10

15

0

20

40

60

80

100

0

20

40

60

0

20

40

60

80

100

0

1000

2000

3000

0

500

1000

1500

2000

A Resident cDCs Migratory cDCs
C

T
2

CD25

C
D

4

 C

C
T

6

C
T

6

+
 H

. 
a
p
o
d
e
m

u
s

%
 C

D
2
5

+

C
D

2
5
 M

F
I 
o
f 

C
D

2
5

+
 C

e
lls

 (
x
1
0

3
)

**
p = 0.056p = 0.068 **

B

C
T

2

+
 H

. 
ty

p
h
lo

n
iu

s

Ccr7+/- Ccr7-/-

he
t

K
O

T
o
ta

l 
C

T
2
 i
n
 d

M
L
N

T
o
ta

l 
C

T
6
 i
n
 d

M
L
N

CD25

F
o
x
p
3

Ccr7

******

%
 F

o
x
p
3
 

%
 F

o
x
p
3

**** ****

0

20

40

60

80

100

CD25

C
D

4

Resident cDCs Migratory cDCs

CT2

%
 C

D
2
5

+

C
D

2
5
 M

F
I 
o
f 

C
D

2
5

+
 C

e
lls

 (
x
1
0

3
)

CT6

CT2 + H. typhlonius CT6 + H. apodemus

R
es M

ig

%
 C

D
2
5

+

C
D

2
5
 M

F
I 
o
f 

C
D

2
5

+
 C

e
lls

 (
x
1
0

3
)

R
es M

ig
0

50

100

R
es M

ig
R
es M

ig

C
T

2
C

T
6

%
 C

D
2
5

+

C
D

2
5
 M

F
I 
o
f 

C
D

2
5

+
 C

e
lls

 (
x
1
0

3
)

he
t

K
O

CT2

he
t

K
O

he
t

K
O

CT6

Ccr7

in vitro

in vitro

in vivo

No cDCs

N
o 

cD
C

R
es M

ig

MigMig ory

0

50

100

0

5

10

15

20

R
es M

ig

* p = 0.093

0

50

100

***

R
es M

ig
0

50

100

N
o 

cD
C

R
es M

ig

*

Figure 1. Migratory conventional dendritic cells (cDCs) present Helicobacter antigens to naı̈ve T cells. (A) Migratory cDCs present endogenously

loaded Helicobacter antigens to T cells. Resident (MHCIIint CD11chi) or migratory (MHCIIhi CD11cint) cDCs from the distal mesenteric lymph

node (dMLN) were cultured with naı̈ve (CD44lo CD62Lhi CD4+) CT2 or CT6 T cells for 2 days. The percentage of CT2 and CT6 T cells that upregulated

CD25 and the CD25 median fluorescence intensity (MFI) of CD25+ cells were analyzed by flow cytometry (expt. = 3). (B) Both resident and migratory

cDCs can present exogenous Helicobacter antigens. dMLN resident and migratory cDCs were cultured as in (A) with the addition of autoclaved isolates

of H. typhlonius (CT2) or H. apodemus (CT6) (expt. = 3). (C) Migratory cDCs are necessary for CT2 and CT6 activation in vivo. Naı̈ve CT2 or CT6 (5 �

104) were injected into littermate Ccr7+/– or Ccr7–/– mice. Transferred cells in the dMLN were analyzed 1 week later for total cells recovered and

Foxp3IRES-GFP or Thy1.1 expression (expt. = 3). Each dot represents an independent experiment except in (C), where each dot represents one mouse.

Mean ± SEM shown. p-values from Student’s t-test (A–C) excluding no cDC condition (A); *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The following

figure supplement is available for Figure 1—figure supplement 1.

The online version of this article includes the following figure supplement(s) for figure 1:

Figure supplement 1. Migratory conventional denditic cells (cDCs) present Helicobacter antigens to naı̈ve T cells.
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macrophage subset with cDC-like antigen presentation functionality (Cerovic et al., 2014;

Satpathy et al., 2012). As our previous study using Zbtb46DTR mice suggested that Zbtb46– cells

played a minor to negligible role in presentation of Helicobacter antigens in vivo (Nutsch et al.,

2016), we expected that these contaminants would not activate CT2/CT6 in our in vitro analysis of

CD103– CD11b+ cDC2s.

Our previous studies showed a defect in CT2 and CT6 pTreg cell differentiation in Itgax-Cre::

Notch2fl/fl (Notch2-DDC) mice (Nutsch et al., 2016). Disruption in NOTCH2 signaling in cDCs results

in loss of CD103+ CD11b+ DP cDC2s in the MLN, although development and function of other cDC

subsets are also altered in these mice (Lewis et al., 2011; Satpathy et al., 2013). Based on these

previous data and other studies (Welty et al., 2013), we predicted that DP cDC2s would be the pri-

mary cDC subset presenting Helicobacter antigens in the dMLN. Unexpectedly, we observed that at

least some members of all three subsets of migratory cDCs constitutively presented Helicobacter

antigens to naı̈ve CT2 and CT6 T cells using the ex vivo culture approach described above (Figure 2,

Figure 2—figure supplement 1B). Although DP cDC2s tended to activate both CT2 and CT6 naı̈ve

T cells to a greater degree than the other two subsets, DP cDC2s only constitute about 15% of

migratory cDCs in the dMLN and thus may not represent the dominant cDC subset inducing naı̈ve T

cell activation in vivo (Figure 2—figure supplement 1C). All three subsets of migratory cDCs had

comparable naı̈ve T cell activating potential, as demonstrated by coculturing cDCs with naı̈ve OT-II T

cells and varying concentrations of OVA peptide (Figure 2—figure supplement 1D). Thus, contrary

to our hypothesis, these in vitro data show that all migratory cDC subsets carry Helicobacter anti-

gens from the colon and can present the antigens to naı̈ve CT2 and CT6 T cells in the dMLN.

cDC1s are not required for Helicobacter-specific pTreg cell
differentiation in vivo
We next used mice genetically deficient in cDC subsets to study pTreg cell differentiation in vivo.

Based on prior studies showing the importance of cDC1s in oral tolerance (Esterházy et al., 2016;

Mazzini et al., 2014), we previously studied cDC1-deficient Batf3–/– mice (Nutsch et al., 2016). We

found that CT2 and CT6 pTreg cell development were unchanged in Batf3–/– mice, consistent with

studies examining DTH responses after OVA enema (Veenbergen et al., 2016). However, one

caveat of Batf3–/– mice is that a large number of cDC1s remain in mucosal tissue and specifically in

the dMLN due to the compensatory expression of Batf in a pro-inflammatory environment

(Tussiwand et al., 2012; Figure 3—figure supplement 1A). It was therefore possible that cDC1s in

Batf3–/– mice were sufficient to maintain pTreg cell selection.

In comparison to Batf3–/– mice, mice which have a 149 bp deletion in the Irf8 enhancer including

the +32 kb BATF3-binding enhancer element (Irf8D149en/D149en, formerly Irf8 +32 5’–/–Durai et al.,

2019) showed a much greater reduction of the number of cDC1s in the dMLN (Figure 3A).

Irf8D149en/D149en mice did not have a decrease in total migratory cDC numbers, as there were

increased numbers of CD103+ CD11b+ and to a lesser extent CD103– CD11b+ cDC2s in the absence

of cDC1s (Figure 3A). The frequency of polyclonal colonic CD4+ FOXP3+ T cells was unchanged in

Irf8D149en/D149en mice (Figure 3B). Additionally, the proportion of colonic pTreg cells marked by low

HELIOS expression (Thornton et al., 2010) was unchanged in Irf8D149en/D149en mice (Figure 3B).

Although low HELIOS expression is an imperfect marker for pTreg cells, these data suggest that the

proportion of bacteria-specific Treg cells is not grossly altered by the loss of CD103+ CD11b–

cDC1s. Finally, both FOXP3– and FOXP3+ colonic polyclonal T cells exhibited significant decreases in

TBET (Tbx21) expression, confirming that cDC1s are important for the induction of Th1 and TBET+

Treg cells (Figure 3B). Conventional T cells showed increased GATA3 expression, suggesting that

compensatory Th2 development occurs with the loss of cDC1s and decrease in Th1 development

(Figure 3B). RORgt (Rorc) expression in colonic conventional T cells remained low after the loss of

cDC1s. Together, these data suggest that loss of cDC1s selectively increases colonic Th2 frequencies

at the expense of Th1 cells, while polyclonal peripheral FOXP3+ Treg cell proportions are

maintained.

To assess the effects of cDC1 loss on commensal antigen-specific pTreg cell development, we

transferred naive CT2 and CT6 cells into 3–4-week-old Irf8D149en/D149en mice. We used 3–4-week-old

recipient mice throughout our work to model the natural timeframe of pTreg induction to commen-

sal bacteria as well as food exposure, which occurs at weaning (Atarashi et al., 2011; Nutsch et al.,

2016). Moreover, we previously found that CT2 and CT6 pTreg cell differentiation decreases in mice
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Figure 2. Multiple subsets of migratory conventional dendritic cells (cDCs) present Helicobacter antigens to naı̈ve

T cells at homeostasis. All three main subsets of migratory cDCs present endogenous Helicobacter antigens to T

cells ex vivo. Migratory CD103+ CD11b– cDC1s (CD103+ SP), CD103+ CD11b+ cDC2s (DP), or CD103– CD11b+

cDC2s (CD11b+ SP) were sorted from the distal mesenteric lymph node (dMLN) and cultured with naı̈ve CT2 and

CT6 T cells as in Figure 1A (expt. = 5–6). Each dot represents an individual experiment. Mean ± SEM is shown.

p-values from Tukey’s multiple comparisons test excluding no cDC condition; *p<0.05, **p<0.01, ***p<0.001,

****p<0.0001. The following figure supplement is available for Figure 2—figure supplement 1.

The online version of this article includes the following source data and figure supplement(s) for figure 2:

Figure supplement 1. Multiple subsets of migratory conventional dendritic cells (cDCs)

present Helicobacter antigens to naı̈ve T cells at homeostasis.

Figure supplement 1—source data 1. Migratory cDC1s are increased in the dMLN of wild-type mice relative to

the proximal MLN (pMLN), Figure 2—figure supplement 1C raw data.

Figure supplement 1—source data 2. Comparable T cell activation by all subsets of migratory conventional den-

dritic cells (cDCs), Figure 2—figure supplement 1D raw data.
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Figure 3. CD103+ CD11b– cDC1s are not required for Helicobacter-specific peripheral regulatory T (pTreg) differentiation in vivo. (A) Deficiency of

CD103+ CD11b– cDC1s in the distal mesenteric lymph node (dMLN) of Irf8D149en/D149en mice. Representative fluorescence-activated cell sorting (FACS)

plot and quantification of migratory conventional dendritic cell (cDC) subsets in the dMLN of littermate Irf8+/D149en and Irf8D149en/D149en mice (expt. = 3,

n = 9–11). (B) Decreased frequency of Th1 and TBET+ Treg cells in the colon lamina propria (cLP) of Irf8D149en/D149en mice. Representative FACS plots

Figure 3 continued on next page
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greater than 5 weeks of age (Nutsch et al., 2016). After such transfer, both CT2 and CT6 exhibited

small decreases in pTreg cell differentiation in Irf8D149en/D149en mice, but this was not proportional to

the loss of cDC1s (Figure 3C,D). The loss of cDC1s had a differential effect on CT2 and CT6 antigen

recognition and activation, as CT2 showed decreased, and CT6 showed increased, cell trace

violet (CTV) dilution in Irf8D149en/D149en mice (Figure 3C,D). Under these conditions, CTV dilution in

CT2 and CT6 is entirely dependent on Helicobacter – see Figure 4A in Chai et al., 2017. Thus,

cDC1s may be more involved in H. typhlonius antigen presentation to CT2 than H. apodemus pre-

sentation to CT6, but they are not essential for Helicobacter-specific pTreg cell differentiation. Fur-

thermore, the selective expansion of DP cDC2s in Irf8D149en/D149en mice and the increase in CTV

dilution particularly in Foxp3– CT6 cells may indicate that DP cDC2s are more capable of antigen

presentation to naı̈ve CT6 cells than CT2 cells, and that this expansion of DP cDC2s is detrimental to

CT6 pTreg cell differentiation.

Since it had previously been reported that Treg cell differentiation was diminished in Zbtb46Cre::

Irf8fl/fl mice in a model of oral tolerance (Esterházy et al., 2016), we asked whether this was also

true for Irf8D149en/D149en mice. Similar to the dMLN, CD103+ SP cDC1s were significantly reduced

with a compensatory increase in the CD103+ CD11b+ DP cDC2 population in the proximal MLN

(pMLN: all MLN except for dMLN) of Irf8D149en/D149en mice (Figure 3—figure supplement 1B). To

assess pTreg differentiation in response to oral antigens, we transferred OT-II T cells into OVA-gav-

aged 3–4-week-old mice to maintain consistency with the CT2/CT6 transfer experiments, which are

affected by host age (Nutsch et al., 2016), as well as to model oral antigen exposure that takes

place at weaning. In contrast to a prior study (Esterházy et al., 2016), we did not see a change in

the frequency of whole MLN Foxp3+ cells among transferred naı̈ve OT-II cells in Irf8D149en/D149en vs

Irf8+/D149en mice fed OVA (Figure 3E). We did observe a trend toward decreased T cell activation in

Irf8D149en/D149en mice as measured by CTV dilution, similar to what we saw for CT2 (Figure 3C,E).

The difference between this and the previous study could be due to the use of younger vs older 7–

12-week-old hosts (Esterházy et al., 2016), or to the nature of the Irf8 gene locus modification in

cDCs between the two mouse lines: Zbtb46Cre::Irf8fl/fl mice lack IRF8 expression in all cDCs (but with

incomplete penetrance), while Irf8D149en/D149en mice lack IRF8 expression only in BATF3-dependent

cDC1s (Durai et al., 2019; Loschko et al., 2016). In summary, our data suggest that cDC1s can con-

tribute to the antigen presentation of oral as well as bacterial antigens but are not required for

pTreg cell differentiation to those antigens.

CD103+ CD11b+ cDC2s are not required for Helicobacter-specific pTreg
cell differentiation in vivo
We next asked whether the CD103+ CD11b+ (DP) cDC2 subset is required for Helicobacter-specific

pTreg cell differentiation, as our in vitro data showed that CT2 and CT6 are most efficiently activated

by this subset (Figure 2). Others have shown that this subset is preferentially diverted from the lym-

phatics to the mesenteric fat after Yersinia pseudotuberculosis infection, altering the induction of tol-

erance to commensal microbiota (Fonseca et al., 2015). We previously showed that loss of this

Figure 3 continued

and intracellular staining quantification of FOXP3, HELIOS, TBET, RORgt, and GATA3 expression in cLP are shown (expt. = 2). (C and D) Helicobacter-

specific T cell activation and Treg cell differentiation are not dramatically altered in cDC1-deficient mice. Congenically marked 5 � 104 naı̈ve CT2 (C) or

105 naı̈ve CT6 (D) were transferred into littermate Irf8+/D149en and Irf8D149en/D149en mice and analyzed for Foxp3IRES-GFP or Thy1.1 expression and cell trace

violet (CTV) dilution in the dMLN after 7 days (expt. = 3 each). (E) T cell activation and Treg cell differentiation in oral tolerance are not altered by loss

of cDC1s. 5 � 104 naı̈ve OT-II cells were transferred into littermate Irf8+/D149en and Irf8D149en/D149en mice, which were gavaged with 50 mg OVA on

consecutive days and analyzed as in (C and D) (expt. = 5). Each dot represents an individual mouse. Mean ± SEM (A–E) or + SEM (A, right) shown.

p-values from Sidak’s multiple comparisons test (A, middle), two-way ANOVA subset/genotype interaction (A, right); Student’s t-test (B, middle), Sidak’s

multiple comparisons test (B, right); Student’s t-test (C–E); *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The following figure supplement is available

for Figure 3—figure supplement 1. The following source data are available for (A–E): Figure 3—source data 1 (A, right).

The online version of this article includes the following source data and figure supplement(s) for figure 3:

Source data 1. Deficiency of CD103+ CD11b– cDC1s in the distal mesenteric lymph node (dMLN) of Irf8D149en/D149en mice, Figure 3A raw data.

Figure supplement 1. CD103+ CD11b– cDC1s are not required for Helicobacter-specific peripheral regulatory T (pTreg) differentiation in vivo.

Figure supplement 1—source data 1. Frequency, but not number, of CD103+ cDC1s are reduced in the distal mesenteric lymph

node (dMLN) of Batf3–/– mice, Figure 3—figure supplement 1A raw data.
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subset in Notch2-DDC mice results in decreased in vivo CT2 and CT6 pTreg cell differentiation

(Nutsch et al., 2016). To confirm these results in another model of DP cDC2 deletion, we trans-

ferred naı̈ve CT2 and CT6 T cells into Itgax-Cre::Irf4fl/fl (Irf4-DDC) mice, which exhibit significantly

reduced DP cDC2s in the dMLN (Figure 4—figure supplement 1A; Persson et al., 2013). Similar to

Notch2-DDC mice, CT2 Foxp3– cells trended toward increased antigen stimulation as measured by

CTV dilution (Figure 4—figure supplement 1B; Nutsch et al., 2016). However, CT2 and CT6 pTreg

cell development were unchanged in Irf4-DDC mice in contrast to Notch2-DDC mice (Figure 4—fig-

ure supplement 1B,C). This discrepancy suggests that the effects of these genetic modifications on

pTreg cell generation were not related to the loss of DP cDC2s, which occurred in both Notch2-DDC

and Irf4-DDC mice, but rather to differences arising from deletion of these genes in the remaining

cDCs. We therefore turned to a third genetic model of DP cDC2 depletion that does not require

Itgax-Cre mediated gene deletion in all cDCs, but instead uses diphtheria toxin driven by the human

langerin promoter (CD207-DTA; formerly huLangerin-DTA) (Welty et al., 2013).

We first confirmed that DP cDC2s are missing in the dMLN in CD207-DTA mice, as it was previ-

ously only reported for the whole MLN (Figure 4A; Welty et al., 2013). Since the reduction in

cDC2s in CD207-DTA mice can be difficult to appreciate due to spillage of single positive cells into

the DP gate, we used additional markers to more specifically quantify DP cDC2s in CD207-DTA mice

(Figure 4—figure supplement 1D). In the SIRPa+ cDC2 population, DP cells were markedly reduced

in CD207-DTA mice. Similarly, SIRPa+ cDC2s with CD101 expression, which in combination with

CD103+ is a marker for DP cells (Bain et al., 2017), were also significantly reduced in CD207-DTA

mice.

Analysis of polyclonal colon T cells in CD207-DTA mice revealed that there was neither a signifi-

cant increase in Treg cells nor the proportion of HELIOSlo putative pTreg cells (Figure 4B). In con-

trast to previous reports showing that CD103+ CD11b+ cDC2s are important for Th17 differentiation

in the small intestine lamina propria (Persson et al., 2013; Welty et al., 2013), CD207-DTA mice

did not show a decreased percentage of polyclonal Th17 cells or RORgt+ Treg cells in the cLP, the

former of which was low at homeostasis (Figure 4B). Additionally, the expression of other T cell line-

age transcription factors in both FOXP3– and FOXP3+ T cells were unchanged in colonic polyclonal T

cells of CD207-DTA mice (Figure 4B). These data suggest that CD103+ CD11b+ cDC2s, which con-

stitute a small proportion of cDCs within colon-associated dMLN, are not required for colonic T cell

differentiation/maintenance at homeostasis.

When naı̈ve CT2 and CT6 T cells were transferred into CD207-DTA mice, they differentiated into

Treg cells normally (Figure 4C,D). In addition, T cell activation of both Foxp3– and Foxp3+ CT2 and

CT6 were unchanged in CD207-DTA mice, as measured by CTV dilution (Figure 4C,D). Since DP

cDC2s constitute a small percentage of cDCs in the dMLN but a much greater percentage in the

pMLN, we wondered whether loss of these cells would have a greater effect on Treg cell develop-

ment in the small-intestine-draining MLN (Figure 2—figure supplement 1C). As expected, CD103+

CD11b+ cDC2s were reduced in the pMLN of CD207-DTA mice, with a compensatory increase in

the frequency of CD103+ CD11b– cDC1s (Figure 4—figure supplement 1E). We therefore exam-

ined Treg cell development in oral tolerance after OVA feeding. Surprisingly, given that others have

reported a critical role for CD103+ CD11b+ DP cDCs in oral tolerance Treg cell development

(Mazzini et al., 2014), OT-II pTreg cell differentiation was significantly increased in CD207-DTA

mice without changing T cell activation, indicating that loss of DP cDC2s enhances pTreg cell differ-

entiation in oral tolerance (Figure 4E). In summary, these data suggest that DP cDC2s are not

required for Helicobacter- or OVA-specific Treg cell generation in the MLN.

Decreased CD103+ cDC1 and cDC2 cell number does not impact
Helicobacter-specific pTreg cell differentiation in vivo
At least one study suggested that CD103+ cDCs collectively, encompassing both cDC1s and DP

cDC2s, are responsible for in vivo Treg cell generation/maintenance in the small intestine

(Welty et al., 2013). This study utilized CD207-DTA::Batf3–/–mice to delete CD103+ cDCs. However,

as in Batf3–/– mice, we have observed that a substantial number of cDC1s can sometimes remain in

CD207-DTA::Batf3–/– mice (Figure 5—figure supplement 1A). When naı̈ve CT2 and CT6 T cells

were transferred into CD207-DTA::Batf3–/– mice, they showed no decrease in pTreg cell differentia-

tion (Figure 5—figure supplement 1B,C). Both CT2 and CT6 showed decreased T cell activation as

measured by CTV dilution (Figure 5—figure supplement 1B,C). Thus, partial deletion of CD103+
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Figure 4. CD103+ CD11b+ cDC2s are not necessary for in vivo Helicobacter-specific peripheral regulatory T (pTreg) differentiation. (A) Double positive

CD103+ CD11b+ (DP) cDC2s are lost in the distal mesenteric lymph node (dMLN) of CD207-DTA mice. Representative fluorescence-activated cell

sorting (FACS) plot and quantification of migratory conventional dendritic cell (cDC) subsets in the dMLN of littermate control (WT, Batf3+/–, or Irf8+/

D149en mice) and CD207-DTA mice (expt. = 7, n = 10). (B) The frequencies of T cell subsets in the colon lamina propria (cLP) are unchanged in CD207-

Figure 4 continued on next page
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cDCs resulted in decreased Helicobacter antigen presentation without affecting pTreg cell

differentiation.

To more efficiently delete CD103+ cDCs in the dMLN, we bred Irf8D149en/D149en mice to CD207-

DTA mice. Unlike straight Irf8D149en/D149en mice, CD207-DTA::Irf8D149en/D149en mice did not have a

large increase in DP cDC2s when cDC1 generation was blocked (Figure 5A). Some CD103+ cDC1s

and cDC2s remained in the dMLN of these mice, presumably due to compensatory cDC develop-

ment/survival when a large fraction of cDCs are deleted (Figure 5A). Remaining cDC1s expressed

canonical cDC1 makers such as XCR1 and CD36 and thus seem to be bona-fide cDC1s (Figure 5—

figure supplement 1D). cLP polyclonal Treg cell frequencies as well as the proportion of putative

commensal-specific HELIOSlo Treg cells were unchanged in CD207-DTA::Irf8D149en/D149en mice, indi-

cating that substantial loss of CD103+ cDC1s and cDC2s does not broadly affect Treg cell develop-

ment (Figure 5B). In contrast to Irf8D149en/D149en mice (Figure 3B), CD207-DTA::Irf8D149en/D149en mice

did not show significant decreases in Th1 and TBET+ Treg cells and only a minor, non-significant,

increase in colonic GATA3+ Th2 cells (Figure 5B), suggesting that effects of cDC1-deficiency on Teff

cell generation may be offset by the loss of DP cDC2s.

When we transferred CT2 and CT6 into CD207-DTA::Irf8D149en/ D149en mice to assess the antigen-

specific contribution of CD103+ cDC1s and cDC2s to pTreg cell development, we observed no

decreases in Helicobacter-specific pTreg cells (Figure 5C,D). Both Foxp3– CT2 and CT6 showed

decreased cell activation by CTV dilution in CD207-DTA::Irf8D149en/D149en mice, in contrast to the

increased cell activation seen in Foxp3– CT6 cells in Irf8D149en/D149en mice (Figure 3D, Figure 5C,D).

To determine if pTreg cell differentiation of CT2 and CT6 in CD207-DTA::Irf8D149en/D149en mice was

conserved after trafficking to peripheral tissues, we analyzed CT2 and CT6 cells recovered from the

cLP 7 days after naı̈ve T cell transfer. Similar to the dMLN, CT2 and CT6 pTreg cell differentiation

were not decreased while Foxp3– cells showed trends of decreased antigen stimulation based on

CTV dilution (Figure 5—figure supplement 2A,B). As CD103+ cDC1s and cDC2s in CD207-DTA::

Irf8D149en/D149en mice were not completely absent, we wondered whether CT2 and CT6 pTreg cell

differentiation correlated with the loss of cDC subsets in the dMLN. Notably, the loss of CD103+

cDCs (cDC1 and/or DP) did not significantly correlate with decreases in pTreg cell induction

(Figure 5E, Figure 5—figure supplement 2C). Rather, we saw an increase in the percent of Foxp3+

CT6 cells with decreased CD103+ DC1s, which trended similarly for CT2. Thus, decreased antigen

presentation capability with decreased CD103+ cDC1s and cDC2s in vivo did not significantly impact

Helicobacter-specific pTreg cell differentiation. However, the maintenance of some CD103+ cDC1s

and cDC2 in CD207-DTA::Irf8D149en/D149en mice represents a caveat to the interpretation of the in

vivo data presented here.

Loss of cDC subsets does not markedly alter the colon bacterial
microbiome
Perturbations of the microbiota due to cDC subset loss could affect antigen-specific pTreg cell dif-

ferentiation (Brown et al., 2019). We therefore performed 16S rRNA sequencing and amplicon

sequence variant (ASV) analysis of colonic bacteria. Shannon alpha diversity was unchanged in the

Figure 4 continued

DTA mice. Representative FACS plots and intracellular staining quantification of FOXP3, HELIOS, TBET, RORgt, and GATA3 expression in cLP are

shown (expt. = 3). (C and D) Helicobacter-specific T cell activation and Treg cell differentiation are not altered in DP cDC2-deficient mice. Congenically-

marked 5 � 104 naı̈ve CT2 (C) or 105 naı̈ve CT6 (D) were transferred into littermate control and CD207-DTA mice and analyzed for Foxp3IRES-GFP or Thy1.1

expression and cell trace violet (CTV) dilution in the dMLN after 7 days (expt. = 8, 7, respectively). (E) Treg cell differentiation in oral tolerance is

increased with the loss of DP cDC2s. 5 � 104 naı̈ve OT-II cells were transferred into littermate WT and CD207-DTA mice, which were gavaged with 50

mg OVA on consecutive days and analyzed as in (C and D) (expt. = 5). Each dot represents an individual mouse. Mean ± SEM (A–E) or + SEM (A, right).

p-values from Sidak’s multiple comparisons test (A, middle), two-way ANOVA subset/genotype interaction (A, right); Student’s t-test (B, middle), Sidak’s

multiple comparisons test (B, right); Student’s t-test (C–E); *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The following figure supplement is available

for Figure 4—figure supplement 1. The following source data are available for (A–E): Figure 4—source data 1 (A, right).

The online version of this article includes the following source data and figure supplement(s) for figure 4:

Source data 1. Double positive CD103+ CD11b+ (DP) cDC2s are lost in the distal mesenteric lymph node (dMLN) of CD207-DTA mice, Figure 4A raw

data.

Figure supplement 1. CD103+ CD11b+ cDC2s are not necessary for in vivo Helicobacter-specific peripheral regulatory T (pTreg) differentiation.
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Figure 5. CD103– CD11b+ cDC2s are sufficient for in vivo Helicobacter-specific peripheral regulatory T (pTreg) differentiation. (A) CD103+ cDC1s and

cDC2s are greatly reduced in the distal mesenteric lymph node (dMLN) of CD207-DTA::Irf8D149en/D149en mice. Representative fluorescence-activated cell

sorting (FACS) plot and quantification of migratory conventional dendritic cell (cDC) subsets in the dMLN of littermate Irf8+/D149en and CD207-DTA::

Irf8D149en/D149en mice (expt. = 7, n = 7). (B) The frequency of polyclonal pTreg cells is unchanged in CD207-DTA::Irf8D149en/D149en mice, but Th1 and

Figure 5 continued on next page
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cDC-subset deficient mice (Figure 6—figure supplement 1A). Additionally, NMDS analyses of bac-

terial community compositions by Bray–Curtis or UniFrac distances did not show obvious clustering

by genotype (Figure 6—figure supplement 1B), consistent with a nonsignificant PERMANOVA anal-

ysis. Finally, the frequencies of H. typhlonius and H. apodemus ASVs were not markedly changed by

cDC subset deficiency (Figure 6—figure supplement 1C). While additional samples would likely

improve power to detect differences in the microbiome due to cDC-subset deficiency, our data do

not support the hypothesis that microbial changes affected Helicobacter-specific pTreg cell

differentiation.

Loss of CD103+ cDC1s and cDC2s does not increase the tolerogenic
potential of migratory CD103– CD11b+ cDC2s in vivo
Our data collectively suggest that pTreg cell induction is not confined to a single cDC subset and

that migratory CD103– CD11b+ cDC2s are likely sufficient for Helicobacter-specific pTreg cell induc-

tion in vivo. However, it remained possible that after genetic deletion of CD103+ cDC1s and cDC2s,

the remaining CD103– CD11b+ cDC2s gain access to niches that facilitate their development into

‘tolerogenic’ cDCs. To assess this possibility, we quantified the expression of proteins and genes

reported to be Treg cell-inducing (Coombes et al., 2007; Hasegawa and Matsumoto, 2018;

Marie et al., 2005; Morris et al., 2003) in CD103– CD11b+ cDC2s from CD207-DTA::Irf8D149en/

D149en mice. T cell activation-associated proteins (MHC Class II (IAb), CD80, CD86, CD40, PD-L1, and

PD-L2) were unchanged in CD103– CD11b+ cDC2s from CD207-DTA::Irf8D149en/ D149en mice (Fig-

ure 6—figure supplement 2A). Additionally, the activity of RALDHs, of which RALDH2 in CD103+

cDC1s and cDC2s has been shown to enhance pTreg cell generation in vitro (Coombes et al., 2007;

Sun et al., 2007), was unchanged in CD103– CD11b+ cDC2s from CD207-DTA::Irf8D149en/D149en mice

(Figure 6A). Finally, genes (Tgfb1–3, Itgb6, Itgb8) and proteins (TGFb1, CD51) associated with TGF-

b production and activation, a molecule that is critical for pTreg cell FOXP3 induction (Chen et al.,

2003), were not increased and for some genes (Tgfb2 and Tgfb3) were decreased in CD103–

CD11b+ cDC2s from CD207-DTA::Irf8D149en/D149en mice (Figure 6B,C). The integrins avb6 and avb8

activate TGF-b, and avb8 expression in cDC1s has been specifically associated with tolerance in the

intestines (Boucard-Jourdin et al., 2016; Morris et al., 2003; Travis et al., 2007). While our data

confirm previous studies showing preferential function of RALDH and expression of Itgb8 in cDC1s

(Boucard-Jourdin et al., 2016; Coombes et al., 2007; Sun et al., 2007) and Ido1 in CD103+

CD11b+ cDC2s (Matteoli et al., 2010), we found that other Treg cell inducing- and tolerance-associ-

ated genes and proteins such as CD51 (Itgav), Tgfb1, and Il10 were preferentially expressed in

CD103– CD11b+ cDC2s. However, the increased expression of Il10, Itgav, and Tgfb1 may be due to

the contamination of the CD103– CD11b+ cDC2 subset by macrophages (Figure 2—figure

Figure 5 continued

TBET+ Treg cells are decreased. Representative FACS plots and intracellular staining quantification of FOXP3, HELIOS, TBET, RORgt, and GATA3

expression in colon lamina propria (expt. = 3–4). (C and D) Helicobacter-specific T cell activation and Treg cell differentiation are not dramatically

altered in CD103+ cDC1 and cDC2-deficient mice. Congenically marked 5 � 104 naı̈ve CT2 (C) or 105 naı̈ve CT6 (D) were transferred into littermate

Irf8+/D149en and CD207-DTA::Irf8D149en/D149en mice and analyzed for Foxp3IRES-GFP or Thy1.1 expression and cell trace violet (CTV) dilution in the dMLN

after 7 days (expt. = 4 for both). (E) CT6 pTreg cell differentiation is inversely correlated with the number of CD103+ cDC1s and cDC2s in the dMLN.

Congenically marked 5 � 104 naı̈ve CT2 (left) or 105 naı̈ve CT6 (right) were transferred into littermate control, CD207-DTA, and CD207-DTA::Irf8D149en/

D149en mice and analyzed after 7 days. CT2 and CT6 Foxp3IRES-GFP or Thy1.1 expression was compared to cDC subset numbers in the same dMLNs

(expt. = 2). Each dot represents an individual mouse. Mean ± SEM (A–D) or + SEM (A, right). p-values from Sidak’s multiple comparisons test (A,

middle), two-way ANOVA subset/genotype interaction (A, right); Student’s t-test (B, middle), Sidak’s multiple comparisons test (B, right); Student’s

t-test (C and D); R2 and p-value for nonzero slope (E); *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001. The following figure supplements are available for

Figure 5—figure supplement 1 and Figure 5—figure supplement 2.

The online version of this article includes the following source data and figure supplement(s) for figure 5:

Source data 1. CD103+ cDC1s and cDC2s are greatly reduced in the distal mesenteric lymph node (dMLN) of CD207-DTA::Irf8D149en/D149en mice,

Figure 5A raw data.

Figure supplement 1. CD103– CD11b+ cDC2s are sufficient for in vivoHelicobacter-specific peripheral regulatory T (pTreg) differentiation.

Figure supplement 1—source data 1. Variable frequencies of CD103+ conventional dendritic cells (cDCs) in the distal mesenteric lymph

node (dMLN) of CD207-DTA::Batf3–/–mice, Figure 5—figure supplement 1A raw data.

Figure supplement 2. CD103– CD11b+ cDC2s are sufficient for in vivo Helicobacter-specific peripheral regulatory T (pTreg) differentiation.
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Figure 6. CD11b+ SP cDC2s are tolerogenic by ‘nature’, not ‘nurture’. (A) Retinal dehydrogenase (RALDH) activity as measured by Aldefluor is

unchanged in CD11b+ SP cDC2s in CD207-DTA::Irf8D149en/D149en mice deficient in CD103+ cDC1s and cDC2s (expt. = 2). (B) LAP and CD51 protein

expression is unchanged in CD11b+ SP cDC2s in CD207-DTA::Irf8D149en/D149en mice (expt. = 2). (C) Tgfb1, IL10, Itgb6, Itgb8, and Ido1 gene expression

are unchanged in CD11b+ SP cDC2s in CD207-DTA::Irf8D149en/D149en mice, while Tgfb2 and Tgfb3 gene expression are decreased (expt. = 2). Each dot

Figure 6 continued on next page
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supplement 1A). These data therefore support the idea that each subset of cDCs may employ dif-

ferent mechanisms to induce pTreg cell development (Figure 6A–C, Figure 6—figure supplement

2A). We also analyzed the remaining CD103+ cDC1s and cDC2s in CD207-DTA::Irf8D149en/D149en

mice to determine if their expression of tolerogenic markers was altered. Remaining CD103+ cDC1s

and cDC2s showed significantly decreased CD86 expression and an increased trend of CD274 (PD-

L1) expression, suggesting that they may be more ‘immature’ compared to their wild-type counter-

parts (Figure 6—figure supplement 2B). Taken together, these data suggest that pTreg cell selec-

tion in the context of CD103+ cDC deletion is not due to ‘nurture’ of CD103– cDCs to become

tolerogenic but suggests that the ‘nature’ of CD103– CD11b+ cDC2s in normal mice is to induce Hel-

icobacter-specific pTreg cell differentiation.

Antigen dose-dependent superiority of CD103+ cDC1s for in vitro
pTreg cell selection
Our in vivo data are in marked contrast with previous in vitro studies (Coombes et al., 2007;

Sun et al., 2007) regarding the importance of CD103+ DCs, which in their study included both

cDC1s and cDC2s. In vitro, DP cDC2s presenting Helicobacter antigens acquired in vivo were the

most efficient at inducing Foxp3 in CT2 and CT6 T cells (Figure 7—figure supplement 1A). How-

ever, the frequency of Foxp3+ cells was much lower than that seen in the in vivo T cell transfer stud-

ies (Figures 3–5), The variance in Foxp3 induction ex vivo may be attributed to the level of antigen

loaded in vivo, as Foxp3 upregulation was correlated with the extent of T cell stimulation by each

cDC subset as assessed by the frequency of CD25+ cells (Figure 7—figure supplement 1B).

To experimentally control the level of antigen presentation, we stimulated naı̈ve OT-II T cells in

vitro with varying concentrations of OVA peptide presented by sorted cDC subsets (Figure 2—fig-

ure supplement 1D, Figure 7A,B). Consistent with previous reports on the total CD103+ cDC popu-

lation (Coombes et al., 2007; Sun et al., 2007), we found that CD103+ SP cDC1s were the most

efficient at inducing Foxp3 in naı̈ve OT-II T cells in vitro (Figure 7A). However, induction of Foxp3

varied according to TCR signal strength. At lower levels of TCR-stimulation with OVA peptide, all

subsets of cDCs were able to induce Foxp3 equivalently, whereas CD103+ CD11b– cDC1s were

more efficient at higher levels of antigen stimulation (Figure 7A). This was also true if CD25 was

used as a marker for T cell activation to control for possible differences in costimulation and MHC

Class II levels between cDC subsets (Figure 7B). Whether these similarities or differences between

cDC subsets observed in vitro reflect their ability to induce Foxp3 in vivo remains unclear. However,

this in vitro assay does not appear to inform on pTreg cell selection to Helicobacter in vivo, perhaps

due to uneven levels of antigen acquisition by each subset, reinforcing the need for in vivo studies of

cDC subsets and pTreg cell selection.

A recessive model of pTreg cell selection
Our data do not support a model in which a single cDC subset is critical for inducing pTreg cell

selection, and rather suggest that multiple cDC subsets are involved. However, the ability of multiple

cDC subsets to induce FOXP3 may be problematic for responses to infection or injury. Evidence sug-

gests that cDC subsets may have unique capacities to induce effector T cell subsets (Durai and Mur-

phy, 2016), supported by their different cytokine producing functions but also by their divergent

abilities to sense specific bacterial components; for example, MLN CD103+ CD11b– cDC1s have rel-

atively high expression of Tlr9 and CD103+ CD11b+ cDC2s have relatively high expression of Tlr4,

Tlr6, and Nod2 (Esterházy et al., 2016). CD103+ CD11b+ cDC2s also express TLR5, which senses

Figure 6 continued

represents an individual mouse. Mean ± SEM shown (A–C). p-values from Tukey’s multiple comparisons test (A–C) using D-DCt values in (C); *p<0.05,

**p<0.01, ***p<0.001, ****p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 6:

Figure supplement 1. CD11b+ SP cDC2s are tolerogenic by ‘nature’, not ‘nurture’.

Figure supplement 1—source data 1. 16S rRNA sequencing of whole colon lumen feces of conventional dendritic cell (cDC)-deficient mice, Figure 6—

figure supplement 1B raw data.

Figure supplement 2. CD11b+ SP cDC2s are tolerogenic by ‘nature’, not ‘nurture’.
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Figure 7. Conventional dendritic cell (cDC)-mediated peripheral regulatory T (pTreg) cell differentiation in vivo is recessive to effector T cell

development. (A) Migratory cDC induction of OT-II pTreg cells in vitro is dependent on T cell receptor (TCR) stimulation. Treg cell induction of OT-II

cells by migratory cDC subsets with varying concentrations of OVA323-339 peptide is shown (expt. = 5). (B) In vitro, CD103+ SP cDC1s have increased

ability to induce OT-II pTreg cells at higher levels of TCR activation (based on CD25 upregulation). Migratory cDC subsets were cultured with naı̈ve OT-

II T cells as in (A) (expt. = 5). (C) TA1 cognate antigens are presented by mesenteric lymph node (MLN) migratory dendritic cells. 1.5 � 103 TA1- or CT6-

expressing T cell hybrids were co-cultured in vitro with 5 � 104 ex vivo MLN migratory cDCs (MHCIIhi CD11cint). NFAT-GFP expression in hybrids was

analyzed after 40 hr (expt. = 2). (D) Expression of a Th1-inducing TCR (TA1) in CT6 cells dominantly inhibits CT6 pTreg cell differentiation in vivo. Naı̈ve

CT6 T cells were retrovirally transduced with either TA1 or a non-reactive control TCR (T7-2 or T9). Untransduced CT6, CT6 co-expressing TA1, or CT6

co-expressing T7-2 or T9 were transferred into each mouse; mice received either 5 � 104 of each TCR (closed shapes) or 2 � 105 of each TCR (open

shapes). Expression of Foxp3IRES-GFP or Thy1.1 and CXCR3 were quantified in the distal MLN (dMLN) after 7 days. Each dot represents the mean of

indicated experiments (A and B), an individual co-culture well (C), or an individual mouse (D). Mean ± SEM shown (A–D). p-values from mixed effects

analysis of repeated measures of DC subsets with Tukey’s multiple comparisons test (A and B); Tukey’s multiple comparisons test (C and D); *p<0.05,

**p<0.01, ***p<0.001, ****p<0.0001.

The online version of this article includes the following source data and figure supplement(s) for figure 7:

Source data 1. Migratory conventional dendritic cell (cDC) induction of OT-II peripheral regulatory T (pTreg) cells in vitro is dependent on T cell

receptor (TCR) stimulation, Figure 7A raw data.

Source data 2. In vitro, CD103+ SP cDC1s have increased ability to induce OT-II peripheral regulatory T (pTreg) cells at higher levels of TCR activation,

Figure 7B raw data.

Figure supplement 1. Conventional dendritic cell (cDC)-mediated peripheral regulatory T (pTreg) cell differentiation in vivo is recessive to effector T

cell development.
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flagellin and is likely important for Teff cell responses to pathogenic bacteria such as Salmonella

(Kinnebrew et al., 2012; Uematsu et al., 2008). We therefore hypothesized that pTreg cell selec-

tion is ‘recessive’, requiring all T cell-interacting antigen-presenting cDC subsets to be permissive to

pTreg cell selection such that activated T cells at a minimum retain the ability to upregulate FOXP3.

During inflammatory conditions, a subset of cDCs may then ‘dominantly’ induce fully differentiated

effector T cells via the production of cytokines that block FOXP3 induction, even if the T cells subse-

quently encounter cDCs that facilitate pTreg cell generation.

To test this hypothesis, we used adoptive transfer of modified CT2 or CT6 T cells into wild-type,

Helicobacter-colonized hosts, as the blockade of in vivo pTreg cell differentiation by Th1 differentia-

tion has not been reported to our knowledge. First, we cultured naı̈ve Helicobacter-specific cells in

the presence of Th1- or Th2-polarizing conditions in vitro to model the possibility that pTreg cell dif-

ferentiation in vivo would be dominantly inhibited by the presence of Th1- or Th2-inducing cytokines

during activation. After activation in Th1 or Th2 conditions in vitro, in vivo pTreg cell differentiation

of CT2 T cells was completely abrogated (Figure 7—figure supplement 1C). To address that in vitro

activation itself did not lead to an inability to undergo pTreg cell differentiation in vivo, we cultured

CT2 cells in ‘Th0’-inducing conditions, which permitted normal pTreg cell differentiation after adop-

tive transfer in vivo (Figure 7—figure supplement 1C). These data also show that in vitro T cell acti-

vation without the induction of Foxp3 (‘Th0’) does not result de facto in the generation of fully

differentiated CD44hi effector T cells that are no longer capable of becoming pTreg cells, consistent

with our previous observation that the frequency of Foxp3+ cells continues to increase after 1 week

in transferred transgenic T cells (Nutsch et al., 2016).

To address the possibility that in vitro Th1 differentiation does not mimic in vivo conditions, we

expressed a Th1-directing TCR (TA1) in CT6 T cells, hypothesizing that the TA1 TCR will engage

antigen in a Th1 environment not normally experienced by CT6 cells under homeostatic conditions.

We first confirmed that the stimulatory antigen for TA1, which is thus far uncharacterized, is pre-

sented by DCs in the MLN using T cell hybridoma cells expressing GFP under a minimal NFAT pro-

moter (Ise et al., 2010). When TA1- or CT6-expressing hybrids were co-cultured with MLN

migratory DCs from Helicobacter-free mice, TA1 but not CT6-expressing hybrids were activated

(Figure 7C). Looking then in vivo, CT6 cells that co-expressed TA1, but not a non-reactive control

TCR, failed to induce Foxp3 but expressed the Th1 marker CXCR3 (Figure 7D). CT6 cells that co-

expressed TA1 also proliferated more than cells that expressed a non-reactive control TCR, indicat-

ing that CT6 engagement on a ‘tolerogenic’ cDC was not sufficient to inhibit cell division (Figure 7—

figure supplement 1D). Taken together, these data support a ‘recessive’ model in which pTreg cell

differentiation is subdominant to a Th1 response in the same localized tissue environment.

Discussion
The generation of gut commensal-specific pTreg cells is a critical mechanism for maintaining gut

homeostasis, and yet the cDC subsets that present antigen to naı̈ve T cells and direct T cell develop-

ment remain unclear (Mowat, 2018). Here, we provide direct evidence identifying the cDC subsets

that are capable of presenting Helicobacter antigens. Unexpectedly, we found that all migratory

cDC subsets, both CD103+ and CD103–, contained cells capable of presenting Helicobacter antigens

ex vivo. The use of genetic models with large reductions in specific cDC subsets supported the

notion that CD103+ cDC1s and cDC2s were neither required for antigen presentation nor pTreg cell

generation in vivo. These observations argue against the notion that a singular tolerogenic cDC sub-

sets presents gut antigens and induces pTreg cell generation (Hasegawa and Matsumoto, 2018;

Scott et al., 2011; Takenaka and Quintana, 2017; Tanoue et al., 2016), and lend support to the

idea that CD103– CD11b+ cDC2s are important or redundant for intestinal pTreg cell induction

(Kim et al., 2018; Veenbergen et al., 2016). Our data also suggest a ‘recessive’ model in which all

gut cDC subsets are permissive to pTreg cell generation during homeostasis, but where pTreg cell

selection can be ‘dominantly’ blocked by the existence of pro-inflammatory cDCs during inflamma-

tion or infection, even when homeostatic pTreg cell inducing cDCs remain.

One issue with the study of intestinal cDC subsets in vivo is the limitation of the genetic tools

used for cDC subset depletion. For example, Batf3–/– mice have been used to deplete cDC1s, but

many cDC1s remain in mucosal-associated tissues in these mice (Tussiwand et al., 2015). Addition-

ally, deletion of Batf3 in other cell types may affect immune cell homeostasis beyond loss of cDC1
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cells. Newer models such as the Xcr1DTR mouse appears to be a more efficient alternative to Batf3–/–

mice for depletion of cDC1s (Yamazaki et al., 2013). Similarly, Irf8D149en/D149en mice only lose IRF8

expression in cDC1 cells, resulting in specific loss of cDC1 development (Durai et al., 2019). How-

ever, there may still be some limitations. Xcr1DTR may not deplete immature cDC1s (5–10%) and

may deplete a small fraction (5%) of CD103+ CD11b+ cDC2s in the MLN (Yamazaki et al., 2013).

Also, longer term studies with diphtheria toxin are not possible due to the generation of neutralizing

antibodies. Our data suggest that Irf8D149en/D149en also does not completely block cDC1 generation

in the gut, specifically the colon. A direct experimental comparison of Xcr1DTR and Irf8D149en/D149en is

therefore needed. Nonetheless, we observed that the total number of cDC1s in Irf8D149en/D149en

mice was greatly reduced compared to control mice without grossly affecting Helicobacter-specific

pTreg cell differentiation in vivo.

Similarly, the elimination of CD103+ CD11b+ cDC2s has been achieved via Itgax-Cre mediated

deletion of Irf4 or Notch2, as well as CD207-DTA. However, we found the effects of these deletions

on Helicobacter-specific pTreg cell generation varied substantially, with Irf4 and CD207-DTA show-

ing little to no effect and deletion of Notch2 in cDCs inhibiting pTreg cell generation (Nutsch et al.,

2016). Since all of these genetic models lead to a loss of DP cDC2s, our current interpretation of

these discrepant effects is that DP cDC2s are not required for pTreg cell selection and that the dele-

tion of Notch2 in other cDC subsets leads directly or indirectly to a defect in pTreg cell induction.

However, we acknowledge that CD207-DTA depletion of DP cDC2s is not complete in the context

of cDC1 depletion, and that a caveat of these and other genetic models is that it remains possible

that the remaining cDCs in the targeted subset may be sufficient for pTreg cell induction. Thus,

these data provide a cautionary tale for studying cDC function using these Cre-deletion models that

were originally used to analyze cDC development and suggest that new genetic models are required

to better understand the role of DP and CD11b+ SP cDC2 subsets in vivo.

An unexpected observation from our data was that all migratory cDC subsets presented Helico-

bacter antigens. Research into acquisition of luminal antigens by cDCs has suggested that specific

cDC subsets may be specialized for this process. Small intestinal CD103+ cDC1s or cDC2s have been

reported to extend trans-epithelial dendrites into the intestinal lumen to phagocytose pathogenic

Salmonella typhimurium during infection (Farache et al., 2013). Goblet associated passages have

been shown to deliver soluble dietary antigens to lamina propria CD103+ cDC1s or cDC2s in the

small intestine (McDole et al., 2012). CD103+ SP cDC1s have also been shown to be uniquely capa-

ble of cross-presenting antigens from apoptotic intestinal epithelial cells, which could contain phago-

cytosed luminal antigens (Cerovic et al., 2015). Yet, to our knowledge, a direct assessment of the in

vivo loaded endogenous commensal antigens presented by cDC subsets in the MLN has not been

reported. Although our data shows that all cDC subsets acquire antigen, the loading may not be uni-

form, as we observed subtly different effects of cDC subset depletion on CT2 and CT6 T cell prolifer-

ation. This may be due to differences between H. typhlonius and H. apodemus colonization, or in

the specific proteins recognized by CT2 and CT6. Future studies are required to determine if antigen

loading on all cDC subsets is generalizable to other gut bacteria.

The lack of selectivity of Helicobacter antigens for presentation by a particular cDC subset, cou-

pled with the in vivo observation that substantial deletion of CD103+ cDC1s and cDC2s does not

markedly impact pTreg cell selection to Helicobacter, favors the notion that Treg cell selection in

vivo utilizes redundant cDC subsets rather than specialized ‘tolerogenic’ CD103+ cDC1s and cDC2s.

While these genetic models of cDC subset deficiency have clearly been shown to impact the immune

system (Durai et al., 2019; Welty et al., 2013), we do acknowledge that the loss of CD103+ cDC1s

and cDC2s, while substantial, is not complete and therefore we cannot exclude the possibility that

the remaining CD103+ cDC1s and cDC2s are sufficient. Although we did not observe a correlation

of CT2 and CT6 Foxp3 induction with CD103+ cDC numbers (cDC1 or cDC2s), new tools with com-

plete deletion of CD103+ cDC1s and cDC2s will be required to definitively address the role of these

cDCs in pTreg cell generation in vivo.

Our results showing that CD103+ cDC1s are more efficient than cDC2s for pTreg cell induction in

vitro is consistent with previous reports on the total CD103+ cDC population (Coombes et al.,

2007; Sun et al., 2007). It therefore remains possible that certain bacterial or food antigens in the

gut may utilize this quantitative difference between the cDC subsets in pTreg cell induction in vivo.

Although future studies are required, our data imply that these antigens would be present at high

dose and would be preferentially acquired by cDC1s. However, the fact that cDC1-deficient mice do
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not appear to suffer from spontaneous gut immunopathology (Welty et al., 2013) suggests that

these antigens do not represent a major component of gut tolerance.

Our data suggest that commensal-specific pTreg cell differentiation can take place when cDCs

carrying cognate antigen are permissive to pTreg cell induction such that they do not deliver a signal

that terminally differentiates T cells into a FOXP3– effector T cell lineage. This fits well with data sug-

gesting that the MLN stroma environment is intrinsically pTreg cell-inducing (Cording et al., 2014;

Esterházy et al., 2019; Fletcher et al., 2015; Pezoldt et al., 2018), which would influence the func-

tion of all cDC subsets at homeostasis in the absence of inflammatory cues. In accordance with this

idea, other groups have found that the tolerogenic milieus of skin and tumors induce a pro-Treg

cell-inducing gene signature that is common across migratory cDC subsets

(Anandasabapathy et al., 2014; Nirschl et al., 2017). It is notable that CD103– CD11b+ cDC2s did

not express factors associated with increased cDC-mediated Treg induction such as RALDH activity

or Ido1 and Itgb8 expression (Boucard-Jourdin et al., 2016; Coombes et al., 2007; Matteoli et al.,

2010; Sun et al., 2007), which may explain the decreased ability of CD103– CD11b+ cDC2s to pro-

mote Foxp3 induction in vitro compared to CD103+ cDC1s. This also implies that there may be addi-

tional cDC or environmental factors that promote Foxp3 induction in the gut.

We do not believe that every T:DC interaction during homeostasis is required to induce a binary

Treg vs T effector cell outcome. Even if the T cell does not upregulate FOXP3 after activation by the

cDC, the cells may adopt a ‘Th0’ phenotype which retains the ability to subsequently upregulate

FOXP3 or other lineage-specifying transcription factors. Support for this comes from our observation

that CNS1-deficient T cells, which show little to no upregulation of Foxp3 at 1 week, appear to

undergo induction of Foxp3 at later times points (Nutsch et al., 2016). Similarly, the frequency of

Foxp3+ cells continues to increase after 1 week of adoptive transfer of naı̈ve T cells, although this

may also be due to relative expansion (Nutsch et al., 2016). Finally, in vitro activated Foxp3– T cells

transferred in vivo can still undergo Foxp3 induction given the right TCR as long as the cells were

not exposed to Th1- or Th2-inducing cytokines in vitro. Thus, pTreg cell selection may be termed

‘recessive’ as all cDC subsets presenting antigen would be required to be permissive for this

process.

We predict that the homeostatic pTreg cell selection process can be disrupted by T cell encoun-

ter with cDCs expressing signals that induce effector phenotypes and block FOXP3 induction. As

proof of concept, we showed that TCR transgenic cells exposed to Th1 or Th2 cytokines in vitro no

longer undergo pTreg cell selection in vivo, confirming previous in vitro results (Caretto et al.,

2010; Wei et al., 2007). In addition, TCR transgenic cells co-expressing a Th1 TCR, which engages

cDCs other than that seen by the Helicobacter-specific TCR, also failed to upregulate Foxp3.

Together, these data suggest a model whereby pTreg cell selection by tolerogenic cDCs is ‘reces-

sive’ to cDCs that dominantly induce effector T cell development. This mechanism provides a satisfy-

ing model for operation of the gut adaptive immune system. Anti-inflammatory pTreg production

would dominate during homeostatic conditions in the presence of typical commensal microbiota,

whereas pro-inflammatory effector T cells, and not pTreg cells, would emerge when a pathogen is

sensed. If antigen is carried by multiple cDC subsets, then naı̈ve antigen-specific T cells could poten-

tially differentiate into multiple effector T cell subsets in the correct contexts. The result is a careful

balance between steady-state functional tolerance and focused anti-microbial responses that help

preserve gut function in the context of time-varying microbial populations.

Materials and methods

Key resources table

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-mouse CD3e
(clone# 145–2 C11)
FITC, PE, and BV421

Biolegend 100305/07/35 Dilution: 1:300

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-mouse/human
B220 (clone# RA3-
6B2) APC/Cy7 and
A700

Biolegend 103223/31 Dilution: 1:750

Antibody Anti-mouse CD19
(clone# 6D5) APC/Cy7

Biolegend 115529 Dilution: 1:750

Antibody Anti-mouse I-Ab
(clone# AF6-120.1)
APC and PerCP/Cy5.5

Biolegend 116417/15 Dilution: 1:750

Antibody Anti-mouse CD11c
(clone# N418)
PE/Cy7 and BV605

Biolegend 117317/33 Dilution: 1:750

Antibody Anti-mouse/human
CD11b (clone#
M1/70) BV711

Biolegend 101241 Dilution: 1:750

Antibody Anti-mouse CD103
(clone# 2E7) BV421

Biolegend 121421 Dilution: 1:300

Antibody Anti-mouse CD4
(clone# RM4-5)
BV711, PE, and PB

Biolegend 100549/11/34 Dilution: 1:750

Antibody Anti-mouse CD25
(clone# PC61) APC,
BV605, PerCP/Cy5.5,
and PE-Cy7

Biolegend 102011/35/29/15 Dilution: 1:750

Antibody Anti-mouse/human
CD44 (clone# IM7)
APC/Cy7 and BV605

Biolegend 103027/47 Dilution: 1:750

Antibody Anti-mouse CD62L
(clone# MEL-14)
APC/Cy7 and BV605

Biolegend 104427/37 Dilution: 1:750

Antibody Anti-mouse FOXP3
(clone# FJK-16s) FITC

Thermo Fisher 11-5773-82 Dilution: 1:200

Antibody Anti-mouse GATA3
(clone# 16E10A23) PE

Biolegend 653803 Dilution: 1:30

Antibody Anti-mouse RORgt
(clone# B2D) APC

Thermo Fisher 17-6981-80 Dilution: 1:200

Antibody Anti-mouse TBET
(clone# 4B10) PE/Cy7

Biolegend 644823 Dilution: 1:200

Antibody Anti-mouse HELIOS
(clone# 22F6) A647

Biolegend 137208 Dilution: 1:200

Antibody Anti-mouse CXCR3
(clone# CXCR3-
173) BV421

Biolegend 126521 Dilution: 1:300

Antibody Anti-mouse
Thy1.1 (clone#
30-H12) PE/Cy7

Biolegend 105325 Dilution: 1:750

Antibody Anti-mouse LAP
(clone# TW7-16B4)
BV421

Biolegend 141407 Dilution: 1:100

Antibody Anti-mouse CD51
(clone# RMV-7) PE

Biolegend 104105 Dilution: 1:200

Antibody Anti-mouse CD80
(clone# 16-10A1) APC

Biolegend 104713 Dilution: 1:750

Antibody Anti-mouse CD86
(clone# GL-1) BV605

Biolegend 105037 Dilution: 1:300

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Antibody Anti-mouse CD40
(clone# 3/23) APC

Biolegend 124611 Dilution: 1:750

Antibody Anti-mouse CD273
(clone# TY25) APC

Biolegend 107210 Dilution: 1:300

Antibody Anti-mouse CD274
(clone# 10F.9G2)
BV421

Biolegend 124315 Dilution: 1:300

Antibody Anti-mouse XCR1
(clone# ZET) APC

Biolegend 148205 Dilution: 1:300

Antibody Anti-mouse CD36
(clone# CRF D-2712) PE

Becton Dickinson 562702 Dilution: 1:200

Antibody Anti-mouse CD45.1
(clone# A20) PE,
APC, and PE/Cy7

Biolegend 110707/14/29 Dilution: 1:750

Antibody Anti-mouse CD45.2
(clone# 104) PE,
APC, PE/Cy7,
and A700

Biolegend 109807/14/29/21 Dilution: 1:750

Antibody Anti-mouse VB6
(clone# RR4-7)
PE and APC

Biolegend 140003/5 Dilution: 1:750

Antibody Anti-mouse Va2
(clone# B20.1)
APC/Cy7 and
PerCP/Cy5.5

Biolegend 127818/13 Dilution: 1:750

Antibody Anti-mouse VB5
(clone# MR9-4) PE

Biolegend 139503 Dilution: 1:750

Antibody Anti-mouse F4/80
(clone# BM8) PE/Cy7

Biolegend 123113 Dilution: 1:750

Antibody Anti-mouse SIRPa
(clone# P84) A700

Biolegend 144021 Dilution: 1:750

Antibody Anti-mouse CD24
(clone# M1/69) PE

Biolegend 101807 Dilution: 1:750

Antibody Anti-mouse CD101
(clone# Moushi101) PE/Cy7

Thermo
Fisher

50-112-3316 Dilution: 1:300

Strain, strain
background
(Mus musculus)

OT-II TCR
transgenic mice

The Jackson
Laboratory (JAX)

#004194

Strain, strain
background
(Mus musculus)

Ccr7GFP knockin/
knockout mice

The Jackson
Laboratory (JAX)

#027913

Strain, strain
background
(Mus musculus)

Itgax-Cre
mice

The Jackson
Laboratory (JAX)

#008068

Strain, strain
background
(Mus musculus)

Irf4fl/fl mice The Jackson
Laboratory (JAX)

#009380

Strain, strain
background
(Mus musculus)

CT2 TCR
transgenic mice

Nutsch et al., 2016

Strain, strain
background
(Mus musculus)

CT6 TCR
transgenic
mice

Nutsch et al., 2016

Continued on next page
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Continued

Reagent type
(species) or
resource Designation

Source or
reference Identifiers

Additional
information

Strain, strain
background
(Mus musculus)

Rag1–/– mice The Jackson
Laboratory (JAX)

#002216

Strain, strain
background (Mus musculus)

Foxp3IRES-GFP

mice
The Jackson
Laboratory (JAX)

#006772

Strain, strain
background
(Mus musculus)

Foxp3IRES-Thy1.1

mice
Liston et al., 2008

Strain, strain
background (Mus musculus)

Irf8D149en/D149en

mice; formerly
Irf8 +32 5’–/–

Durai et al., 2019

Strain, strain
background
(Mus musculus)

Batf3–/– mice Hildner et al., 2008

Strain, strain
background
(Mus musculus)

Zbtb46GFP mice Satpathy et al., 2012

Strain, strain
background
(Mus musculus)

CD207-DTA
mice;
formerly
huLangerin-
DTA

Kaplan et al., 2005

Mice
Animal breeding and experiments were performed in a specific pathogen-free animal facility using

protocols approved by the Washington University Institutional Animal Care and Use Committee

(protocol #20170036). Littermates were used for all comparisons of control and cDC-deficient mice.

CT2, CT6, and OT-II transgenic mice were bred to Rag1–/– and Foxp3IRES-GFP (Lin et al., 2007) or

Foxp3IRES-Thy1.1 (Liston et al., 2008).

Adoptive transfer and harvest of T cells
Lymph nodes and spleens were harvested from congenically marked (Ly5.1, Ly5.2, or Ly5.1/2) CT2,

CT6, or OT-II transgenic mice. Naı̈ve T cells (CD4+ Foxp3– CD25– CD62Lhi CD44lo) were sorted on a

FACSAria IIu (Becton Dickinson) and stained with CTV (Thermo Fisher #C34571). 5 � 104 (CT2/OT-

II), or 105 (CT6) cells were retro-orbitally injected into 3–4-week-old mice on day 0 unless otherwise

noted. For OT-II transfer in an oral tolerance model, mice were gavaged with 50 mg of OVA (Sigma

#A5503) on days 1 and 2. CT2 and CT6 cells were analyzed by flow cytometry (Flowjo) in the dMLN

on day 7, while OT-II cells were analyzed from the whole MLN on day 8. For analysis of polyclonal

cLP T cells, colons were processed as in Nutsch et al., 2016. Briefly, colons were cleaned and incu-

bated in RPMI (Thermo Fisher # SH3025502) with 3% bovine calf serum, 20 mM HEPES, dithiothreitol

(Sigma #43819), and EDTA for 20 min at 37˚C with constant stirring. Tissue was further digested with

28.3 mg/ml Liberase TL (Sigma #5401020001) and 200 mg/ml deoxyribonuclease I (Sigma #DN25),

with continuous stirring at 37˚C for 30 min. Digested tissue was forced through a Cellector tissue

sieve (Bellco Glass) and passed through a 40 mm cell strainer. Transcription factors were stained

using the FOXP3/Transcription Factor Staining Buffer Set (Thermo Fisher #00-5523-00).

Preparation of DCs
DCs were harvested from the dMLN of 3–5-week-old Ly5.1 Foxp3IRES-GFP mice in our colony for ex

vivo and fluorescence-activated cell sorting (FACS) experiments, and from cDC deficient mice for

qPCR experiments. dMLN were dissociated in RPMI containing 5% bovine calf serum, penicillin/

streptomycin, 1 mM sodium pyruvate, non-essential amino acids, 50 mM beta-mercaptoethanol, 65.8

mg/ml collagenase VIII (Sigma # C2139), and 0.2 U/ml dispase (Thermo Fisher # CB-40235) for 45

min at 37˚C with continuous stirring. For culture and qPCR, DCs were blocked in 10 mg/ml anti-
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CD16/CD32 (BioXCell #BE0307) and sorted using the following markers: migratory cDCs (CD3e–

B220– CD19– IAbhi CD11cint), resident cDCs (CD3e– B220– CD19– IAbint CD11chi), CD103+ SP (CD3e–

B220– CD19– IAbhi CD11cint CD103+ CD11b–), DP (CD3e– B220– CD19– IAbhi CD11cint CD103+

CD11b+), and CD11b+ SP (CD3e– B220– CD19– IAbhi CD11cint CD103– CD11b+). RALDH activity was

quantified using Aldefluor (Stemcell #01700).

Ex vivo cDC-T cell simulation assay cDCs with indicated phenotypes were sorted by flow cytome-

try from the dMLN of 10–15 mice naturally colonized by vertical transmission of H. typhlonius and H.

apodemus. 104 cDCs were cultured with 2.5 � 104 naı̈ve (CD4+ Foxp3– CD25– CD44lo CD62Lhi) CT2,

CT6, or OT-II T cells sorted from transgenic mice. Cells were cultured in 96-well U-bottom plates for

2 days at 37˚C in 200 ml complete DMEM (Thermo Fisher #SH3008101) with 10% FBS, glutamax, 50

mM beta-mercaptoethanol, and 1 mM sodium pyruvate (10 mM HEPES, non-essential amino acids,

and penicillin/streptomycin). H. typhlonius and H. apodemus were cultured as in Chai et al., 2017,

autoclaved, filtered, and quantified for protein concentration by Bradford protein assay. Where

noted, either 2 ng/ml of autoclaved H. typhlonius or 1.4 ng/ml of autoclaved H. apodemus was added

to individual cultures. Where noted, cDC:T cell cocultures were incubated with 0.025 mg/ml aMHC

Class II blocking antibody (a different clone from the non-blocking IAb antibody used to sort cDCs)

(BioXCell #BE010). For cultures with OT-II T cells, indicated concentrations of OVA323-339 were

added to cultures. For T cell hybridoma stimulation by ex vivo cDCs, 104 CT6 or TA1 hybridomas

were incubated with 104 ex vivo MLN cDCs as described above. Where noted, 20 mg/ml anti-CD3

(BioXCell BE0001-1) was added to each well as a positive control. qPCR cDCs with indicated markers

were sorted into lysis buffer and processed for RNA with the Nucleospin RNA XS kit (Machery-Nagel

740902). cDNA was synthesized with SuperScript III Reverse Transcriptase (ThermoFisher 18080085).

qPCR was carried out with Luminaris Color HiGreen qPCR Master Mix (ThermoFisher K0391) using a

LightCycler 480 (Roche) for real-time quantitative RT-PCR. Transcripts were normalized to Gapdh

and quantified in two technological replicates. Primer pairs used were: Gapdh (F: 5’-ACAAGATGG

TGAAGGTCGGTGTGA-3’, R: 5’-AGCTTCCCATTCTCAGCCTTGACT-3’) (Zhou et al., 2014), Tgfb1

(F: 5’-GCTACCATGCCAACTTCTGT-3’, R:5’-CGTAGTAGACGATGGGCAGT-3’) (Kuczma et al.,

2009), Tgfb2 (F: 5’-TCGACATGGATCAGTTTATGCG-3’, R: 5’-CCCTGGTACTGTTGTAGATGGA-3’)

(Li et al., 2013), Tgfb3 (F: 5’-CGAGTGGCTGTTGAGGAGA-3’, R: 5’-GCTGAAAGGTGTGACATGGA-

3’) (de Verteuil et al., 2014), Il10 (F: 5’-AGTGGAGCAGGTGAAGAGTG-3’, R: 5’-TTCGGAGAGAGG

TACAAACG-3’) (Kuczma et al., 2009), Itgb6 (F: 5’-AAACGGGAACCAATCCTCTGT-3’, R: 5’-GCTTC

TCCCTGTGCTTGTAGG-3’) (Tatler et al., 2016), Itgb8 (F: 5’-CTGAAGAAATACCCCGTGGA-3’, R:

5’-ATGGGGAGGCATACAGTCT-3’) (Melton et al., 2010), Ido1(F: 5’-GAAGGATCCTTGAAGAC-

CAC-3’, R: 5’-GAAGCTGCGATTTCCACCAA-3’) (Orabona et al., 2006).

16S rRNA sequencing
Fecal DNA was purified via column (Zymogenetics) and used in triplicate PCR of the bacterial V4

hypervariable region of 16S rRNA using barcoded primers described previously (Caporaso et al.,

2011). PCR products were sequenced using the Illumina MiSeq platform (2 � 250 bp paired end

reads), and ASVs and taxonomy including species designations if possible (silva 1.32) determined by

dada2 (Callahan et al., 2016). ASV data were analyzed by phyloseq (v1.32), vegan (v2.4), and

DESeq2 (v.1.28) in R (3.6).

In vitro polarization and transduction of T cells
24-well plates were coated with 10 mg/ml anti-CD3e (BioXCell BE0001-1) overnight at 4˚C. Wells

were washed with PBS and plated with 5–15 � 105 naı̈ve CT6 T cells in D10 and 1 mg/ml anti-CD28

(BioXCell BE0015-1) in Th0 conditions: 10 mg/ml anti-TGFb (BioXCell BE0057), 5 mg/ml anti-IL12 (Bio-

XCell BE0052), 5 mg/ml anti-IFNg (BioXCell BE0054), and (5 mg/ml anti-IL4 (BioXCell BE0045)); Th1-

polarizing conditions: 10 ng/ml IL-12 (Peprotech #210–12); or Th2-polarizing conditions: 10 ng/ml IL-

4 (Peprotech #214–14). For in vitro polarization experiments, naı̈ve CT2 cells were plated on anti-

CD3e and cultured for 48 hr in Th0 or Th1 conditions, after which 1.5 � 105 cells were injected into

each host. For TCR transduction, TCRa chains utilized were TA1: TRAV14-3*01 CDR3 AASETGNTG-

KLI; T7-2: TRAV7-4*01 CDR3 AASEHWSNYQLI; and T9-1: TRAV9-1*02 CDR3 AVSAPNTNKVV. TCRa

chain retroviral transduction was performed as described in Hsieh et al., 2004 using TransIT-293

(Thermo Fisher # MIR2700). Note that the transduced cells all share the same original TCli TCRb
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chain (Hsieh et al., 2004). CT6 cells were plated on anti-CD3 in Th0 media, transduced 27 hr later,

and left to rest in Th0 media for 48–66 hr. Foxp3– cells were then sorted for TA1-transduced

(TdTomato+), control TCR-transduced (Thy1.1+), or untransduced cells. 5 � 104 (co-injection of trans-

duced TCRs totaling 1.5 � 105 T cells per mouse) or 2 � 105 (injection of single transduced TCR plus

untransduced control cells) of each TCR were injected into each host. T cell hybridomas expressing

GFP under a minimal NFAT promoter (Ise et al., 2010) were retrovirally transduced with CT6 or TA1

TCRa chains as previously described (Chai et al., 2017; Lathrop et al., 2011).

Statistical analysis
Graphpad Prism v7 was used for statistical and graphical analysis unless noted. CTV division index

was obtained by manually defining CTV peaks for each cell population and using the formula
P

i

0
i�

Ni

2i
ð Þ

P
i

0

Ni

2i
ð Þ

, where (i) = the maximum number of cell divisions in the population and (N) = the number of

cells in a given CTV peak (i). Student’s t-test was used for between-subject analyses with two groups.

One-way ANOVA with Tukey’s multiple comparisons tests was used for between-subjects analysis

with greater than two groups and one independent variable. Two-way ANOVA with Sidak’s multiple

comparisons tests was used for between-subjects analysis with greater than two groups and two

independent variables. Where stated, the mixed effects model with Tukey’s multiple comparisons

tests were used instead of two-way ANOVA for repeated measures data with missing values. For in

vivo experiments, each dot represents data from an individual host. Bars indicate mean ± SEM.

*p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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