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Emotions are multimodal processes that play a crucial role in our everyday lives.

Recognizing emotions is becoming more critical in a wide range of application domains

such as healthcare, education, human-computer interaction, Virtual Reality, intelligent

agents, entertainment, and more. Facial macro-expressions or intense facial expressions

are the most common modalities in recognizing emotional states. However, since facial

expressions can be voluntarily controlled, they may not accurately represent emotional

states. Earlier studies have shown that facial micro-expressions are more reliable than

facial macro-expressions for revealing emotions. They are subtle, involuntary movements

responding to external stimuli that cannot be controlled. This paper proposes using

facial micro-expressions combined with brain and physiological signals to more reliably

detect underlying emotions. We describe our models for measuring arousal and valence

levels from a combination of facial micro-expressions, Electroencephalography (EEG)

signals, galvanic skin responses (GSR), and Photoplethysmography (PPG) signals. We

then evaluate our model using the DEAP dataset and our own dataset based on a

subject-independent approach. Lastly, we discuss our results, the limitations of our work,

and how these limitations could be overcome. We also discuss future directions for using

facial micro-expressions and physiological signals in emotion recognition.

Keywords: emotion recognition, electroencephalography (EEG), facial micro-expressions, physiological signals,

neural networks, decision fusion, OpenBCI

1. INTRODUCTION

Human emotions involve numerous external and internal activities and play an essential role in
our daily life. Facial expressions, speech, and body gestures are some of the external activities
affected by emotional situations. Changes in brain activity, heart rate, blood pressure, respiration
rate, body temperature, and skin conductance are examples of internal emotional effects (Verma
and Tiwary, 2014). Nowadays, we are surrounded by digital characters, intelligent devices, and
computers in the modern world. There is a need for better interaction with these systems,
and it is becoming increasingly important to recognize emotions in many human-human and
human-computer interactions (Zheng et al., 2018). The effectiveness of our remote interactions,

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://www.frontiersin.org/journals/psychology#editorial-board
https://doi.org/10.3389/fpsyg.2022.864047
http://crossmark.crossref.org/dialog/?doi=10.3389/fpsyg.2022.864047&domain=pdf&date_stamp=2022-06-28
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:zsaf419@aucklanduni.ac.nz
https://doi.org/10.3389/fpsyg.2022.864047
https://www.frontiersin.org/articles/10.3389/fpsyg.2022.864047/full


Saffaryazdi et al. Micro-Expressions and Physiological Emotion Recognition

therapy, consultations, or training sessions could be improved
if they were equipped with emotion recognition systems.
For example, recognizing emotion in remote e-learning
(Khalfallah and Slama, 2015) could enhance the performance
of learning. Similarly, in Empathic Computing applications,
the goal is to measure the emotions of people teleconferencing
together and use the result to improve remote communications
(Piumsomboon et al., 2017).

Finally, creating intelligent agents with emotion recognition
capabilities could be helpful in health care, education,
entertainment, crime investigation, and other domains (Huang
et al., 2016). It could be beneficial for intelligent assistants
(Marcos-Pablos et al., 2016) or humanoid robots (Bartlett et al.,
2003) to be able to measure the emotions of their users. Zepf et al.
(2020) discuss the importance of emotion-aware systems in cars.
Similarly, Hu et al. (2021) presented a conversational agent that
recognizes emotions based on the acoustic features of speech.
According to Chin et al. (2020) empathy between conversational
agents and people can improve aggressive behavior. Schachner
et al. (2020) discussed developing intelligent conversational
agents for health care, especially for chronic diseases. Similarly,
Aranha et al. (2019) reviewed software with smart user interfaces
capable of recognizing emotions in various fields, including
health, education, security, and art. According to their review,
emotion recognition has often been used for adjusting sounds,
user interfaces, graphics, and content based on user emotion.

Facial expressions are one of the most commonly used input
modalities analyzed to identify emotional state (Sun et al., 2020).
They are used in many HCI applications (Samadiani et al., 2019).
Although studies have shown significant results in recognizing
emotion from facial expressions (Li and Deng, 2020), using these
methods in daily life faces some challenges because they can be
controlled or faked by humans (Hossain and Gedeon, 2019).
Many methods for recognizing emotions from facial expressions
are based on datasets with non-spontaneous facial expressions
or exaggerated facial expressions which do not correctly reflect
genuine emotions (Weber et al., 2018; Li and Deng, 2020). In the
real world, people usually show subtle involuntary expressions
(Zeng et al., 2008) or expressions with lower intensity according
to the type of stimuli. These studies show the importance
of developing and improving robust methods for recognizing
spontaneous emotions.

1.1. Recognizing Spontaneous Emotions
Three main approaches have been proposed in the literature
for recognizing subtle, spontaneous emotions in the real world,
which are listed as follows:

• Extracting involuntary expressions from faces.
• Using physiological signals that cannot be faked.
• Using a combination of various input modalities.

1.1.1. Extracting Facial Micro-Expressions From

Faces
In this approach, the focus is on extracting facial micro-
expressions instead of facial macro-expressions. Facial macro-
expressions or intense facial expressions are voluntary muscle

movements in the face that are distinguishable, cover a large area
of the face, and their duration is between 0.5 and 4 s (Ekman
and Rosenberg, 1997). In contrast, facial micro-expressions
refer to brief and involuntary facial changes like the upturn
of the inner eyebrows or wrinkling of the nose that happen
spontaneously in response to external stimuli, typically over a
short time frame of between 65 and 500 ms (Yan et al., 2013).
Facial micro-expressions are difficult to fake and can be used
to detect genuine emotions (Takalkar et al., 2018). The short
duration of these expressions and their subtle movements make
it difficult for humans to identify them (Qu et al., 2016); Figure 1
shows some examples of facial micro-expressions compared to
facial macro-expressions.

1.1.2. Using Physiological Signals That Cannot Be

Faked
This approach relies on physiological responses that are
difficult to fake and provide a better understanding of
underlying emotions. These responses come from the central
(brain and spinal cord) and autonomic nervous systems
(regulating body functions like heart rate) (Kreibig, 2010).
Electroencephalography (EEG) is one of the methods for
measuring brain activity that is commonly used in emotional
studies (Alarcao and Fonseca, 2017). Galvanic Skin Response
(GSR) and Heart Rate Variability (HRV) can also be used to
reliably measure emotional state and have been used widely in
emotion recognition studies (Perez-Rosero et al., 2017; Setyohadi
et al., 2018; Shu et al., 2018). Although EEG and physiological
signals are more reliable and can not be controlled or faked
by humans (Wioleta, 2013). These signals can be very weak
and easily contaminated by noise (Jiang et al., 2020). So,
recognizing emotions using only physiological signals can be
pretty challenging.

1.1.3. Using a Combination of Various Input

Modalities
In this approach, various modalities are combined to overcome
the weaknesses of each individual modality. Combining different
physiological signals for emotion recognition (Yazdani et al.,
2012; Shu et al., 2018) or fusing only behavioral modalities
have been widely explored (Busso et al., 2008; McKeown
et al., 2011). Recently some studies tried to improve emotion
recognition methods by exploiting both physiological and
behavioral techniques (Zheng et al., 2018; Huang et al., 2019;
Zhu et al., 2020). Many studies used a combination of facial
expressions and EEG signals to achieve this improvement
(Koelstra and Patras, 2013; Huang et al., 2017; Zhu et al., 2020).
Usually, these researchers work on data that has been collected
from subjects while they are watching videos or looking at still
images (Koelstra et al., 2011; Soleymani et al., 2011). However,
people often do not show many facial expressions in these tasks.
Therefore, regular facial expression strategies may not be able
to accurately recognize emotions. A limited number of studies
used facial micro-expressions instead of facial macro-expressions
(Huang et al., 2016), but this area still needs more research
and exploration.
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FIGURE 1 | Facial micro-expressions compared to facial macro-expressions. Facial micro-expressions (left) and macro expressions (right) for happiness (line1) and

disgust (line2), from CASME II (Pantic et al., 2005) and MMI (Yan et al., 2014) datasets (Allaert et al., 2018).

Moreover, based on the research of Doma and Pirouz (2020),
it is not clear when genuine emotion starts. They hypothesized
that participants might still be in their previous emotional state
during the first seconds of watching video stimuli. While in
the last seconds, they may be more immersed in the video and
feel genuine emotion. This is because they better understand
the video in the final seconds. They found that the last
seconds of EEG data were more informative and showed better
emotion prediction results. We believe that the peak time of
feeling emotions with the most intensity is affected by many
factors such as the stimuli flow, participant personality, or
previous experiences.

1.2. Goals, Overview, and Contributions
Our hypothesis is that by identifying and analyzing the most
emotional part of each stimulus or the time of emerging
emotions, we can better understand the body’s reaction to
emotions and create more robust models for identifying
emotions. A primary objective of our research is to improve
emotion recognition by combining facial micro-expression
strategies with EEG and physiological signals.

In this paper, firstly, each facial video is scanned for
micro-expressions that roughly indicate the emergence of
emotional stimulation. The micro-expression window is used to
approximately determine the time of arising emotions. Then we
analyze the EEG and physiological data around the emergence
of micro-expressions in each trial in comparison to the analysis
of the entire trial. Finally, we compare these two strategies and
evaluate our methods based on a subject-independent approach.
In the end, we present the results, limitations, and future works.
We also use the DEAP dataset as a benchmark to evaluate our
method. Additionally, we conduct a user study to collect facial
video, EEG, PPG, and GSR data while watching a video task
similar to the DEAP dataset but with different sensors.

The main contributions of this research are as follows:

• Fusing facial micro-expressions with EEG and physiological
signals to recognize emotions.

• Utilizing facial micro-expressions to identify the emotional
stimulation or more informative period of data to improve
recognition accuracy.

• Creating a new multimodal dataset for emotion recognition
using a low-cost and open-source EEG headset.

2. PRELIMINARIES

2.1. Emotion Models
Some researchers believe that a few universal emotions exist
that apply to all ages and cultures (Maria et al., 2019). A
deeper understanding of emotion modeling is necessary to avoid
making mistakes in emotion recognition and design a reliable
system. Researchers have represented Emotions in two ways.
The first perspective is the well-known discrete emotion model
introduced by Ekman and Friesen (1971) which categorized
emotions into six basic types; happiness, sadness, surprise, anger,
disgust, and fear. In contrast, the second perspective considers
emotions as a combination of three psychological dimensions:
arousal and valence and one of dominance or intensity. Earlier
research has demonstrated that two dimensions of arousal and
valence are sufficient to explain the underlying emotions, which
are primarily driven by neurophysiological factors (Eerola and
Vuoskoski, 2011). The most common dimensional model used in
the literature is Russel’s Circumplex Model (Posner et al., 2005),
which only uses valence and arousal for representing emotions,
where valence represents a range of negative to positive emotions.
In contrast, arousal represents a passive to active emotion.

Based on Russel’s Circumplex Model, it is incorrect to
categorize emotional states into discrete emotions because the
human emotional state is always a mixture of several emotions.
So, when people report fear as their emotion, it may be a
mixture of excitement, joy, and fear or a combination of negative
feelings and fear. So, in positive and negative scary situations,
the pattern of the brain and physiological signals are not the
same, and categorizing them in a single class leads to incorrect
recognition. Additionally, the perception of emotions varies
widely based on experience, culture, age, and many other factors,
which makes evaluation difficult (Maria et al., 2019). Lichtenstein
et al. (2008) showed that the dimensional approach is more
accurate for self-assessments. Similarly, Eerola and Vuoskoski
(2011) found that the discrete emotion model is less reliable
than the dimensional model in rating complex emotional stimuli.
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They also observed a high correspondence between the discrete
and dimensional models.

Facial macro-expressions and facial micro-expressions
are usually expressed with discrete emotions, and previous
studies used the discrete emotion model to evaluate their
strategy. However, most research on neurophysiological emotion
recognition and the benchmark dataset that we used, used the
Circumplex Model to assess their methods. Since the focus of
our study is on revealing underlying emotions and used three
neurophysiological cues besides facial micro-expressions, we
used the two-dimensional Circumplex Model to evaluate our
methodology on the benchmark dataset and our dataset.

2.2. Emotion Stimulation Methods
There are different ways of inducing emotions. However, the
effect of all emotion inductionmethods is not the same. Siedlecka
and Denson (2019) have classified emotional stimuli into five
strategies; (1) watching visual stimuli like images and videos, (2)
listening to music, (3) recalling personal emotional memories,
(4) accomplishing psychological procedures, and (5) imagining
emotional scenes. They showed how different types of stimuli
could affect various physiological variables differently. Based on
their research, visual stimuli are the most effective induction
methods used more frequently in the literature. Quigley et al.
(2014) have added Words, body movements, physiological
manipulators like caffeine, and Virtual Reality (VR). Roberts et al.
(2007) also found that dyadic interactions can be considered as an
emotion eliciting method.

2.3. Facial Micro Expressions
Facial micro-expressions are brief facial movements in response
to emotional stimuli which reveal hidden emotions (Ekman,
2003). Micro-expressions have been used in lie detection, security
systems, and clinical and psychological fields to reveal underlying
emotions (Yan et al., 2013). Lesser movements and shorter
duration times are the main characteristics of facial micro-
expressions in comparison to macro-expressions (Liong et al.,
2015). Yan et al. (2013) studied the duration of micro-expressions
and showed that their duration varies between 65 and 500 ms.
Since video episodes are dynamic, long-lasting emotional stimuli,
they have been used in micro-expression studies and creating
most of the micro-expressions datasets (Li et al., 2013; Yan
et al., 2014). To prevent facial macro-expression contamination
in micro-expression recording, in many studies, participants are
asked to inhibit any facial movements and keep a poker face when
watching video (Li et al., 2013; Yan et al., 2013, 2014). However,
suppression is brutal to achieve in response to emotional video
stimuli (Yan et al., 2013).

A micro-expression has three phases; the onset, apex, and
offset phases. In response to emotional stimuli, rapid muscle
movements happen in the onset phase, which is involuntary and
shows genuine emotional leakage. Sometimes these responses
last for a moment as the apex phase. Finally, the emotional
reactions disappear in the offset phase, and the face returns to
a relaxed state. Returning to a relaxed state may take longer for
some people because of natural skin tension or may not happen
because of merging with the subsequent emotional stimuli

(Yan et al., 2013). The first frame of the onset phase indicates the
onset frame in a recorded video, while the frame with the most
expressive emotion is the apex frame. The offset frame is when
the expression disappears (Goh et al., 2020).

Recognizing emotions using facial micro-expressions has two
main steps. The first step is spotting or locating the frame
or frames with micro-expressions in a video sequence. The
second step is recognizing the micro-expression emotional state
(Oh et al., 2018; Tran et al., 2020). Several works have used
hand-crafted strategies like Local Binary Pattern with Three
Orthogonal Planes (LBP-TOP) (Pfister et al., 2011) or Histogram
of Oriented Gradients (HOG) (Davison et al., 2015) to extract
features from frames for spotting and recognizing emotions.
(Guermazi et al., 2021) proposed an LBP-based micro-expression
recognition method to create a low-dimensional high correlated
representation of the facial video and used a Random Forest
classifier to classify micro-expressions.

Recently, deep learning techniques have been used to
extract deep features and classify emotions using facial micro-
expressions (Van Quang et al., 2019; Tran et al., 2020). Hashmi
et al. (2021) proposed a lossless attention residual network
(LARNet) for encoding the spatial and temporal features of the
face in specific crucial locations and classifying facial micro-
expressions. Although they achieved a promising recognition of
emotions in real-time, their model was efficient only when the
frame rate was more than 200 fps. Xia et al. (2019) proposed
a recurrent convolutional neural network (RCN) to extract
spatiotemporal deformation of facial micro-expressions. They
used an appearance-based and a geometric-based method to
transform facial sequence into a matrix and extract the geometric
features of facial movements. They evaluated their strategy based
on both leave-one-video-out (LOVO) and leave-one-subject-out
(LOSO) approaches and achieved satisfactory results. Similarly,
Xia et al. (2020) proposed an RCN network to recognize micro-
expressions across multiple datasets. They also discussed the
effect of input and model complexity on the performance of deep
learning models. They showed that lower-resolution input data
and shallower models are beneficial when running models on a
combination of datasets.

Ben et al. (2021) reviewed available datasets of facial micro-
expressions and discussed different feature extraction methods
for recognizing facial micro-expressions. In this research, they
introduced a new dataset of micro-expressions and discussed the
future directions for micro-expressions research. Similarly, Pan
et al. (2021) summarized and compared the available spotting and
micro-expression strategies and discussed the limitations and
challenges in this area. Detecting facial micro-expressions has
received growing attention.Many datasets have been created, and
spotting and recognition methods have developed significantly.
However, recognizing facial micro-expressions still faces many
challenges (Weber et al., 2018; Zhao and Li, 2019; Tran et al.,
2020). Oh et al. (2018) discussed various challenges in the
dataset, spotting, and recognition areas. They showed that
handling facial macro movements, developing more robust
spotting strategies, and ignoring irrelevant facial information like
head movements and cross-dataset evaluations still needs more
attention and research.
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2.4. Electroencephalography (EEG) Signals
Recently, many neuropsychological studies have investigated
the correlations between emotions and brain signals.
Electroencephalography (EEG) is one of the neuro-imaging
techniques that reads brain electrical activities through
electrodes mounted on the scalp. EEG devices differ based
on the type and number of electrodes, the position of electrodes
(flexible or fixed position), connection type (wireless or wired),
type of amplifier and filtering steps, the setup, and wearability
(Teplan et al., 2002). EEG devices with higher data quality like
g.tec1 or Biosemi2 or EGI3 are usually expensive and bulky and
require a time-consuming setup. Alternatively, there are some
EEG devices with lower data quality, like the Emotiv Epoc4 or
MindWave5. These EEG devices are affordable and are wireless
devices that require less setup time (Alarcao and Fonseca, 2017).
OpenBCI6 provides a lightweight and open-source (hardware
and software) EEG headset, which is positioned in between
these two product categories. It captures high-quality data
while it is low-cost and easy to set up. Nowadays, because
of the improved wearability and lower price of EEG devices,
recognizing emotions using EEG signals has attracted many
researchers (Alarcao and Fonseca, 2017).

EEG-based emotion recognition is an exciting and rapidly
growing research area. However, due to the weak amplitude of
EEG signals, it is challenging to recognize emotion using EEG
(Islam et al., 2021). Some research has focused on extracting
hand-crafted features and using shallow machine learning
methods to classify emotions in different application areas like
health-care (Aydın et al., 2018; Bazgir et al., 2018; Pandey and
Seeja, 2019a; Huang et al., 2021). Several review studies have
discussed the effect of various hand-crafted features like brain
band powers as well as using various classifiers like Support
Vector Machine (SVM) or Random Forest (RF) for recognizing
emotions. For instance, Alarcao and Fonseca (2017) reviewed
EEG emotion recognition studies. They discussed the most
common data cleaning and feature extraction that have been used
in the literature for emotion recognition. Based on their review,
brain band powers, including alpha, beta, theta, gamma, and delta
bands, are effective features for emotion recognition. Similarly,
Wagh and Vasanth (2019) provided a detailed survey on various
techniques involved in the analysis of human emotions based on
brain-computer interface and machine learning algorithms.

Recently many researchers have used raw EEG signals and
applied deep learning methods to extract deep features and
recognize emotions (Keelawat et al., 2019; Aydın, 2020). Sharma
et al. (2020) used an LSTM-based deep learning method to
classify emotional states based on EEG signals. Topic and
Russo (2021) used deep learning to extract the topographic
and holographic representations of EEG signals and classify
emotional states. EEG-based emotion recognition methods have

1https://www.gtec.at/
2https://www.biosemi.com
3https://www.egi.com/
4https://www.emotiv.com/epoc/
5https://store.neurosky.com/pages/mindwave
6https://openbci.com

been comprehensively reviewed by Islam et al. (2021). They
discussed various feature extraction methods and shallow and
deep learning methods for recognizing emotions.

Researchers have focused on more advanced network
architectures to increase performance in recent years. Li et al.
(2021) proposed a neural architecture search (NAS) framework
based on reinforcement learning (RL). They trained a Recurrent
Neural Network (RNN) controller with an RL to maximize
the generated model performance on the validation set. They
achieved a high average accuracy of around 98% for arousal and
valence on the DEAP dataset in a subject-dependent approach.
In another research (Li et al., 2022), they proposed a multi-task
learning mechanism to do the learning step for arousal, valence,
and dominance simultaneously. They also used a capsule network
to find the relationship between channels. Finally, They used
the attention mechanism to find the optimal weight of channels
for extracting the most important information from data. They
reached the average accuracy of 97.25, 97.41% for arousal and
valence in the subject-dependent approach. Similarly, Deng
et al. (2021) used the attention mechanism to assign weights to
channels and then capsule network and LSTM to extract spatial
and temporal features. They achieved the average accuracy of
97.17, 97.34% for arousal and valence levels subject-dependently.

2.5. Galvanic Skin Responses (GSR)
Signals
Previous studies have shown a connection between the nervous
system and sweat glands on human skin. Changes in the level
of sweat secretion because of emotional arousal lead to changes
in skin resistance (Tarnowski et al., 2018; Kołodziej et al., 2019),
which is known as the Electrodermal Activity (EDA) or Galvanic
Skin Responses (GSR).

When the skin receives the brain’s exciting signals caused
by emotional arousal, sweating in the human body changes,
and GSR signals rise. Kreibig (2010) showed that although EDA
signals show changes in emotional arousal, more research is
needed to identify the type of emotion using EDA signals.
Tarnowski et al. (2018) used GSR local minimum as an indicator
for emotional epochs of EEG. They showed that GSR is a good
indicator of emotional arousal. In many studies, the GSR signal’s
statistical features have been used as the features for emotion
classification (Udovičić et al., 2017; Yang et al., 2018). Kołodziej
et al. (2019) calculated some statistics of peaks (local maxima)
and raw GSR signal to use as the feature of signals. They used
different classifiers and showed that SVM works better than
other classifiers for identifying emotional arousal using these
statistical features.

Some studies have used the time series or an averaging signal
as the feature vector. Setyohadi et al. (2018) collected the average
signal in each second and applied feature scaling. They used
this data to classify positive, neutral, and negative emotional
states. They used different classifiers, and SVMwith Radial Based
Kernel showed the best accuracy. Kanjo et al. (2019) used GSR
time series and deep learning analysis to understand the valence
level during walking in the middle of the city. Ganapathy et al.
(2021) showed that Multiscale Convolutional Neural Networks
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(MSCNN) are effective in extracting deep features of GSR signals
and classifying emotions.

In many studies, GSR signals have been used independently
for recognizing emotion. But, they are mainly used as a
supplementary signal or combined with other physiological
signals for recognizing emotion (Das et al., 2016; Udovičić et al.,
2017; Wei et al., 2018; Yang et al., 2018; Maia and Furtado, 2019).

2.6. Photoplethysmography (PPG) Signals
Photoplethysmography (PPG) is a novel method for measuring
Blood Volume Pulse (BVP) using infrared light (Elgendi, 2012).
It has been shown that PPG can measure heart rate variability
(HRV). HRV is a measure of temporal changes in the heart rate
to reveal medical or mental states (Maria et al., 2019). Due to
the advent of wearable devices like smartwatches that transmit
PPG signals, studies that utilize PPG signals have received more
attention. Kreibig (2010) have shown changes in HRV and HR in
a different emotional state. Recently a limited number of studies
used deep learning strategies to extract deep features of PPG
signals. Lee et al. (2019) used a one-dimensional convolutional
neural network (1D CNN) to extract deep features of PPG signals
and classify emotional states. Similar to GSR signals, PPG data
is usually used with other physiological signals to recognize the
emotional state.

3. RELATED WORKS

3.1. Multimodal Datasets for Emotion
Recognition
Multimodal emotion recognition has attracted the attention of
many researchers. A limited number of multimodal datasets
with facial video, EEG, and physiological signals for emotion
recognition are available for download. The DEAP dataset
(Koelstra et al., 2011) and MAHNOB-HCI dataset (Soleymani
et al., 2011) are the most popular datasets in multimodal emotion
recognition, which include all these modalities. Since EEG signals
are sensitive to muscle artifacts (Jiang et al., 2019), these kinds of
datasets used passive tasks like watching videos or listening to
music to minimize the subject movements.

3.1.1. DEAP Dataset
The DEAP dataset contains EEG data, facial video, GSR, blood
volume pressure (BVP), temperature, and respiration data of 32
participants. It used 40 music videos for stimulating emotions,
while EEG data were collected using the Biosemi ActiveTwo
EEG headset7, which has 32 channels. Participants reported their
arousal, valence, dominance, and liking level using the self-
assessment manikins (SAM) questionnaire (Bradley and Lang,
1994). However, in this dataset, only 22 participants have video
data, and for 4 of them, some trials have been missed. The
illumination in the facial video is low, and some sensors on the
face cover part of the facial expressions.

7https://www.biosemi.com/

3.1.2. MAHNOB-HCI Dataset
In the MAHNOB-HCI dataset, eye movements, sound, EEG
data, and respiration patterns have been collected for image and
video content tagging. After watching video clips, the participants
reported their emotional state using the valence-arousal model.
Thirty participants were recruited to create this dataset. The
Biosemi active II EEG headset8 with 32 channels was used for
collecting the EEG data.

3.2. Exploring the Relationship Between
Modalities
Some studies focused on the relationship between behavioral
responses and physiological changes in multimodal emotion
recognition. For example, Benlamine et al. (2016) and Raheel
et al. (2019) used EEG signals to recognize facial micro-
expressions. Hassouneh et al. (2020) used single-modality
strategies for recognizing emotion in physically disabled people
or people with autism using EEG and facial data. Although
they did not use multimodal strategies, they showed that
emotion could be recognized successfully using each facial
expression or EEG signal. They achieved an accuracy of 87.3%
for EEG and 99.8% for facial micro-expression from their
experimental dataset.

Sun et al. (2020) investigated a strong correlation in
emotional valence between spontaneous facial expression and
brain activities measured by EEG and near-infrared spectroscopy
(fNIRS). However, Soleymani et al. (2015) argued that although
EEG signals have some complementary information for facial
expression-based emotion recognition, they cannot improve the
accuracy of the facial expression system. However, later studies
showed improvement by combining EEG and facial expressions.
The following section describes these studies.

3.3. Fusing Behavioral and Physiological
Modalities
In many studies, researchers have shown the impact of
emotional stimuli on physiological changes like heart rate,
body temperature, skin conductance, respiration pattern, etc.
However, they could not identify which emotions had been
aroused. Some studies showed that combining physiological
emotion recognition and behavioral modalities improves
recognition outcomes. Combining facial expressions with
physiological modalities attracted the focus of some researchers
in this area. Most of these studies focused on traditional facial
expression methods and used all recorded video frames to
recognize emotions. For example, Koelstra and Patras (2013)
used a combination of EEG and facial expressions to generate
affective tags for videos. They extracted the power spectral
density of power bands and the lateralization for 14 left-right
pairs and extracted 230 features of EEG data. They tried to
recognize the activation of action units frame-by-frame and
finally extracted three features from them for each video. They
used feature-level and decision-level fusion strategies. Based on
their results, fusion strategies improved tagging performance
compared to a single modality. By fusing EEG and face data,

8https://www.biosemi.com/
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TABLE 1 | Comparison of recent related works that used the DEAP or MAHNOB-HCI datasets.

References Modalities Dataset Classification

method

Evaluation Arousal Valence

Zhu et al. (2020) EEG, FE,

Physiological

DEAP DNN Cross-subject 72.20 78.47

Huang et al. (2019) EEG, FE DEAP EEG SVM

FE: CNN

Dependent 74.00 80.00

Pandey and Seeja (2019b) EEG DEAP DNN Independent 61.25 62.50

Li et al. (2018) EEG DEAP SVM Independent – 59.60

Lan et al. (2018) EEG DEAP DA Independent – 48.93

for 3 levels

Kwon et al. (2018) EEG,GSR DEAP CNN Dependent 76.56 80.46

Rayatdoost and Soleymani

(2018)

EEG DEAP

MAHNOB

NN Independent 55.70

61.46

59.22

71.25

Huang et al. (2016) EEG, FE MAHNOB SVM/KNN Independent 63.22 66.28

Koelstra and Patras (2013) EEG, FE MAHNOB GNB Dependent 73.00 70.90

Three evaluation methods have been considered including subject-dependent (dependent), subject-independent (independent), and cross-subject (when there are some trials of all

subjects in both the training and test sets). FE, facial expression; SVM, support vector machine; GNB, Gaussian Naive Bayes; KNN, K-nearest neighbor; DNN, deep neural network;

CNN, convolutional neural network; DA, domain adaptation. The arousal and valence scores are the percentage accuracy of recognition.

arousal accuracy was improved to 70.9% from 64.7% for EEG
and 63.8% for the face. This improvement was from 70.9% for
EEG and 62.8% for face to 73% by fusion for valence values.

Huang et al. (2017) investigated fusing facial macro-
expressions and EEG signals for emotion recognition at the
decision level. They used a feed-forward network to classify basic
emotions in the extracted face of each video frame. They used
their experimental data in this study and achieved 82.8% accuracy
in a subject-dependent strategy when fusing EEG and facial
expressions. Later, they extended their work by improving facial
expression recognition using a CNN model (Huang et al., 2019).
They pre-trained amodel using the FER2013 dataset (Goodfellow
et al., 2013) and used wavelets for extracting power bands and
SVM classification for the EEG data. They achieved 80% accuracy
for valence and 74% for arousal on the DEAP dataset using
a subject-dependent strategy in a multimodal approach. In a
similar study, Zhu et al. (2020) used a weighted decision level
fusion strategy for combining EEG, peripheral physiological
signals, and facial expressions to recognize the arousal-valence
state. They used a 3D convolutional neural network (CNN)
to extract facial features and classify them, and they also used
a 1D CNN to extract EEG features and classify them. They
achieved higher accuracy when combining facial expressions
with EEG and physiological signals. Chaparro et al. (2018) also
presented a feature-level fusion strategy for combining EEG
and facial features (using 70 landmark coordinates) to improve
recognition results.

In most multimodal emotional datasets’ recorded video, no
expressions could be observed in many frames. These datasets
use passive tasks like video watching to stimulate emotions, so
emotional faces can be seen in only a small portion of frames. So,
considering all frames in the data analysis or using amajority vote
among frames without considering this issue cannot produce
a good emotion recognition result. However, many micro-
expression can be observed in response to these passive tasks. To

the best of our knowledge, only Huang et al. (2016) considered
the presence of neutral faces and subtle expressions. They
extracted Spatio-temporal features of all frames based on Local
Binary Patterns (LBP) strategies. They then trained a linear kernel
SVM using these features to calculate expression percentage
features and used this feature vector for emotion classification.
They extracted all frequencies and frequency bands and then used
the ANOVA test to select a subset of these features for EEG. For
facial classification, they used the K-Nearest-Neighbor (KNN)
classifier for EEG and Support Vector Machine (SVM). They
showed that a decision-level fusion strategy works better than a
single modality or feature fusion. They achieved an accuracy of
62.1 and 61.8% for valence and arousal, respectively.

Table 1 summarizes the most recent related works. As can be
seen, a limited number of studies combined facial expressions
with EEG data. Most previous works evaluate their methods
subject dependently or cross-subject when there are some trials of
all participants in the training and test sets. Although designing
general models that identify emotions in unseen participants
is extremely useful in our daily lives, only a few studies have
used a subject-independent approach to design and evaluate their
methods. The accuracy of subject-independent methods is low
compared to subject-dependent and cross-subject evaluations
and needs more research and exploration. Also, although some
research has focused on combining facial expressions with
physiological signals, most of them have been designed and
trained based on intense facial expressions. While in most
used multimodal datasets, people are not allowed to show
intense expressions.

This research addresses this gap by investigating the best ways
to use facial micro-expression strategies combined with EEG
and physiological signals for multimodal emotion recognition.
We also explore how facial micro-expressions can be used
to identify the most emotional part of the facial video, EEG,
and physiological data. Furthermore, we create a new dataset
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FIGURE 2 | The experiment setup.

of facial video, physiological signals, and EEG signals, which
helps develop robust models for emotion recognition. We
also explore the performance and quality of collected data
from the OpenBCI EEG headset, a low-cost EEG headset for
recognizing emotions. Moreover, we propose our strategy of
using multimodal data for emotion recognition and finally
evaluate it. Overall, the main novelty of this research is
fusing facial micro-expressions recognition with the EEG and
physiological signals. Another significant contribution of this
work is using facial micro-expression to identify a neutral state
vs. an emotional state to improve emotion recognition using the
EEG and physiological signals.

4. EXPERIMENTAL SETUP

We created a new multimodal dataset for emotion recognition
using lightweight wearable devices and a webcam. We recruited
23 volunteers (12 female and 11 male) aged between 21 and 44
years old (µ = 30, σ = 6) from university students and staff. We
only targeted four of the six basic emotions, including happiness,
sadness, anger, and fear, plus a neutral state. We collected facial
video, EEG, PPG, and GSR signals in a watching video task.
We used the arousal-valence model for measuring emotions, and
self-report data was also used as the ground truth.

4.1. Study Design
The data collection was performed in a room with a controlled
temperature. We turned off the room lights, closed the door and
curtains, and used two soft-boxes lightings facing the participant
to control illumination. One Intel Realsense camera with a
frame rate of 30 Hz was used to record facial expressions.
Participants wore the OpenBCI EEG soft headset9 with the
cyton-daisy board to record EEG signals. A Shimmer3 sensor10

9https://openbci.com/
10http://www.shimmersensing.com/

was used to record PPG and GSR data. Figure 2 shows the
experiment setup. Participants wore the Shimmer sensor as a
wristband, with PPG and GSR sensors attached to their three
middle fingers. We used an Asus laptop (TP410U) to run the
experiment scenario and record data. We designed the Octopus-
Sensing library, a multi-platform, open-source python library11,
to create the scenario and simultaneously record data and send
synchronization markers to the devices.

4.2. Stimuli Set
We considered happiness, sadness, anger, fear, and neutral
emotions and used two video clips to stimulate each emotion. Ten
video clips with the same length of 80 s were shown in a random
order for emotion stimulation. We tried to choose videos with
strong emotional scenes and subjects. Most of these videos have
been used in previous emotion studies. Table 2 shows the list of
movies, their references, and their details.

4.3. Scenario
Each session started with introducing the devices, questionnaire,
the purpose of the experiment, the meaning of arousal
and valence levels, and the overall experiment process for
the participant. Then, the EEG headset was placed on the
participant’s head, a shimmer3 wristband was worn on the
participant’s non-dominant hand, and the Shimmer’s PPG and
GSR sensors were attached to their three middle fingers. While
watching the videos, participants were asked not to move their
heads or bodies and put their hands with the Shimmer3 sensor
on a table or on their legs.

The 10 videos were shown to the participants in randomorder.
The experiment started with showing a gray screen for 5 s, then
a fixation cross for 3 s, and then the video was displayed for
80 s. After each video, participants reported their emotional state
by filling out a questionnaire similar to the SAM questionnaire
(Figure 3) and then moving to the next video by pressing a
button. Since the emotional effect of some video clips may have
remained for a while, we asked participants to move to the next
video clip after resting for a while and when they felt that they
were in a neutral state. We left the participant alone in the room
during the experiment to prevent any distraction or psychological
effects of a stranger’s presence.

5. METHODOLOGY

5.1. Ground Truth Labeling
We used self-report data from the SAM questionnaire for ground
truth labeling. We only used the reported arousal and valences
for the DEAP and our datasets. To classify arousal and valence
levels, although there are nine levels for arousal and valence
in the SAM questionnaire, similar to previous studies, we used
binary classification. We considered five as the threshold for
creating binary labels, corresponding to high and low arousal and
valence values.

Table 3 shows the average of self-report ratings for arousal and
values when rating values were between 1 and 9. This table also

11https://octopus-sensing.nastaran-saffar.me
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TABLE 2 | The video stimuli set for inducing emotion.

Emotion Movie Scene References

Happiness Pursuit of happiness Offering job –

Happiness Benny and Joone Benny (Johnny Depp) plays the fool in a coffee shop Schaefer et al. (2010)

Sadness The Champ A kid cries at father’s death Gross and Levenson (1995)

Sadness E.T. Saying goodbye Uhrig et al. (2016)

Fear Silence of the Lambs Darkness, chasing Gross and Levenson (1995), Schaefer et al. (2010)

Fear Chucky 2 Chucky beats Andy’s teacher with a ruler Schaefer et al. (2010)

Anger My Bodyguard Bullying scenes Gross and Levenson (1995)

Anger Cry freedom Police abuse protesters Gross and Levenson (1995)

Neutral Weather news News Droit-Volet et al. (2011)

Neutral Documentary Documentary about soil –

FIGURE 3 | Experimental questionnaire (Three last questions are from SAM questionnaire).

shows the percentage of participants who reported each emotion
for each video clip. For example, 78.9% of participants reported
happiness for the Pursuit of Happiness video clip, and only 4.3%
reported fear, 7.8% reported neutral, and 8.7% reported sadness
for this video clip. As can be seen, most of the participants
reported the target emotion for all stimuli. Although we included
all basic emotions in the self-report questionnaire, none of the
participants reported other emotions except those in our target

emotion list. So, we did not include other emotions in this table
and in our evaluation results.

5.2. Imbalanced Data
In the DEAP dataset, the total number of low and high classes
for all participants’ trials for valence were 339 and 381, and for
arousal, 279 and 444. These values for our dataset for valence
classes were 100 and 130, and for arousal were 94 and 136 for
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TABLE 3 | The Mean arousal and valence rating values and the percentage of participants who reported each emotion for each video-clip in our dataset.

Target emotion Valence Arousal Anger Fear Happiness Neutral Sadness

Pursuit of happiness Happiness 6.83 5.48 0.00 4.30 78.30 8.70 8.70

Benny and Joone Happiness 6.57 6.22 0.00 0.00 87.00 13.00 0.00

The champ Sadness 3.35 5.17 4.30 0.00 0.00 0.00 95.70

E.T. Sadness 5.61 4.57 0.00 4.30 26.10 13.00 56.50

Silence of the lambs Fear 4.35 2.82 0.00 69.60 0.00 30.40 0.00

Chucky 2 Fear 3.83 7.22 0.00 91.30 8.70 0.00 0.00

My bodyguard Anger 3.83 5.61 73.90 4.30 0.00 8.70 13.00

Cry freedom Anger 3.26 6.35 60.90 0.00 0.00 0.00 39.10

News Neutral 4.74 4.35 8.70 0.00 4.30 78.30 87.00

Documentary Neutral 5.65 4.52 0.00 0.00 30.40 69.60 0.00

The bolded values prove that for each stimulus, most people reported the target emotion of stimuli.

low and high classes, respectively. As can be seen, both datasets
were not balanced among classes. Also, we used a leave-some-
subject-out strategy for splitting the training and test data. Hence,
the imbalance state among the training and test sets for each
set depended on the participants’ rating. We used cost-sensitive
learning (Ling and Sheng, 2008) to handle the imbalanced data.
Cost-sensitive learning used the costs of prediction errors during
the model training. It employed a penalized learning algorithm,
which raised the cost of classification errors in the minority class.
We used the Scikit-learn library12 to measure class weights and
used the estimated weights while training the models. We also
used the cost-sensitive SVM and RF to handle imbalanced data.

5.3. Video Emotion Recognition
In the DEAP dataset and our dataset, we asked participants to
keep a poker face while watching videos because of the sensitivity
of EEG signals to muscle artifacts. This condition is entirely the
same as micro-expression datasets. In micro-expression datasets,
participants were asked to inhibit their expressions and keep
a poker face while watching the videos to prevent macro-
expression contamination (Goh et al., 2020). This condition leads
to neutral faces in almost all frames, and only genuine emotions
will leak as micro-expressions. Figure 4 shows some frames of a
trial from the DEAP dataset, our dataset, the SMIC dataset (Li
et al., 2013) and some images from FER2013 dataset (Goodfellow
et al., 2013). The SMIC dataset has been specifically collected
for facial micro-expression emotion recognition studies. As seen
in all of these datasets, emotions can hardly be noticed, and
we mostly saw a neutral face. In contrast, in the facial macro-
expressions datasets like FER2013 (Goodfellow et al., 2013) and
CK+ (Lucey et al., 2010), there are sets of faces with intense
expressions (Figure 4).

We trained a deep convolutional neural network using the
FER2013 dataset, tested it on all trials’ frames, and mainly got
neutral emotions from facial expression recognition. The model
had five blocks of convolutional and pooling layers, and its
structure was similar to the VGG-16 (Simonyan and Zisserman,
2014) with some extra layers in each block. Figure 5 shows the

12https://scikit-learn.org/stable/index.html

FIGURE 4 | Six frames of a trial of three different datasets from a watching

video task. (A) Our dataset, micro-expressions in eyes and lips, (B) DEAP,

micro-expressions around lips, (C) SMIC, micro-expressions on the forehead

around the eyebrows, (D) FER2013, macro-expressions.

structure of model. FER2013 is a large-scale dataset automatically
collected by the Google image search API and has been widely
used in facial emotion recognition studies. It contains 28,709
training images, 3,589 validation images, and 3,589 test images
with seven expression labels: anger, disgust, fear, happiness,
sadness, surprise, and neutral. We preprocessed the data by
converting the images to grayscale images, extracting the face
area using the face detection module from the Dlib library,
normalizing and resizing them, and finally, feeding them to the
deep convolutional network. We removed the non-detected faces
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FIGURE 5 | Facial macro-expression model.

TABLE 4 | The result of using facial macro-expression model for detecting emotions from all frames.

Percentage of trials

with all

neutral frames

Percentage of trials

with majority vote

neutral

Percentage of frames with detected emotion

Anger Disgust Fear Happiness Neutral Sadness Surprise

DEAP dataset 80.3 100 0.0 0.0 0.0 0.0 98.7 1.3 0.0

Our dataset 6.9 89.1 0.0 0.0 0.0 0.0 87.5 12.5 0.0

from the training and test set and achieved 85% accuracy on the
FER2013 test set data. We used the trained model for detecting
emotions from each recorded video frame in the DEAP dataset
and our dataset. Using the trained model, we applied the same
preprocessing steps and predicted each frame’s emotion.

Table 4 shows the result of prediction for the DEAP and our
datasets. As can be seen, based on the majority vote strategy of
all frames’ emotions, the detected emotion for 100% of DEAP’s
trials and 89.1% of the experimental’s trials is neutral. For a
limited number of participants, the neutral faces were mistakenly
predicted as sadness emotion in all trials.

This result shows that neutral faces or faces with subtle
or micro-expressions cannot be easily identified with facial
macro-expressions methods. Since the condition of recorded
video in the DEAP and our datasets is the same as the
micro-expression datasets, we used micro-expression methods
to detect facial video expressions in these two datasets and
investigated their performance. So we considered the facial
data in the DEAP and our dataset as facial data with micro-
expressions and used a facial micro-expression strategy for
video-emotion recognition.

We used a two-steps facial micro-expression recognition
strategy. Firstly, we used an automatic spotting strategy to
automatically find the apex frame based on maximum facial
components’ movements compared to the first and last frame
of the trial. Then we extracted a set of frames around the apex
frame and considered these frames instead of the overall video
for classification. Finally, we fed the extracted sequence to a 3D
convolutional neural network.

To prepare frames for spotting micro-expressions, first of all,
we employed a pre-trained YOLO v3 network (Redmon and
Farhadi, 2018) on the WIDER FACE dataset (Yang et al., 2016)

for face detection. We chose the WIDER FACE dataset because
it contains images with varying degrees of scale, occlusion, and
poses, enhancing the feature space for the model to learn better
and giving better real-time performance under any condition.
Then we followed the spotting method introduced in Van Quang
et al. (2019) to identify the apex frame (frame with micro-
expression) in each video. In this spotting method, firstly, we
extracted ten regions of the face around facial components where
muscle movements occur very frequently. For the next step, we
considered the first frame of the video sequence as the onset
frame and the last frame as the offset frame and calculated the
absolute pixel differences between each frame and the onset and
offset frames in the ten regions. Finally, we calculated the per-
pixel average value for each frame. We considered the frame with
the higher intensity differences as the apex frame. We considered
a window of frames around the apex frame as the region of
interest (ROI) and only used these frames in the classification step
(Figure 6A).

Although the recorded videos in our dataset and the DEAP
dataset are longer and may contain more neutral frames
than facial micro-expressions datasets, facial micro-expression
spotting methods could still find the apex frame. So we still have
the onset, apex, and offset frames. There may be several neutral
frames before the actual onset frame and after the offset frame,
but all of them are the same and will not affect the result of the
spotting algorithm. This is because the actual onset frame and
the first frame or the real offset frame and the last frame are
almost the same. Hence the measured absolute pixel differences
between the apex frame and actual onset or offset frame will be
practically the same as those between the apex frame and the
first or last frame. Although there may be more facial expressions
and apex frames in the video, the actual offset frame, and the last
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FIGURE 6 | Emotion recognition strategy. (A) Locating the apex frame in the sequence of all frames in each trial. (B) The architecture of the network for detecting

arousal or valence states in facial videos based on micro-expressions. (C) The overall structure of EEG and physiological classification.

frame are nearly identical since both frames depict the face in a
neutral state.

We considered different window sizes for the ROI and
discussed it in the result section. Figure 4 illustrates six frames
of extracted sequences around the apex frame for DEAP and
our dataset, in addition to a sequence of the SMIC dataset.
We used a 3D Convolutional Neural Network (3D CNN) to
classify micro-expression sequences. It is one of the state-of-
the-art models in micro-expression emotion recognition (Reddy
et al., 2019) which achieved good performance on two popular
micro-expressions dataset CASME II (Yan et al., 2014), and SMIC
(Li et al., 2013). This method achieved 87.8% accuracy on the
CASME II dataset and 68.75% accuracy on the SMIC dataset.
We used this model to extract deep features and classify micro-
expressions in the DEAP and our datasets. Since the ground-
truth labeling in both datasets is based on arousal and valence
levels, instead of classifying micro-expressions based on basic
emotions, we classified micro-expressions based on arousal and
valence levels. To classify emotional states based on arousal or
valence, we applied the model two times to the data, once for
classifying arousal levels and once for classifying valence levels.
In this model, instead of using six as the output shape in the last
dense layer, we used 2 to classify micro-expressions based on low
and high arousal or valence.

At first, we used the YOLO face detection algorithm to detect
the face in each frame in the ROI, then converted it to the

grayscale image, normalized it, and resized it. Finally, we fed the
preprocessed sequences into two 3D CNN models introduced in
Reddy et al. (2019) for classifying arousal and valence separately.
Figure 6B) illustrates the structure of the 3D CNNmodel.

5.4. EEG and Physiological Emotion
Recognition
We considered micro-expressions as an indicator for identifying
the most emotional time of each trial. Then, we used an ROI-
based strategy for recognizing arousal and valence using EEG
and physiological data. We considered the time of the apex
frame as the most emotional time of each trial. Then, we located
corresponding samples in the EEG and physiological data at
this time. Due to the difference in sampling rates between EEG,
physiological data, and video frames, we multiplied the sampling
rate of each signal at this time to determine the ROI. Finally,
we extracted a couple of seconds of data around it, considered
the extracted part as the ROI, and analyzed only the extracted
data. We regarded different window sizes for extracting ROI and
discussed it in the result section.

To analyze EEG and physiological data, we followed the main
steps of emotion recognition: preprocessing, feature extraction,
and classification. Firstly, we cleaned data and then extracted
ROI sections and only used ROI data as the input of the feature
extraction step. To classify data, we used two methods for
classifying EEG and physiological data. In the first method, we
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extracted some features—described in the following sections—
from the whole data or ROI section. We used these features
as the input of Support Vector Machine (SVM), K-Nearest
Neighbor (KNN) (Bressan and Vitria, 2003) and Random Forest
(RF) (Criminisi et al., 2011) classifiers. In the second method,
firstly, we partitioned each trial into non-overlapping windows.
Then extracted features the same as the previous method from
each window and made a sequence of consequences feature
vectors. We used these sequences as the input of a stacked
Long-Short-Term-Memory (LSTM) network (Staudemeyer and
Morris, 2019) with two layers of LSTM to extract temporal
features. Finally, we used a Dense layer with Adam optimizer
(Kingma and Ba, 2014) to separately classify the data for arousal
and valence labels. Figure 6C shows the overall structure of EEG
and physiological data analysis.

5.5. Data Cleaning
5.5.1. EEG
We used the preprocessed EEG data in the DEAP dataset,
removed the first 8 s of data, including 3 s of baseline, and
considered 5 s as the engagement time and finally normalized
data. The engagement time was chosen by observation and
was the average time participants were immersed in the video.
For our dataset, we applied bandpass filters and extracted
frequencies between 1 and 45 Hz which are the frequency range
of brain waves (Huang et al., 2016). Then a common average
reference was applied, and finally, we normalized the data.
Figures 7A,B show the frequencies of EEG channels before and
after data cleaning.

5.5.2. PPG and GSR
A bandpass filter with a low-cut frequency of 0.7 Hz and a high-
cut frequency of 2.5 Hz has been used to remove noise from the
PPG signals. Similarly, a low-cut frequency of 0.1 and a high-cut
frequency of 15 Hz were used to clean the GSR signals. We also
used a median filter to remove rapid transient artifacts from the
GSR signal. Finally, we normalized these GSR and PPG signals.
Figures 7C–F shows the amplitude of one sample of GSR and
PPG signals before and after data cleaning.

5.6. Feature Extraction
5.6.1. EEG
To extract EEG features, we applied a Fast Fourier Transform
(FFT) on each window of data to extract EEG band powers. We
made a feature vector of five features by extracting EEG power
bands from each window and considered the average of each as
one feature.We extracted Delta (1–4HZ), Theta (4–8HZ), Alpha
(8–12 HZ), Beta (12–30 HZ), and Gamma (30–45) bands. These
features have commonly been used in previous studies (Wagh
and Vasanth, 2019).

5.6.2. PPG and GSR
We calculated some statistical features for both GSR and PPG
signals. The average and standard deviation of the GSR signal
and the first and second-order discrete differences of the GSR
signal made up the GSR feature vector. To build the PPG feature
vector, we considered the average and standard deviation of

the PPG signal. The PPG and GSR feature vectors have similar
characteristics, so we concatenated the two feature vectors and
referred to them as physiological data.

5.7. Fusion Strategy
There are several methods for fusing data from various sources.
Fusing data can be done mainly in two major ways, (1) feature-
level or early fusion and (2) decision-level fusion or late fusion
(Shu et al., 2018). We fused the PPG and GSR signals at the
feature level, addressed the created features as physiological
features, and classified them. We used two different strategies
for fusing facial micro-expressions, EEG and physiological
classification results in the decision level. The first strategy was
based on majority voting, where we selected the prediction
that had the most votes among EEG, facial and physiological
predictions as the final prediction. In the second strategy, we
used the weighted sum of all probabilities as the decision level
fusion strategy (Koelstra and Patras, 2013; Huang et al., 2017).
We gave various weights in the range [0, 1] with 0.01 steps to
these three classifiers, measured the best weights on the training
data, and used these weights in the fusion step. The Equation
(1), px

Modality
shows the probability of each class using a specific

modality, and a, b, and c are weights.

pxo = a× pxVideo + b× pxEEG + c× pxPhysiological (1)

x ∈ [0, 1]

a+ b+ c = 1

6. RESULT AND DISCUSSION

6.1. Evaluation Strategy
We used a subject-independent strategy to evaluate our methods
and find a general model. We used the leave-some-subject-out
strategy cross-validation. Since ourmodels were not complex and
the size of datasets was not significant, we did not use a GPU for
training models. All models were trained on a computer with
Gnu-Linux Ubuntu 18.04, Intel(R) Core(TM) i7-8700K CPU
(3.70 GHz) with six cores. We randomly shuffled participants
into six-folds and trained models for all folds in parallel. For the
DEAP dataset, 3 participants were considered in the test set in
each fold. In our dataset, four participants were considered in the
test set. The reported result is the average of all folds results.

The four main metrics in evaluating models are accuracy,
precision, recall, and F-Score or F1. They are measured using
the Equation (2) for binary classification. In this section, all
of the results are based on F-Score. In these equations, TP is
True Positive which means the number of correctly positive
class predictions. The True Negative (TN) measures how many
correctly negative predictions were made. False Positives are
the number of incorrectly predicted positive classes. FN stands
for False Negative, the number of incorrectly negative class
predictions. We used binary classification for classifying arousal
and valence separately and chose the F-Score for evaluating
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FIGURE 7 | The EEG, GSR, and PPG signals before and after applying preprocessing steps and noise removal. (A) EEG channels’ frequencies before preprocessing.

(B) EEG channels’ frequencies after preprocessing. (C) GSR signal’s amplitude before preprocessing. (D) GSR signal’s amplitude after preprocessing. (E) PPG signal’s

amplitude before preprocessing. (F) PPG signal’s amplitude after preprocessing.
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TABLE 5 | The F-Score of facial micro-expression recognition when the window

size is 20 frames around the apex frame or 60 frames.

Arousal Valence

Window size 20 60 20 60

DEAP 55.0 59.0 55.7 56.8

Experimental 61.0 62.2 57.0 61.1

The bolded values show the highest F-scores for each dataset and emotional level

according to the window size. Increasing the window size to 60 frames increase the

F-score.

our methods which are appropriate for imbalanced data.
(Sun et al., 2009).

Accuracy = (TP + TN)/(TP + FP + FN + TN) (2)

Precision = TP/(TP + FP)

Recall = TP/(TP + FN)

F1 = 2× (Recall× Precision)/(Recall+ Precision)

6.2. Hyper-Parameter Tuning
To measure the best hyper-parameters for SVM, RF, and KNN,
we used grid-search cross-validation parameter tuning (Claesen
andDeMoor, 2015). Hyper-parameters were tuned using six-fold
cross-validation when split data based on the leave-some-subject-
out strategy.We got the best result when considering Radial Basis
Function (RBF) kernel with 200 as the regulation parameter for
SVM, five neighbors for KNN, and 500 estimators for RF. For
the 3D convolutional model for micro facial expression, we used
the same parameters as the source study (Reddy et al., 2019).
We only set the number of epochs to 50. We also empirically
found that using two stacked LSTM generates better results when
the first LSTM has 80 neurons and the second has 30 neurons.
We considered 128, 32, and 64 as the batch size in LSTM model
training for EEG, GSR, and PPG classifiers and set the number
of epochs to 100 for them. We did not tune the learning rates.
Instead, we used a reduced learning rate in the range of 0.001–
0.0001, which decreases with a rate of 0.5 when validation loss is
not changing.

6.3. Identifying ROI Size
Micro-expression duration varies between 65 and 500 ms. This
time may increase when the emotion lasts for a while or may
merge with the next micro-expression that is the response of
the subsequent emotional stimulus (Yan et al., 2013). The DEAP
dataset recorded facial data at 50 frames per second. This
means that if we consider the length of a micro-expression as
half a second, a micro-expression appears in 25 frames when
the frame rate is 50 Hz. In our dataset, the frame rate is 30
frames per second, so the length of a micro-expression is 15
frames. We considered two different window sizes, including 20
and 60 frames, around the apex frames to cover short micro-
expressions or long-lasting micro-expressions. We considered

a bigger window size to cover micro-expressions that remain
longer or overlap with the next micro-expression. Table 5

compares the effect of these two window sizes on the prediction
result when we want to classify emotions according to arousal
and valence levels. As can be seen, the result of 60 frames is better
for both datasets. Since increasing the window size increases the
probability of including other head movements, adding non-
informative data to the sequence, and increasing the computation
cost, we did not consider a bigger window size. Table 5 shows
the f-score of 3D CNN models from the DEAP and our datasets
for these two different window sizes. We used the prediction
result of facial micro-expression classification combined with
the other modalities at the decision level to classify arousal and
valence levels.

We considered various sizes for extracting the ROI from EEG
and physiological data and compared the effect of ROI size on
the classification result. Figure 8 shows the impact of various ROI
sizes on the classification result when we used the LSTMmethod.
The reported values are the average of F-Score values for all folds.
As shown in Figure 8, for both datasets, the window size of 15
created almost the highest F-Score when using majority fusion.
For the DEAP dataset, weighted fusion created the best result for
predicting arousal when we considered all of the data. Despite not
seeing any consistent pattern in the two different datasets shown
here, assuming a small portion of data in the most emotional
part can yield a similar or better result than using all the data.
This indicates that if we accurately identify the most emotional
part of data, we can accurately study brain and body responses to
emotional stimuli.

We also used SVM, KNN, and RF classifiers to classify the
ROI section when the window size is 15 and when the whole
data was considered.We compared the F-Score of these classifiers
with the LSTMmethod when all data or only the ROI section has
been considered for classification inTable 6. The F-Score of facial
micro-expression with window size 60 reported in Table 5 has
been considered in the fusion strategies. We fused the prediction
result of the facial micro-expression method with all classifiers
that we used. As can be seen in these tables, the LSTM method
achieved the best result in both datasets for arousal and valence.
This shows that exploiting both temporal and spatial features
could help detect emotions. Also, the result of fusion strategies
is considerably better than single modalities. The majority vote
fusion in our dataset for arousal and valence, and only valence
in DEAP outperforms weighted fusion. Combining PPG and
GSR only improves the performance of the LSTM method in
classifying valence levels when applied to ROI data. Also, the F-
Score of the ROI-based LSTM is relatively close to or sometimes
better than using LSTM on the whole of the data. This shows that
using a small portion of data can be informative as using all of
the data.

Although other classifiers generated a good result for some
modalities for arousal or valence in one of these datasets, their
predictions did not improve after fusing with other modalities
compared to the LSTM method. When the prediction accuracy
is below or around random prediction or 50% for binary
classification, it could not find any particular pattern in the data.
Thus, the mismatching between single modalities prediction
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FIGURE 8 | The effect of ROI size on EEG, physiological, and fusion classification on the DEAP dataset and our experimental dataset (Window size 40 means all

frames).

increases, leading to a degrading f-score in the fusion strategy.
According to Table 6, the f-scores of SVM, KNN, or RFC for
some modalities were below or around 50%. Therefore, this leads
to ineffective fusion.

6.4. Computation Cost
Instead of using all frames as the input of the 3D convolutional
model, only 60 frames of each video were employed as themodel’s
input. The DEAP dataset has 3,000 frames in each video, and
our dataset has 2,400 frames in each video. By extracting micro-
expression ROI, we decrease the input size for DEAP with the
rate (60/3,000) and our dataset with (60/2,400). This drop-off in
input size leads to a considerable decline in computation cost.
Our dataset has 230 (23 * 10) trials for all participants, while the
DEAP dataset has 720 (18 * 40) trials for all participants. The face
model’s input for both datasets is (60 * 64 * 64), where 60 is the
number of frames in each trial and 64 * 64 is the dimension of
the frame in grayscale in the face area. Training six-folds of face
models for the DEAP dataset in parallel took 1 h and 37 min (235
s for each epoch). This time was 33 min for our dataset (79 s for
each epoch) because of each participant’s lower number of trials.

Moreover, despite previous studies which used the LSTM
network for classifying EEG signals and feeding raw signals as
the input of network (Ma et al., 2019), we extracted a limited
number of features from each second of data to decrease the
input size. We created a new sequence of data that is considerably
smaller than raw data while still being informative. For example,
for the EEG data, the size of each trial was (duration in seconds *
sampling rate * channels). We decreased this size to (duration
in seconds * five power bands). This decrease is the same for
physiological data. Training the LSTMmodels for EEG, PPG, and
GSR were done in parallel for six-folds. It took 12 min and 14 s
to train all these models for the DEAP dataset, while each epoch
took around 1–3 s to run. The training time for our dataset took
5 min, with each epoch taking between 25 and 100 ms to run.

6.5. Final Result
Table 7 shows the final results of classifying the ROI section for
a single modality or fusion strategy when the ROI window size
is 15 s. As can be seen, fusing micro expressions with EEG and
physiological signals leads to higher accuracy and F-Score than
using a single modality in both datasets. We achieved similar or
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TABLE 6 | Comparison of F-Score value of LSTM, RF, SVM, and KNN methods when ROI of 15 s or all of data was used.

Modality

Dataset Emotional state Method ROI length EEG PPG GSR PPG+GSR Weighted fusion Majority fusion

15 s interval 51.7 43.7 44.6 43.0 55.0 50.9
SVM

All 50.5 44.3 44.8 43.7 57.3 51.1

15 s interval 57.9 50.9 52.9 51.6 60.3 61.3
RF

All 56.8 46.0 52.6 49.6 56.5 55.8

15 s interval 62.5 50.0 52.9 47.7 53.6 61.0
KNN

All 62.1 44.5 49.6 47.9 59.3 60.4

15 s interval 62.8 51.9 65.6 61.6 62.3 68.1

Arousal

LSTM
All 58.8 54.9 60.7 60.7 60.2 66.4

Emotional state Method ROI length EEG PPG GSR PPG+GSR Weighted fusion Majority fusion

15 s interval 45 40.7 41.3 41.8 58.3 41.5
SVM

All 44.3 49.5 47.0 39.4 57.3 43.0

15 s interval 52.2 49.4 45.5 38.3 50.9 54.3
RF

All 53.1 49.2 43.9 47.7 55.4 56.0

15 s interval 54.5 43.9 48.9 43.5 57.1 57.1
KNN

All 53.7 46.8 51.1 46.7 52.7 56.8

15 s interval 61.8 56.7 56.7 58.2 61.0 67.0

Our dataset

Valence

LSTM
All 64.6 59.5 61.0 56.4 61.3 70.2

Dataset Emotional state Method ROI length EEG PPG GSR PPG+GSR Weighted fusion Majority fusion

15 s interval 48.2 47.2 47.2 47.1 58.9 48.1
SVM

All 50.0 47.2 47.0 47.2 58.1 48.3

f15 s interval 57.2 56.4 51.6 51.5 52.7 56.0
RF

fAll 53.2 52.8 52.3 53.5 55.1 54.7

15 s interval 55.4 55.5 49.1 49.0 55.4 56.1
KNN

All 53.3 53.8 51.5 51.2 53.9 57.4

15 s interval 58.7 49.4 55.7 54.0 59.5 59.0

Arousal

LSTM
All 56.3 47.2 50.1 49.5 60.9 54.0

Emotional state Method ROI length EEG PPG GSR PPG+GSR Weighted fusion Majority fusion

15 s interval 44.9 39.7 37.2 49.9 51.0 46.6
SVM

All 47.2 40.5 38.3 42.0 54.7 51.8

15 s interval 50.8 48.7 50.4 47.4 52.4 54.8
RF

All 51.4 50.7 49.3 51.9 53.0 58.0

15 s interval 49.5 51.1 48.9 52.0 52.9 53.6
KNN

All 52.4 47.7 53.1 49.5 51.4 53.0

15 s interval 53.3 59.4 51.2 54.4 57.9 60.1

DEAP

Valence

LSTM
All 58.2 50.1 47.0 50.8 57.0 59.2

The bolded values show the highest F-scores for each dataset and emotional level. The LSTM method shows the best result.

better accuracy in recognizing arousal and valence levels than
related works that used subject-independent strategies.

There is not any standard benchmark for evaluating various
emotion recognition studies. There are multiple datasets with
different scenarios in data collection that record emotional

data using various modalities and sensors. The variety in the
datasets, emotion models, the way of splitting data, evaluation
strategies, and evaluation metrics affect the final emotion
recognition results. For this reason, we should consider all
these factors for comparing various studies. Compared to
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TABLE 7 | Accuracy, F-score, precision, and recall for arousal and valence.

Arousal

Accuracy EEG Face PPG GSR Physio Majority F-Score EEG Face PPG GSR Physio Majority

Our dataset 66.0 61.4 62.6 69.6 64.6 70.8 Our dataset 62.8 62.2 51.9 65.6 61.6 68.1

DEAP 62.9 60.4 62.4 63.3 63.2 65.1 DEAP 58.7 59.4 49.4 55.7 54.0 59.0

Precision EEG Face PPG GSR Physio Majority Recall EEG Face PPG GSR Physio Majority

Our dataset 64.4 64.0 48.3 68.0 62.0 70.9 Our dataset 66.0 61.4 62.6 69.6 64.6 70.8

DEAP 59.0 60.8 59.0 59.9 55.0 69.0 DEAP 62.9 60.4 62.4 63.3 63.2 70.0

Valence

Accuracy EEG Face PPG GSR Physio Majority F-Score EEG Face PPG GSR Physio Majority

Our dataset 64.0 61.0 62.6 60.7 63.2 69.2 Our dataset 61.8 61.1 56.7 56.7 58.2 67.0

DEAP 58.1 57.9 58.5 59.0 60.3 62.4 DEAP 53.3 56.8 51.2 54.4 59.4 60.1

Precision EEG Face PPG GSR Physio Majority Recall EEG Face PPG GSR Physio Majority

Our dataset 66.4 62.9 67.0 63.6 62.9 69.2 Our dataset 64.0 61.0 62.6 60.7 63.2 69.2

DEAP 56.9 58.9 61.1 55.5 60.5 64.1 DEAP 58.1 57.9 58.5 59.0 60.3 62.4

The best values for each measurement are bolded in each row for our dataset and DEAP dataset.

the previous work reported in Table 1, the accuracy of the
proposed methods is considerably high while considering the
subject-independent approach, which is the most challenging
evaluation condition.

Although detecting facial micro-expressions is still a big
challenge in the literature and needs more exploration, we have
shown that it could considerably decrease computational costs
for video emotion recognition. There are some challenges for
detecting micro-expressions that affect emotion recognition
performance, including contamination with other facial
movements, pose changes, poor illumination, and the possibility
of faked or posed micro-expressions (Zhao and Li, 2019).
With the DEAP dataset and our dataset, the chance of faked
micro-expressions is low due to the poker face condition. There
are, however, some unwanted movements that can affect the
results of detecting micro-expressions and identifying regions
of interest.

We also found that the low-cost OpenBCI EEG cap could
achieve similar performance to the Biosemi Active II cap used in
the DEAP dataset. Our result shows that although this tool is low-
cost, it can be used as a reliable tool for collecting brain signals for
emotion recognition.

Similar to previous studies, our result shows that combining
various modalities leads to a better recognition result with a 3–
8% improvement after fusion. We achieved 65.1% accuracy for
arousal and 69.2% accuracy for valence in the DEAP dataset,
which is better than single modalities. These corresponding
values are 70.8 and 69.2% for arousal and valence in our dataset.
Table 7 shows these improvements. Although there are some
disadvantages to employing multimodal data, such as increased
computing cost and data analysis complexity, the benefits of
enhancing prediction performance outweigh them. Nowadays,

most processing systems have multiple cores, making parallel
processing easy. We can perform multimodal data analysis
using parallel processing at almost the same time as a single
modality analysis.

7. LIMITATIONS

Despite showing that facial micro-expressions can effectively
identify emotions, we face some challenges that should be
addressed in the future. Due to involuntary facial movements,
such as eye blinking, head movements, or regular facial
expressions, micro-expressions can be mistakenly detected (Tran
et al., 2020). These movements result in incorrect detection of
the apex frame. In the future, we could significantly improve
the spotting strategy result by introducing new facial micro-
expression datasets and using deep learning methods. In this
paper, we used a simple traditional micro-expression spotting
strategy to detect the apex frame. We showed that facial micro-
expressions could be combined with other modalities in emotion
recognition. In the future, we want to use more robust spotting
strategies to improve recognition quality.

Furthermore, facial micro-expressionmethods face challenges
similar to facial macro-expressions, including illumination
conditions, cultural diversity, gender, and age. These limitations
can be overcome by using new datasets and more robust deep
learning methods. Also, combining facial micro-expressions
with physiological signals will improve the recognition result.
EEG headsets and physiological sensors are not as accessible
as cameras for most people. We are now closer than
ever to developing robust models for emotion recognition
because more and more affordable and wearable devices like
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smartwatches, activity trackers, and VR headsets are equipped
with physiological sensors. We can achieve this objective by
introducing more accurate, wearable, and affordable EEG sensors
and developing a more robust algorithm for physiological
emotion recognition.

We used a spotting strategy to detect apex frames in our
study. Since spotting methods still need more exploration and
are an open challenge (Oh et al., 2018), we could improve our
results in the future by manually annotating the DEAP and our
dataset. Manually annotating these datasets is a labor-intensive
and time-consuming activity. Still, because they were collected
under similar conditions as micro-expression datasets, we can
use them as micro-expression datasets for making more robust
micro-expression models.

8. CONCLUSIONS

It can be essential to accurately recognize emotions for
human-human and human-machine applications. The previous
techniques relied heavily on facial macro-expressions. This paper
demonstrated our strategy for how facial micro-expressions
can be used effectively with EEG and physiological signals to
recognize emotional states.

In this paper, we used facial micro-expressions emotion
recognition instead of facial macro-expressions emotion
recognition combined with physiological modalities, which is
more reliable in identifying genuine emotions. Also, we used a
facial micro-expressions spotting strategy to roughly determine
the most emotional and informative part of the data. We
identified each trial’s region of interest (ROI) using a landmark-
based spotting strategy for detecting micro-expressions. Several
frames around the micro-expression were extracted and fed to a
3D convolutional network. In addition, we extracted a sequence
of feature vectors from EEG and physiological data in the ROI
when the data was partitioned into 1 s windows. To extract
temporal features from physiological signals and EEG signals, we
employed LSTM. We evaluated ROI classification with LSTM,
SVM, KNN, and RF classifiers compared to classifying all data.
Our methods were evaluated based on a subject-independent
approach. According to our results, we could obtain a similar or
even better accuracy by using a small portion of data compared to
all the data. According to our findings, facial micro-expressions
could identify the more emotional part of data with sufficient
information and low noise.

Moreover, we used a low-cost, open-source EEG headset
to collect multimodal emotional data. We evaluated our
method based on the DEAP dataset and our own data.
Lastly, we combined multiple modalities and found that
fusing their outputs improved emotion recognition. In
addition, we found that facial micro-expressions were
more effective at detecting genuine emotions than facial
macro-expressions methods.

Due to the high data quality and ease of use of the OpenBCI
hardware, we want to follow up our study with more data
collection with various settings with OpenBCI. The collected

data will be used to pre-train the upcoming models to create
a robust model for recognizing emotions in EEG data. In the
future, after getting ethics approval for publishing the dataset, we
want to make the EEG and physiological data publicly available.
This will help researchers to train more robust models for
emotion recognition.

We would like to examine more features in the future and
see if changing the feature set or using more complex features
will improve the LSTM method performance. We would also
like to use more complex fusion strategies to exploit multimodal
sensors effectively.

In addition, another future direction is to explore how facial
micro-expressions can be extracted from more natural head
movements (for example, not requiring people to maintain a
poker face). Moreover, it would be interesting to identify facial
micro-expressions in the presence of regular facial expressions
and explore how a combination of both could be used to
recognize emotions.

Finally, we are interested in incorporating this emotion
recognition approach into applications such as healthcare with
remote therapy sessions, identifying emotional disorders in
patients, or creating intelligent assistants to help patients or the
elderly. In addition, this emotion model can be used in our daily
interactions with humans, such as enhancing teleconferencing
and making remote interactions more immersive. Furthermore,
it will improve our interactions with virtual agents and other
interactive devices we regularly use by giving them the ability to
recognize and respond to our emotions.
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Udovičić, G., Derek, J., Russo, M., and Sikora, M. (2017). “Wearable emotion

recognition system based on GSR and PPG signals,” in Proceedings of the 2nd

International Workshop on Multimedia for Personal Health and Health Care

(Mountain View, CA), 53–59. doi: 10.1145/3132635.3132641

Uhrig, M. K., Trautmann, N., Baumgärtner, U., Treede, R.-D., Henrich, F., Hiller,

W., et al. (2016). Emotion elicitation: a comparison of pictures and films. Front.

Psychol. 7:180. doi: 10.3389/fpsyg.2016.00180

Van Quang, N., Chun, J., and Tokuyama, T. (2019). “Capsulenet for

micro-expression recognition,” in 2019 14th IEEE International

Conference on Automatic Face & Gesture Recognition (FG 2019), 1–7.

doi: 10.1109/FG.2019.8756544

Verma, G. K., and Tiwary, U. S. (2014). Multimodal fusion

framework: a multiresolution approach for emotion classification and

recognition from physiological signals. NeuroImage 102, 162–172.

doi: 10.1016/j.neuroimage.2013.11.007

Wagh, K. P., and Vasanth, K. (2019). “Electroencephalograph (EEG)

based emotion recognition system: a review,” in Innovations in

Electronics and Communication Engineering (Singapore: Springer), 37–59.

doi: 10.1007/978-981-10-8204-7_5

Weber, R., Li, J., Soladie, C., and Seguier, R. (2018). “A survey on databases of facial

macro-expression and micro-expression,” in International Joint Conference

on Computer Vision, Imaging and Computer Graphics (Funchal-Madeira:

Springer), 298–325.

Wei, W., Jia, Q., Feng, Y., and Chen, G. (2018). Emotion recognition based on

weighted fusion strategy of multichannel physiological signals. Comput. Intell.

Neurosci. 2018:5296523. doi: 10.1155/2018/5296523

Wioleta, S. (2013). “Using physiological signals for emotion recognition,” in 2013

6th International Conference on Human System Interactions (HSI) (Sopot:

IEEE), 556–561. doi: 10.1109/HSI.2013.6577880

Xia, Z., Hong, X., Gao, X., Feng, X., and Zhao, G. (2019). Spatiotemporal recurrent

convolutional networks for recognizing spontaneous micro-expressions. IEEE

Trans. Multim. 22, 626–640. doi: 10.1109/TMM.2019.2931351

Xia, Z., Peng, W., Khor, H.-Q., Feng, X., and Zhao, G. (2020). Revealing

the invisible with model and data shrinking for composite-database

micro-expression recognition. IEEE Trans. Image Process. 29, 8590–8605.

doi: 10.1109/TIP.2020.3018222

Yan, W.-J., Li, X., Wang, S.-J., Zhao, G., Liu, Y.-J., Chen, Y.-H., et al. (2014).

CASME II: an improved spontaneous micro-expression database and the

baseline evaluation. PLoS ONE 9:e86041. doi: 10.1371/journal.pone.0086041

Yan, W.-J., Wu, Q., Liang, J., Chen, Y.-H., and Fu, X. (2013). How fast are the

leaked facial expressions: the duration of micro-expressions. J. Nonverb. Behav.

37, 217–230. doi: 10.1007/s10919-013-0159-8

Yang, S., Luo, P., Loy, C.-C., and Tang, X. (2016). “Wider face: a face

detection benchmark,” in Proceedings of the IEEE Conference on Computer

Vision and Pattern Recognition (Las Vegas, NV: IEEE), 5525–5533.

doi: 10.1109/CVPR.2016.596

Yang, W., Rifqi, M., Marsala, C., and Pinna, A. (2018). “Physiological-based

emotion detection and recognition in a video game context,” in 2018

International Joint Conference on Neural Networks (IJCNN) (Rio de Janeiro:

IEEE), 1–8. doi: 10.1109/IJCNN.2018.8489125

Yazdani, A., Lee, J.-S., Vesin, J.-M., and Ebrahimi, T. (2012). Affect recognition

based on physiological changes during the watching of music videos. ACM

Trans. Interact. Intell. Syst. 2:7. doi: 10.1145/2133366.2133373

Zeng, Z., Pantic, M., Roisman, G. I., and Huang, T. S. (2008). A survey of affect

recognition methods: audio, visual, and spontaneous expressions. IEEE Trans.

Pattern Anal. Mach. Intell. 31, 39–58. doi: 10.1109/TPAMI.2008.52

Zepf, S., Hernandez, J., Schmitt, A., Minker, W., and Picard, R. W. (2020). Driver

emotion recognition for intelligent vehicles: a survey. ACM Comput. Surveys

53, 1–30. doi: 10.1145/3388790

Zhao, G., and Li, X. (2019). Automatic micro-expression analysis: open challenges.

Front. Psychol. 2019:1833. doi: 10.3389/fpsyg.2019.01833

Zheng, W.-L., Liu, W., Lu, Y., Lu, B.-L., and Cichocki, A. (2018). Emotionmeter: a

multimodal framework for recognizing human emotions. IEEE Trans. Cybern.

49, 1110–1122. doi: 10.1109/TCYB.2018.2797176

Frontiers in Psychology | www.frontiersin.org 22 June 2022 | Volume 13 | Article 864047

https://doi.org/10.1109/ICOMET.2019.8673408
https://doi.org/10.1109/MLSP.2018.8517037
https://doi.org/10.1109/IJCNN.2019.8852419
https://doi.org/10.48550/arXiv.1804.02767
https://doi.org/10.3390/s19081863
https://doi.org/10.2196/20701
https://doi.org/10.1080/02699930903274322
https://doi.org/10.11591/ijece.v8i5.pp4004-4014
https://doi.org/10.1016/j.bspc.2020.101867
https://doi.org/10.3390/s18072074
https://doi.org/10.1177/1754073917749016
https://doi.org/10.48550/arXiv.1409.1556
https://doi.org/10.1109/TAFFC.2015.2436926
https://doi.org/10.1109/T-AFFC.2011.25
https://doi.org/10.48550/arXiv.1909.09586
https://doi.org/10.3390/brainsci10020085
https://doi.org/10.1142/S0218001409007326
https://doi.org/10.1007/s11042-017-5317-2
https://doi.org/10.1109/IIPHDW.2018.8388342
https://doi.org/10.1016/j.jestch.2021.03.012
https://doi.org/10.1016/j.neucom.2021.02.022
https://doi.org/10.1145/3132635.3132641
https://doi.org/10.3389/fpsyg.2016.00180
https://doi.org/10.1109/FG.2019.8756544
https://doi.org/10.1016/j.neuroimage.2013.11.007
https://doi.org/10.1007/978-981-10-8204-7_5
https://doi.org/10.1155/2018/5296523
https://doi.org/10.1109/HSI.2013.6577880
https://doi.org/10.1109/TMM.2019.2931351
https://doi.org/10.1109/TIP.2020.3018222
https://doi.org/10.1371/journal.pone.0086041
https://doi.org/10.1007/s10919-013-0159-8
https://doi.org/10.1109/CVPR.2016.596
https://doi.org/10.1109/IJCNN.2018.8489125
https://doi.org/10.1145/2133366.2133373
https://doi.org/10.1109/TPAMI.2008.52
https://doi.org/10.1145/3388790
https://doi.org/10.3389/fpsyg.2019.01833
https://doi.org/10.1109/TCYB.2018.2797176
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Saffaryazdi et al. Micro-Expressions and Physiological Emotion Recognition

Zhu, Q., Lu, G., and Yan, J. (2020). “Valence-arousal model based emotion

recognition using EEG, peri-pheral physiological signals and facial expression,”

in Proceedings of the 4th International Conference onMachine Learning and Soft

Computing (Haiphong City: ACM), 81–85. doi: 10.1145/3380688.3380694

Conflict of Interest: The authors declare that the research was conducted in the

absence of any commercial or financial relationships that could be construed as a

potential conflict of interest.

Publisher’s Note: All claims expressed in this article are solely those of the authors

and do not necessarily represent those of their affiliated organizations, or those of

the publisher, the editors and the reviewers. Any product that may be evaluated in

this article, or claim that may be made by its manufacturer, is not guaranteed or

endorsed by the publisher.

Copyright © 2022 Saffaryazdi, Wasim, Dileep, Nia, Nanayakkara, Broadbent and

Billinghurst. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner(s)

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Psychology | www.frontiersin.org 23 June 2022 | Volume 13 | Article 864047

https://doi.org/10.1145/3380688.3380694
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles

	Using Facial Micro-Expressions in Combination With EEG and Physiological Signals for Emotion Recognition
	1. Introduction
	1.1. Recognizing Spontaneous Emotions
	1.1.1. Extracting Facial Micro-Expressions From Faces
	1.1.2. Using Physiological Signals That Cannot Be Faked
	1.1.3. Using a Combination of Various Input Modalities

	1.2. Goals, Overview, and Contributions

	2. Preliminaries
	2.1. Emotion Models
	2.2. Emotion Stimulation Methods
	2.3. Facial Micro Expressions
	2.4. Electroencephalography (EEG) Signals
	2.5. Galvanic Skin Responses (GSR) Signals
	2.6. Photoplethysmography (PPG) Signals

	3. Related Works
	3.1. Multimodal Datasets for Emotion Recognition
	3.1.1. DEAP Dataset
	3.1.2. MAHNOB-HCI Dataset

	3.2. Exploring the Relationship Between Modalities
	3.3. Fusing Behavioral and Physiological Modalities

	4. Experimental Setup
	4.1. Study Design
	4.2. Stimuli Set
	4.3. Scenario

	5. Methodology
	5.1. Ground Truth Labeling
	5.2. Imbalanced Data
	5.3. Video Emotion Recognition
	5.4. EEG and Physiological Emotion Recognition
	5.5. Data Cleaning
	5.5.1. EEG
	5.5.2. PPG and GSR

	5.6. Feature Extraction
	5.6.1. EEG
	5.6.2. PPG and GSR

	5.7. Fusion Strategy

	6. Result and Discussion
	6.1. Evaluation Strategy
	6.2. Hyper-Parameter Tuning
	6.3. Identifying ROI Size
	6.4. Computation Cost
	6.5. Final Result

	7. Limitations
	8. Conclusions
	Data Availability Statement
	Ethics Statement
	Author Contributions
	References


