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Correlation of gene expression and
associated mutation profiles of APOBEC3A,
APOBEC3B, REV1, UNG, and FHIT with
chemosensitivity of cancer cell lines to
drug treatment
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Abstract

Background: The APOBEC gene family of cytidine deaminases plays important roles in DNA repair and mRNA
editing. In many cancers, APOBEC3B increases the mutation load, generating clusters of closely spaced, single-
strand-specific DNA substitutions with a characteristic hypermutation signature. Some studies also suggested a
possible involvement of APOBEC3A, REV1, UNG, and FHIT in molecular processes affecting APOBEC mutagenesis. It
is important to understand how mutagenic processes linked to the activity of these genes may affect sensitivity of
cancer cells to treatment.

Results: We used information from the Cancer Cell Line Encyclopedia and the Genomics of Drug Sensitivity in
Cancer resources to examine associations of the prevalence of APOBEC-like motifs and mutational loads with
expression of APOBEC3A, APOBEC3B, REV1, UNG, and FHIT and with cell line chemosensitivity to 255 antitumor drugs.
Among the five genes, APOBEC3B expression levels were bimodally distributed, whereas expression of APOBEC3A,
REV1, UNG, and FHIT was unimodally distributed. The majority of the cell lines had low levels of APOBEC3A
expression. The strongest correlations of gene expression levels with mutational loads or with measures of
prevalence of APOBEC-like motif counts and kataegis clusters were observed for REV1, UNG, and APOBEC3A.
Sensitivity or resistance of cell lines to JQ1, palbociclib, bicalutamide, 17-AAG, TAE684, MEK inhibitors refametinib,
PD-0325901, and trametinib and a number of other agents was correlated with candidate gene expression levels or
with abundance of APOBEC-like motif clusters in specific cancers or across cancer types.

Conclusions: We observed correlations of expression levels of the five candidate genes in cell line models with
sensitivity to cancer drug treatment. We also noted suggestive correlations between measures of abundance of
APOBEC-like sequence motifs with drug sensitivity in small samples of cell lines from individual cancer categories,
which require further validation in larger datasets. Molecular mechanisms underlying the links between the
activities of the products of each of the five genes, the resulting mutagenic processes, and sensitivity to each
category of antitumor agents require further investigation.
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Background
APOBEC3A and APOBEC3B (apolipoprotein B mRNA-
editing enzymes 3A and 3B, catalytic polypeptide-like) are
cytosine deaminases from the AID/APOBEC family,
members of which play important roles in host immunity
against pathogens [1, 2]. The activity of multiple members
of the AID/APOBEC family including APOBEC3A but
not APOBEC3B has also been linked to epigenetic pro-
cesses involving DNA demethylation via deamination of
5-hydroxymethyl-cytozine (5-hmC) to 5-hydroxymethyl-
uracil (5-hmU) [1, 3, 4]. APOBEC3B is an endogenous
mutagen which generates DNA substitutions, most fre-
quently C to T, via a process that involves cytosine to ura-
cil deamination of single-stranded DNA, most commonly
in the 5′-TCW-3′ (where W is either A or T) sequence
context [2]. In multiple human cancer categories, in-
creased APOBEC3B gene expression has been associated
with genome-wide hypermutation and with kataegis, a
mutagenic process that generates clusters of closely
spaced, single-strand-specific DNA substitutions, which
are predominantly C to T [5, 6]. Clusters of APOBEC3B
mutations are often localized at breakpoints of chromo-
somal rearrangements [2]. Increased APOBEC3B gene ex-
pression, germline polymorphisms in the APOBEC3
genome region, and higher degree of abundance of APO-
BEC3B mutational signatures have been associated with
increased cancer risk and patient survival [5, 7].
APOBEC3B mutagenesis has a characteristic pattern of

mutational specificity. It is most commonly represented
by the 5′-T(C>T)W-3′ sequence motif [8], where “>” indi-
cates the C to T substitution, and W is an [A or T]. This
hypermutation pattern and high mRNA expression levels
of APOBEC3B have been found in several cancer types
[9, 10]. Additional mutation patterns have also been re-
ported for APOBEC3B, although some of these patterns
may also be attributed to other APOBEC family members
[6, 7, 10, 11]. According to various reports, in addition to
the C>T transitions, these patterns may include possible
C>G and, in some specific cancer types such as ovarian
carcinomas, C>A transversions, as well as a possible 5′-
TC(A or G)-3′ sequence context, so that possible muta-
tional motifs could be represented as 5′-T(C>K)W-3′, 5′-
T(C>D)R-3′, or 5′-T(C>D)D-3′, where K is [G or T], W
is [A or T], R is [A or G], and D is [A or G or T] according
to the IUB-IUPAC ambiguity codes [6–8, 11–13]. Below,
we present these sequence motifs in the 5′ to 3′ direction
as T(C>K)W, T(C>D)R, and T(C>D)D.
While APOBEC3B plays a prominent role in cancer mu-

tagenesis, several other AID/APOBEC family members also
have mutagenic roles and affect DNA integrity [9, 14]. Most
of them have separate distinct specificities for genome se-
quence context [2, 8–10, 15, 16]. However, a possible over-
lap between the activities of APOBEC3B and APOBEC3A
has not been fully resolved. The APOBEC3A gene is located

in proximity to APOBEC3B in the APOBEC genomic clus-
ter in the chromosomal region 22q13.1 [7]. An APO-
BEC3A-APOBEC3B fusion transcript may be produced due
to a germline deletion polymorphism, which results in the
complete loss of the coding part of the APOBEC3B gene
and abolishes APOBEC3B gene expression; this deletion
polymorphism produces a fusion product of the APO-
BEC3A gene with the 3′-UTR of APOBEC3B gene, and it
has been associated with an increased risk of several types
of cancer [7, 17]. The evidence for a mutagenic role of
APOBEC3A so far has been less conclusive than that of
APOBEC3B [12, 18]. However, a number of studies sug-
gested that APOBEC3A also acts as an endogenous muta-
gen that can produce genomic damage, with a mutation
signature that may be distinguishable to some extent from
that of APOBEC3B [7, 13, 19–25]. In addition to mutagen-
esis linked to DNA deamination of single-stranded DNA,
both APOBEC3B and APOBEC3A can bind RNA, and
APOBEC3A has been reported to be involved in both C to
U and G to A RNA editing [16, 26].
Based on the strong evidence for APOBEC-associated

mutagenesis in a variety of cancer types, it is important to
learn whether such mutagenic processes may affect cancer
response to therapy, in order to exploit potential pathways
involved in sensitivity and to avoid potential mechanisms of
resistance. To date, the effect of APOBEC3B-like mutagenic
processes on therapeutic response has not been fully under-
stood, with several reports of divergent directions of associ-
ation. Some studies suggested a potential role of APOBEC
mutagenesis in tumor resistance to therapy, with a possible
resistance mechanism explained by increased tumor hetero-
geneity when APOBEC3B activity is elevated [18]. Clinical
studies and an analysis of murine xenograft models found
an association of increased APOBEC3B mRNA expression
levels with tamoxifen resistance in estrogen receptor-
positive (ER+) breast cancer [18]. In an analysis of 30
human cell lines, expression levels of the APOBEC3B gene
were associated with resistance to vinblastine, topotecan,
paclitaxel, mitoxantrone, mitomycin C, etoposide, and
doxorubicin [27]. In contrast, a study of bladder cancer
patients from the Cancer Genome Atlas (TCGA)
demonstrated improved survival of those patients who had
elevated numbers of APOBEC signature mutations [7].
Experimental in vitro overexpression of APOBEC3B in the
293-A3B and 293-GFP cell lines with inactivated p53 re-
sulted in an increase in APOBEC mutagenesis and kataegic
events, which were accompanied by cell hypersensitivity to
small-molecule DNA damage response inhibitors including
ATR (VX-970 and AZD673), CHEK1 (SAR020106), CHEK2
(CCT241553), PARP (olaparib and BMN-673), and WEE1
(AZD1775) inhibitors, as well as by sensitivity to combina-
tions of cisplatin/ATR inhibitor, ATR/PARP inhibitor, and
PARP/WEE1 inhibitor [28]. Increased APOBEC3B expres-
sion in breast cell lines was also correlated with sensitivity
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to the CHEK1 inhibitor CCT244747 [29]. In contrast, APO-
BEC3B or APOBEC3A expression levels were not signifi-
cantly correlated with sensitivity to any drugs in breast
cancer cell lines from the Genomics of Drug Sensitivity in
Cancer (GDSC, or GDS1000) dataset [30]; however, they
were associated with sensitivity to 38 and 16 agents, re-
spectively, in a joint analysis of all cancer types [31].
At the molecular level, APOBEC3B hypermutation ac-

tivity has been reported to have a synergistic effect with
the absence of the uracil-specific uracil DNA glycosylase
(UNG) and to involve molecular steps that require the
activity of the translesion synthesis DNA polymerase
REV1 [8, 20, 22, 24]. APOBEC mutagenesis may also be
increased in case of reduced expression or the loss of
protein activity of the tumor suppressor fragile histidine
triad protein (FHIT), and higher levels of APOBEC mu-
tagenesis were observed in TCGA lung adenocarcinoma
tumors that had both increased APOBEC3B expression
and the loss of FHIT protein expression [7, 9, 32].
Whereas many studies have focused on the molecular

roles of APOBEC3B, and to some extent APOBEC3A,
possible cumulative effects of action of APOBEC3A,
APOBEC3B, UNG, REV1, and FHIT on generation of
APOBEC3B-like mutation motifs and on drug sensitivity in
cancer have not been clearly elucidated. To address this
question, we investigated the presence of APOBEC3B-like
mutational patterns and mRNA expression of the APO-
BEC3A, APOBEC3B, UNG, REV1, and FHIT genes in can-
cer cell lines, in order to identify those cancer cell lines that
may have experienced kataegis events. We further exam-
ined associations between mutational patterns of APO-
BEC3 activity, individual cancer types, and chemosensitivity
to a variety of antitumor agents. This analysis was carried
out using whole-exome sequencing (WES) data, gene ex-
pression microarray data, and drug response data for 255
agents from the Cancer Cell Line Encyclopedia (CCLE)
[33, 34] and the GDSC resource [30, 35, 36].

Methods
Analysis of whole-exome sequencing data
We downloaded unprocessed WES BAM files, which
were available for 325 CCLE cell lines (Fig. 1), from the
CCLE project at the National Cancer Institute (NCI)
Cancer Genomics Hub; these data are available at the
NCI Genomic Data Commons (GDC) data portal [37].
All CCLE WES data had been reported to be sequenced
at the Broad Institute using the same version of the Agi-
lent Exome Bait kit, and the same sequencing protocols
and data processing pipeline were applied to all samples
across all cancer categories [37, 38].
Raw BAM files were preprocessed according to the

GATK Best Practices pipeline v. 3.5 as of 15 May
2016 [39–41] using default or recommended parameters
for each tool and using Hg19 as the reference human

genome assembly. Single nucleotide variant discovery using
preprocessed BAM files was carried out with VarScan2
using default parameters [42]. Nucleotide substitutions
were filtered by their allele frequencies in the 1000 Ge-
nomes Project dataset (August 2015 release), eliminating
common population variants with variant allele frequency
> 1% in the combined 1000 Genomes Project dataset from
all populations [43]. To identify the prevalence of mutation
counts, we computed the sum of identified single nucleo-
tide variants across all sequenced exome regions in several
separate categories of DNA sequence changes including all
SNV mutation counts, as well as C>G, C>T, and C>K
counts on one or both genome strands.
We searched the WES nucleotide changes in each cell

line for the presence of the three reported APOBEC3B mu-
tation motifs, T(C>K)W, T(C>D)R, or T(C>D)D. This motif
representation includes nucleotide IUPAC symbols in three
consecutive genome sequence positions, with the two sym-
bols in parenthesis separated by the “>” symbol indicating
the direction of nucleotide substitution change. For ex-
ample, T(C>K)W indicates that the reference genome se-
quence is 5′-TCA-3′ or 5′-TCT-3′, and an either C>G or
C>T substitution was found in the second nucleotide of the
triplet. We refer to the three sequence motifs, T(C>K)W,
T(C>D)R, and T(C>D)D which were analyzed in this study,
as APOBEC-like motifs, in order to distinguish them from
the APOBEC mutational signature term, which commonly
refers to a matrix of mutational changes that are character-
istic of APOBEC activity in the 96-trinucletide format [14,
44]. Both motif and signature formats represent the same
patterns of APOBEC mutational activity, and both terms
have been used interchangeably in the earlier reports [10].
Because APOBEC activity is characterized by clusters of

co-occurring APOBEC motifs with closely spaced muta-
tions on the same genome strands, we further searched
each cell line for the presence of kataegis clusters, which
were defined using two different but related criteria, either
as (a) the same motif occurring on the same genome
strand at least five times in a 1000-bp window, to which

Fig. 1 Venn diagram showing the numbers of CCLE cell lines with
available data
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we refer as 5/1000; or as (b) the same motif occurring on
the same genome strand at least six times in a 10,000-bp
window, to which we refer as 6/10000. For each cell line,
four possible measures of APOBEC-like mutational activ-
ity were considered, which defined overall abundance of
the APOBEC-like motifs and the abundance and the
length of kataegis clusters per WES data of that cell line:
(1) the total number of APOBEC-like motifs present in
the WES data of each cell line, (2) the number of APO-
BEC motifs in distinct non-overlapping kataegis regions in
WES data of that cell line, (3) the number of distinct non-
overlapping kataegis regions in WES data of that cell line,
and (4) the total combined length of distinct non-
overlapping kataegis regions in WES data of that cell line.
We also examined seven overall nucleotide substitution
counts for each cell line, including the combined counts
of all categories of nucleotide substitutions, and the num-
bers of C>G, C>T, or C>K substitutions on the reference
genome strand and on both genome strands.

Gene expression analysis
Log2-transformed gene expression levels that were avail-
able for 1036 cell lines from the Cancer Cell Line
Encyclopedia (Fig. 1) were downloaded from the CCLE
web resource of the Broad Institute [34]. These measures
had been generated using Affymetrix Human Genome
U133 Plus 2.0 microarrays and normalized using the Ro-
bust Multi-array Average (RMA) algorithm [33, 45]. We
analyzed expression of five genes, APOBEC3B, APO-
BEC3A, REV1, UNG, and FHIT, which may be involved in
generation of APOBEC-like mutation motifs. Gene ex-
pression data from multiple microarray probes for each
gene were averaged. Microarray-derived gene expression
values for each gene analyzed in this study were in strong
agreement with RNA-seq gene expression measures which
recently became available from the CCLE resource [34],
with Spearman correlation coefficient ρ between 0.883
and 0.947 and the correlation p values ≤ 3.33 × 10−144 for
each of the five genes (data not shown).
To examine possible associations of expression levels of

APOBEC3A and APOBEC3B with the germline APO-
BEC3B gene deletion, we downloaded the copy number
status of the APOBEC3B gene from the CCLE web re-
source of the Broad Institute [34]. The copy number data
had been generated by the CCLE Consortium using Affy-
metrix 6.0 SNP arrays, with segmentation of normalized
log2 ratios of the copy number estimates performed using
the circular binary segmentation algorithm [34].

Analysis of drug response
The IC50 measures of cell line chemosensitivity, repre-
senting the total drug inhibitor concentration that reduced
cell activity by 50%, were available for 24 drug agents from
the Cancer Cell Line Encyclopedia [33] (Fig. 1). These data

were downloaded from the CCLE web resource of the
Broad Institute [34]. In addition, chemosensitivity values
for 251 drug agents for the same cell lines were available
from the Genomics of Drug Sensitivity in Cancer resource
[30, 35, 36]. GDSC drug response data, in the ln(IC50) for-
mat, were obtained from the supplementary Table 4A of
Iorio et al. [30]. All drug sensitivity values derived from
the CCLE and GDSC datasets were transformed to the
log10(IC50) scale, to which we further refer as log(IC50).
Identities of cell lines present in both CCLE and GDSC
datasets were verified using information from Cellosaurus
[46]. Drug sensitivity measures for 11 agents which were
present in both CCLE and GDSC datasets were analyzed
separately for the CCLE and GDSC response measures.
For those agents that had duplicate measurements within
the GDSC dataset [30], we analyzed their drug response
by using a combined average of their drug response mea-
surements from separate experiments. The resulting data-
set had 275 CCLE and GDSC drug response measures for
255 distinct antitumor agents. The concordance of drug
response measures between the CCLE and GDSC datasets
has been studied extensively [47, 48] and validated in an
independent screening study [49]. While some authors
questioned the extent of the agreement between the two
sets of measures [48], most studies confirmed that for the
majority of the agents, a solid overall agreement was
found between the drug response measures, cell line clas-
sification as sensitive or resistant, and molecular predic-
tors of drug sensitivity derived from the GDSC and CCLE
datasets [47, 49].

Statistical analysis
We examined Spearman rank-order correlation among
gene expression values, mutation counts, measures of
abundance of motifs and kataegis clusters, and drug sen-
sitivity values (log10(IC50)) in a combined analysis of all
cancer types and within individual types of cancer. The
p values were adjusted for multiple testing using the
Benjamini and Hochberg method of adjustment for false
discovery rate, or FDR [50], accounting for 275 drug
sensitivity measures, 3 APOBEC-like motifs, 7 different
categories of mutation counts, and expression levels of 5
candidate genes. Correlations with FDR adjusted p < 0.05
were considered statistically significant. In this report, ρ
denotes the Spearman correlation coefficient, p is a p
value prior to FDR adjustment, padj is an FDR-adjusted p
value, Ntests is the number of correlation tests for which
the FDR adjustment of p values was made, and n is the
sample size (the number of cell lines used in estimation
or the number of pairs included in the correlation
analysis). We focused our discussion on statistically
significant moderate or strong correlation results with
padj < 0.05 and the absolute value of Spearman correl-
ation coefficient |ρ| > 0.25.

Vural et al. Human Genomics  (2018) 12:20 Page 4 of 21



Analyses of candidate gene expression levels, motif
and kataegis cluster abundance, and correlation analyses
were performed both in a combined dataset of all cell
lines from different cancer types (pan-cancer analysis),
and also within 32 individual cancer categories (Table 1).
Many cancer categories were based on TCGA defini-
tions. However, some cancer types from the same organ
were grouped in broader categories in order to allow for
an inclusion of a broader range of the cell lines than
those defined by the TCGA enrollment criteria, and add-
itional categories were included with several cancer
types not presented in TCGA (e.g., small cell lung can-
cer and pediatric tumor categories). These categories are
described in Table 1 and in the list of abbreviations.
Only those cancer types for which at least 5 cell lines
had pairs of available matching data (e.g., WES and ex-
pression, expression and drug response, or WES and
drug response information) were included in the strati-
fied correlation analyses of individual cancer categories.
Accordingly, adjustment for false discovery rate in cor-
relation analyses accounted for 23 cancer categories with
≥ 5 cell lines per category for gene expression compari-
sons, 17 cancer categories with ≥ 5 cell lines that had
both expression and WES data, 26 cancer histologies
with expression and chemosensitivity data, and 26 can-
cer types with ≥ 5 cell lines that had both drug sensitivity
data and counts of specific APOBEC-like motif counts
derived from WES data. All cell lines with available data
were included in the pan-cancer correlation analysis
combining all cancer categories. To examine the possible
effect of the estrogen receptor status on drug sensitivity
of breast cancer cell lines, we performed an additional
stratified analysis of ER+ and ER− breast cancer cell
lines, with their estrogen receptor status defined based
on available literature reports [51–54].
Bioinformatic and statistical analyses were performed

using Python v. 2.7 and R v. 3.4.

Results
Candidate gene expression patterns
Table 1 provides expression levels of each candidate
gene in the cell lines from individual cancer types as well
as average gene expression levels in the pan-cancer data-
set. Examination of gene expression measures in the
pan-cancer dataset showed a bimodal distribution of
APOBEC3B expression (Fig. 2b), whereas APOBEC3A,
REV1, UNG, and FHIT had unimodal distributions of
their expression measures (Fig. 2a, c–e). Analysis of the
APOBEC3B copy number status showed that low levels
of APOBEC3B expression were observed both in the
samples with the APOBEC3B gene loss due to the APO-
BEC3B germline deletion polymorphism and in a num-
ber of samples without the loss of the APOBEC3B gene
(Fig. 2f ). The expression of APOBEC3A was low in many

of the cell lines (mean = 3.89; Table 1; Fig. 2a), in agree-
ment with an earlier study [7].
When compared to the mean APOBEC3A and APO-

BEC3B gene expression levels in the pan-cancer dataset
(Table 1; mean expression values of 3.89 and 8.43, re-
spectively), cell lines from the following cancer categor-
ies had elevated expression values of both APOBEC3A
and APOBEC3B: bladder (mean values of 4.11 and 9.59,
respectively), head and neck (HNSC; 4.93 and 9.54),
chronic myelogenous leukemia (LCML; 6.20 and 12.56),
and multiple myeloma (MM; 4.12 and 9.52). Several
other cancer types had increased levels of expression of
the APOBEC3B gene, but their mean expression levels
of APOBEC3A were comparable to the mean APO-
BEC3A expression across all cancer types. Among the
cancer categories with ≥ 5 cell lines, these included acute
myeloid leukemia (LAML; mean APOBEC3B expression
of 9.44) and melanoma (MEL; 9.81).
Our findings of elevated APOBEC3B and APOBEC3A

expression in cell lines from several cancer types pre-
sented in Table 1 were consistent with earlier studies of
patient-based samples. Many earlier studies reported ele-
vated expression and activity of APOBEC3B and APO-
BEC3A in bladder cancer and of APOBEC3B in head
and neck cancer patients [5, 6, 9, 55, 56]. APOBEC-
derived mutagenesis is considered to be the predomin-
ant mutation source in 65% of invasive bladder cancers
in the TCGA dataset [57]. Similarly, a genomic signature
attributed to APOBEC3 activity was reported in a subset
of patients with all melanoma subtypes, although C>T
transitions attributed to APOBEC activity could be con-
founded with UV-induced substitutions in many melan-
oma cells [12, 57, 58]. Increased expression and activity
of both APOBEC3A and APOBEC3B were also reported
in multiple myeloma patients, most commonly in those
with the t(14:16) translocation, which was associated
with poor survival [56, 59, 60].
Elevated levels of UNG expression, but not of other

candidate genes, were found in the prostate adenocar-
cinoma (PRAD; 10.15) and small cell lung cancer (SCLC;
10.10) cell lines (Table 1). Clusters of single-strand mu-
tation patterns suggestive of APOBEC activity were pre-
viously reported in prostate cancer [56], and it may be
possible that increased UNG expression may contribute
to mutagenesis in that cancer category. Because abro-
gated FHIT activity may increase the levels of mutagen-
esis both as a standalone mechanism and synergistically
with APOBEC3B [7, 9, 32], we note that cell lines from
several cancer types including head and neck (4.85) and
sarcoma (4.87) had a considerably lower mean FHIT ex-
pression than the pan-cancer average (5.74). Therefore,
both high levels of APOBEC3B and APOBEC3A and low
levels of FHIT expression may influence APOBEC muta-
genesis in the head and neck cancer.
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Expression levels of APOBEC3B showed strong and sta-
tistically significant positive correlation with APOBEC3A
expression in 21 cancer categories (Table 2; ρ between
0.576 and 1.000; padj < 0.05). These categories (NSCLC,
LAML, GLIOMA, COAD/READ, MATBCL, STAD,

OVARIAN, RCC, MEL, CLLE, SAR, BREAST, BLADDER,
LIHC, EC, PAAD, HNSC, CESC, MM, THCA, and UCEC;
see legend of Table 1 and the list of abbreviations for their
description) included both solid tumors and hematological
malignancies. A strong positive and highly significant

Table 1 Expression of the five candidate genes in cell lines from different cancer types

Cancer type n APOBEC3A APOBEC3B UNG REV1 FHIT

Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD

ALL 2 3.40–3.75 3.58 ± 0.25 3.72–9.33 6.53 ± 3.97 10.04–10.56 10.3 ± 0.37 7.52–7.56 7.54 ± 0.03 4.68–7.33 6.01 ± 1.87

BLADDER 27 3.49–6.87 4.11 ± 0.74 3.60–11.51 9.59 ± 1.64 7.86–10.93 9.7 ± 0.81 5.86–8.21 7.01 ± 0.50 4.27–7.10 5.14 ± 0.70

BREAST 59 3.11–6.18 3.88 ± 0.47 3.13–11.28 8.78 ± 2.07 7.00–11.16 9.62 ± 0.82 5.89–8.31 6.98 ± 0.40 4.29–7.26 5.66 ± 0.82

CESC 22 3.14–4.81 3.79 ± 0.33 3.29–10.98 8.87 ± 2.15 8.28–10.39 9.62 ± 0.63 6.45–8.1 7.09 ± 0.45 4.29–7.73 5.87 ± 1.1

CLLE 78 3.29–6.63 3.87 ± 0.46 3.06–11.46 8.01 ± 2.39 7.37–11.50 9.7 ± 0.72 6.53–8.18 7.4 ± 0.36 4.46–10.24 6.59 ± 1.51

COAD/READ 62 3.22–4.54 3.81 ± 0.33 3.02–11.91 8.70 ± 2.30 7.67–10.97 9.75 ± 0.69 6.23–7.76 7.07 ± 0.29 4.30–7.81 6.05 ± 0.89

DA 2 3.36–3.37 3.36 ± 0.01 3.41–3.56 3.49 ± 0.11 9.36–9.95 9.66 ± 0.42 6.97–7.19 7.08 ± 0.16 4.75–4.96 4.85 ± 0.15

EC 26 3.34–5.21 3.90 ± 0.46 3.03–11.81 8.80 ± 2.39 8.51–10.64 9.69 ± 0.55 6.19–7.79 7.06 ± 0.38 4.49–8.34 5.29 ± 0.90

GLIOMA 79 3.27–4.44 3.76 ± 0.25 3.07–11.45 8.42 ± 2.71 7.82–11.09 9.34 ± 0.64 6.32–8.03 7.00 ± 0.34 4.08–7.33 5.13 ± 0.63

HNSC 33 3.34–11.29 4.93 ± 1.86 6.51–11.66 9.54 ± 1.27 7.82–10.35 9.01 ± 0.68 6.25–8.18 7.24 ± 0.45 4.26–6.06 4.85 ± 0.34

LAML 5 3.53–4.74 3.96 ± 0.47 8.14–10.67 9.44 ± 1.06 8.35–10.43 9.67 ± 0.82 7.22–7.69 7.47 ± 0.21 5.80–7.53 6.67 ± 0.80

LCML 1 6.20 6.20 12.56 12.56 9.79 9.79 6.54 6.54 7.69 7.69

LIHC 34 3.34–4.64 3.82 ± 0.3 3.34–12.42 8.39 ± 2.62 7.82–10.72 9.55 ± 0.67 6.07–8.02 6.88 ± 0.39 4.26–7.48 5.33 ± 0.74

MATBCL 60 3.36–5.15 3.84 ± 0.34 3.31–11.76 7.09 ± 2.68 5.81–10.69 9.33 ± 1.1 6.45–8.05 7.27 ± 0.44 4.34–10.67 6.35 ± 1.38

MB 2 3.48–3.83 3.65 ± 0.25 3.48–5.86 4.67 ± 1.68 7.69–9.75 8.72 ± 1.45 6.77–6.94 6.85 ± 0.12 6.00–7.68 6.84 ± 1.19

MEL 59 3.45–4.35 3.87 ± 0.21 3.47–11.81 9.81 ± 1.52 7.32–10.51 9.12 ± 0.62 6.41–7.91 6.91 ± 0.3 4.34–7.67 5.55 ± 0.78

MEN 3 3.65–4.05 3.85 ± 0.20 8.78–9.64 9.08 ± 0.48 8.69–9.72 9.15 ± 0.53 6.47–6.93 6.76 ± 0.25 4.84–5.96 5.25 ± 0.62

MESO 2 3.80–3.95 3.88 ± 0.11 9.92–11.05 10.48 ± 0.79 9.32–9.58 9.45 ± 0.19 6.61–6.8 6.71 ± 0.14 4.18–5.80 4.99 ± 1.15

MGCT 3 3.37–3.62 3.53 ± 0.14 7.19–9.23 8.28 ± 1.03 7.33–8.09 7.77 ± 0.40 6.40–6.73 6.60 ± 0.17 4.73–5.86 5.27 ± 0.57

MM 28 3.46–5.61 4.12 ± 0.48 2.96–12.09 9.52 ± 2.54 7.10–10.85 9.42 ± 0.91 5.83–7.31 6.68 ± 0.36 4.99–8.74 6.96 ± 1.00

NSCLC 186 3.06–7.82 3.79 ± 0.52 3.04–11.92 7.98 ± 2.59 7.85–11.31 9.67 ± 0.64 5.98–8.28 7.08 ± 0.45 4.14–8.11 5.43 ± 0.80

OVARIAN 51 3.31–4.46 3.72 ± 0.24 3.09–10.98 8.06 ± 2.3 7.32–10.71 9.35 ± 0.72 6.29–7.99 7.00 ± 0.32 4.26–8.38 5.79 ± 0.97

PAAD 44 3.28–6.13 3.89 ± 0.50 3.10–11.66 8.95 ± 2.31 7.50–10.95 9.54 ± 0.8 6.48–8.42 7.19 ± 0.36 4.43–7.44 5.34 ± 0.72

PNET 3 3.21–3.59 3.45 ± 0.21 2.94–3.50 3.21 ± 0.28 9.16–10.09 9.54 ± 0.49 6.57–7.58 7.06 ± 0.51 4.43–6.97 5.58 ± 1.29

PRAD 7 3.58–4.07 3.81 ± 0.19 3.33–9.99 8.10 ± 2.18 9.49–11.20 10.15 ± 0.67 6.48–7.65 6.98 ± 0.43 5.04–7.38 5.94 ± 1.01

RCC 36 3.23–4.17 3.70 ± 0.22 3.17–11.25 8.87 ± 1.97 7.70–9.98 9.18 ± 0.51 6.52–7.59 6.96 ± 0.25 4.57–7.05 5.7 ± 0.73

SAR 43 3.38–4.29 3.74 ± 0.23 3.15–11.24 8.37 ± 2.37 7.57–10.73 9.26 ± 0.79 6.48–7.95 7.03 ± 0.39 4.14–6.36 4.87 ± 0.49

SCLC 7 3.01–4.11 3.67 ± 0.39 3.28–11.28 7.38 ± 3.16 9.54–10.60 10.10 ± 0.45 6.88–8.02 7.49 ± 0.41 5.07–6.6 5.71 ± 0.55

STAD 38 3.16–4.58 3.72 ± 0.27 3.21–11.68 7.88 ± 2.68 8.51–10.38 9.53 ± 0.52 5.97–7.75 7.01 ± 0.44 4.35–7.81 5.62 ± 0.9

THCA 13 3.37–4.28 3.66 ± 0.22 3.87–10.97 8.57 ± 2.14 8.07–10.31 9.21 ± 0.62 6.32–7.67 6.94 ± 0.36 4.34–7.63 5.49 ± 0.98

UCEC 6 3.40–4.05 3.66 ± 0.26 3.81–10.99 8.84 ± 2.63 9.36–10.14 9.82 ± 0.32 6.18–7.28 6.78 ± 0.45 4.53–8.11 5.82 ± 1.32

MISC 15 3.36–6.68 4.01 ± 0.80 4.50–11.28 8.83 ± 1.80 7.18–10.42 9.11 ± 1.07 6.47–8.38 7.28 ± 0.53 4.17–6.90 5.26 ± 0.74

Pan-cancer 1036 3.23–8.48 3.89 ± 0.61 3.02–12.42 8.43 ± 2.43 7.00–11.50 9.41 ± 0.78 5.83–8.18 7.05 ± 0.42 4.14–10.67 5.74 ± 1.16

n number of cell lines for each cancer type with available Affymetrix U133 2.0 plus microarray expression data, SD standard deviation, ALL acute lymphocytic
leukemia, BLADDER bladder cancer, BREAST breast cancer, CESC cervical squamous cell carcinoma and endocervical adenocarcinoma, CLLE chronic lymphocytic
leukemia, COAD/READ colon adenocarcinoma and rectum adenocarcinoma, DA duodenal adenocarcinoma, EC esophageal cancer, GLIOMA glioma brain tumors,
HNSC head and neck squamous cell carcinoma, LAML acute myeloid leukemia, LCML chronic myelogenous leukemia, LIHC liver hepatocellular carcinoma, MATBCL
mature B cell lymphoma, MB medulloblastoma, MEL melanoma, MEN meningioma, MESO mesothelioma, MGCT malignant giant cell tumor of bone, MM multiple
myeloma, NSCLC non-small cell lung cancer, OVARIAN ovarian cancer, PAAD pancreatic adenocarcinoma, PNET primitive neuroectodermal tumors, PRAD prostate
adenocarcinoma, RCC renal cell carcinoma, SAR sarcoma, SCLC small cell lung cancer, STAD stomach adenocarcinoma, THCA thyroid carcinoma, UCEC uterine
corpus endometrial carcinoma, MISC other miscellaneous categories of cancer including rare cancers or cancers with unspecified information, Pan-cancer
combined analysis of all cancer categories
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Fig. 2 a–e Histograms and density functions showing the distributions of expression of the five candidate genes in the cell lines. a APOBEC3A. b
APOBEC3B. c REV1. d UNG. e FHIT. Horizontal scale represents log2-transformed gene expression values. The left vertical scale represents cell line
counts, whereas the right vertical scale represents density values. f A scatterplot of APOBEC3B vs APOBEC3A expression in 1012 cell lines from the
CCLE microarray expression dataset which shows the copy number status of the APOBEC3B gene according to the CCLE data [33]. Cell lines with
log2(normalized ratio of APOBEC3B copy number estimate) ≥ − 0.75 are shown in blue, whereas those with log2(normalized ratio of APOBEC3B
copy number estimate) < − 0.75 are shown in red
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correlation between APOBEC3B and APOBEC3A expres-
sion was also observed in the pan-cancer analysis (Table 2;
ρ = 0.714, padj < 0.001, n = 1036, Ntests = 10). Interestingly,
breast cancer cell lines were among the cancer types with
positive correlation between APOBEC3A and APOBEC3B
expression (Table 2). Earlier studies found strong evidence
for increased APOBEC3B activity and mutagenesis in a
subset of breast cancers [7, 20, 21, 61] and with APOBEC

signature enrichment in the HER2 breast cancer subtype
and in triple negative breast cancer (TNBC) [6, 62]; how-
ever, a study of breast cancer cell lines found generally
low levels of APOBEC3A expression [29]. Possible mo-
lecular impact of coordinated expression levels of APO-
BEC3A and APOBEC3B in the breast cancer cell lines
analyzed in our study is of interest and requires further
investigation.

Table 2 Significant correlations among candidate gene expression levels

Gene 1 Gene 2 n ρ p padj Cancer category

Within individual cancer categories

APOBEC3B APOBEC3A 186 0.741 1.15 × 10−33 2.64 × 10−31 NSCLC

APOBEC3B APOBEC3A 5 1.000 1.40 × 10−24 1.61 × 10−22 LAML

APOBEC3B APOBEC3A 62 0.759 8.88 × 10−13 6.81 × 10−11 COAD/READ

APOBEC3B APOBEC3A 78 0.690 2.83 × 10−12 1.44 × 10−10 CLLE

APOBEC3B APOBEC3A 79 0.686 3.12 × 10−12 1.44 × 10−10 GLIOMA

APOBEC3B APOBEC3A 38 0.811 6.60 × 10−10 2.53 × 10−8 STAD

APOBEC3B APOBEC3A 51 0.712 4.82 × 10−9 1.58 × 10−7 OVARIAN

APOBEC3B APOBEC3A 44 0.746 6.12 × 10−9 1.76 × 10−7 PAAD

APOBEC3B APOBEC3A 60 0.651 1.73 × 10−8 4.43 × 10−7 MATBCL

APOBEC3B APOBEC3A 59 0.612 2.65 × 10−7 6.09 × 10−6 BREAST

APOBEC3B APOBEC3A 26 0.805 7.04 × 10−7 1.47 × 10−5 EC

UNG REV1 186 0.344 1.56 × 10−6 2.98 × 10−5 NSCLC

APOBEC3B APOBEC3A 59 0.576 1.81 × 10−6 3.20 × 10−5 MEL

APOBEC3B APOBEC3A 27 0.773 2.30 × 10−6 3.78 × 10−5 BLADDER

APOBEC3B APOBEC3A 43 0.639 3.95 × 10−6 6.06 × 10−5 SAR

APOBEC3B APOBEC3A 36 0.637 3.00 × 10−5 0.0004 RCC

APOBEC3B APOBEC3A 34 0.645 3.83 × 10−5 0.0005 LIHC

APOBEC3B APOBEC3A 22 0.747 6.48 × 10−5 0.0008 CESC

APOBEC3B APOBEC3A 33 0.636 6.87 × 10−5 0.0008 HNSC

APOBEC3B FHIT 79 − 0.407 0.0002 0.0022 GLIOMA

APOBEC3B APOBEC3A 28 0.632 0.0003 0.0034 MM

APOBEC3B APOBEC3A 13 0.769 0.0021 0.0221 THCA

APOBEC3B UNG 60 − 0.372 0.0034 0.0342 MATBCL

APOBEC3A UNG 78 − 0.324 0.0039 0.0369 CLLE

APOBEC3B APOBEC3A 6 0.943 0.0048 0.0442 UCEC

Across all cancer categories

APOBEC3B APOBEC3A 1036 0.714 1.91 × 10−162 1.91 × 10−161 Pan-cancer

UNG REV1 1036 0.189 8.04 × 10−10 4.02 × 10−9 Pan-cancer

APOBEC3B REV1 1036 − 0.118 0.0001 0.0005 Pan-cancer

APOBEC3B FHIT 1036 − 0.088 0.0046 0.0115 Pan-cancer

APOBEC3B UNG 1036 − 0.070 0.0251 0.0426 Pan-cancer

APOBEC3A UNG 1036 − 0.068 0.0291 0.0426 Pan-cancer

UNG FHIT 1036 0.068 0.0298 0.0426 Pan-cancer

Listed are significant correlations with padj < 0.05. The p values were adjusted for false discovery rate accounting for five genes (Ntests = 10). Among individual
cancer categories, FDR adjustment also accounted for 23 cancer categories with ≥ 5 cell lines with available expression data in both genes (Ntests = 230).
Abbreviations of cancer categories are provided in the legend of Table 1
n sample size for correlation analysis, ρ Spearman correlation coefficient, p p value prior to FDR adjustment, padj FDR-adjusted p value
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Expression of APOBEC3B was significantly negatively
correlated with FHIT expression in glioma cell lines
(ρ = − 0.407, padj = 0.0022, n = 79, Ntests = 230). This
negative correlation is notable because low levels of the
FHIT gene expression or the loss of FHIT function have
been reported to have a cooperative effect with
APOBEC3B in mutagenesis, even though APOBEC3B
overexpression and DNA damage induced by the
replication stress caused by the loss of FHIT have been
proposed to occur independently from each other [7, 9, 32].
Negative correlation between APOBEC3B and FHIT ex-
pression levels could potentially produce hypermutated
clusters in those cells where APOBEC3B expression
were elevated and FHIT expression were diminished.
However, this did not appear to be the case because in
our analysis of glioma cell lines, which included astro-
cytoma, lower-grade glioma, and glioblastoma multi-
forme cell lines, mean APOBEC3B and FHIT
expression levels were comparable to those in the pan-
cancer dataset (Table 1). Such expression levels were
consistent with earlier studies [12, 63], which had

reported low levels of APOBEC3B in lower-grade gli-
oma TCGA patient samples and had suggested that
mutation processes in glioma tumors could be caused
by mechanisms other than APOBEC mutagenesis.
UNG expression was negatively correlated with APO-

BEC3B expression in mature B cell lymphoma cell lines
(MATBCL; ρ = − 0.372, padj = 0.034, n = 60, Ntests = 230)
and with APOBEC3A expression in chronic lymphocytic
leukemia cells (CLLE; ρ = − 0.324, padj = 0.037, n = 78,
Ntests = 230). Expression levels of UNG and REV1 were
significantly positively correlated in non-small cell lung
cancer cell lines (NSCLC; ρ = 0.344, padj = 2.98 × 10−5, n =
186, Ntests = 230).

APOBEC-like mutation motifs and mutation loads in
cancer cell lines
Prevalence of mutation counts and single nucleotide posi-
tions in the combined analysis of all cancer categories and
within individual cancer types in the 325 cell lines with
available WES data is provided in Table 3. Because some
individual cancer categories had small sample sizes of the

Table 3 Prevalence of mutation counts in the whole-exome sequencing data

C>G C>T C>K All SNV counts

Cancer type n Range Mean ± SD Range Mean ± SD Range Mean ± SD Range Mean ± SD

BLADDER 6 5297–7790 6564 ± 968 19,570–28,590 24,077 ± 3408 24,867–36,380 30,640 ± 4373 54,376–78,947 66,878 ± 9294

BREAST 14 6141–8460 6860 ± 566 22,789–33,262 25,705 ± 2548 28,930–41,722 32,564 ± 3102 63,719–89,515 71,153 ± 6292

CESC 15 6309–7994 7095 ± 530 23,581–34,126 28,889 ± 3587 29,890–41,452 35,984 ± 3926 65,633–101,318 79,411 ± 9753

COAD/READ 16 5332–7595 6657 ± 664 20,925–36,866 25,962 ± 3970 26,257–44,461 32,620 ± 4555 59,552–89,617 70,796 ± 8093

EC 3 6703–7357 6954 ± 353 24,685–27,760 25,752 ± 1740 31,486–35,117 32,706 ± 2088 68,907–76,008 71,472 ± 3940

GLIOMA 18 5833–7682 6713 ± 458 21,183–28,151 24,924 ± 1644 27,016–35,833 31,637 ± 2096 60,001–78,102 69,420 ± 4414

HNSC 18 5195–7378 6714 ± 467 20,073–27,050 25,054 ± 1618 25,268–34,428 31,768 ± 2074 55,628–75,813 69,801 ± 4531

CLLE 42 4235–8400 6974 ± 723 17,410–32,021 26,545 ± 2888 21,645–40,010 33,520 ± 3549 47,685–86,517 72,972 ± 7267

LIHC 17 5864–8444 7007 ± 497 22,051–30,565 25,793 ± 1781 27,915–39,009 32,800 ± 2266 61,208–85,224 72,102 ± 4850

MATBCL 29 6350–8912 7209 ± 593 23,674–33,141 27,029 ± 2170 30,125–42,053 34,239 ± 2751 66,014–91,667 74,874 ± 5935

MEL 17 5722–8448 6759 ± 631 22,174–31,819 25,874 ± 2324 27,896–40,267 32,633 ± 2945 60,650–87,815 70,805 ± 6434

MESO 1 6112 6112 21,790 21,790 27,902 27,902 62,016 62,016

MM 17 6187–8662 6840 ± 628 22,773–32,455 25,456 ± 2338 28,960–41,117 32,296 ± 2961 63,335–88,898 70,785 ± 6192

NSCLC 36 5509–8739 6927 ± 768 20,710–32,767 25,641 ± 2666 26,219–41,506 32,567 ± 3424 57,506–90,159 71,563 ± 7520

OVARIAN 15 5951–7461 6682 ± 503 22,453–27,222 25,077 ± 1500 28,433–34,683 31,760 ± 1988 62,699–75,986 69,753 ± 4383

PAAD 16 5011–7432 6640 ± 588 19,327–27,658 24,801 ± 2144 24,338–35,090 31,441 ± 2725 53,010–76,653 68,905 ± 5941

PRAD 4 5699–6889 6423 ± 512 20,538–28,059 25,092 ± 3450 26,237–34,948 31,515 ± 3947 57,717–74,831 68,722 ± 8018

RCC 8 6521–7566 6980 ± 411 24,508–27,801 26,133 ± 1383 31,082–35,264 33,114 ± 1783 68,091–77,777 72,638 ± 4113

SAR 12 6336–7808 6968 ± 423 23,647–29,155 26,129 ± 1610 29,983–36,963 33,098 ± 2027 65,833–81,175 72,342 ± 4357

STAD 16 5861–7530 6807 ± 448 21,971–28,460 25,305 ± 1763 27,832–35,741 32,112 ± 2199 61,311–79,632 70,672 ± 4843

THCA 3 5811–6918 6463 ± 579 22,080–25,849 24,363 ± 2007 27,891–32,767 30,826 ± 2586 61,598–71,836 67,720 ± 5406

UCEC 2 6063–6489 6276 ± 301 24,128–24,223 24,176 ± 67 30,286–30,617 30,452 ± 234 66,406–67,542 66,974 ± 803

Pan-cancer 325 4235–8912 6865 ± 618 17,410–36,866 25,867 ± 2575 21,645–44,461 32,732 ± 3139 47,685–101,318 71,661 ± 6693

Shown are counts of C>T, C>G, and C>K substitutions on both genome strands, and of any types of SNV variants representing nucleotide substitutions
K G or T, SD standard deviation, SNV single nucleotide variant, n number of cell lines
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cell lines with WES data, not all mutation counts in cell
lines were representative of mutation counts in large pa-
tient samples for specific cancer types. For example, muta-
tion counts at single nucleotide positions in the bladder
cancer category, which included six cell lines, were lower
than the typically high mutation rates that are commonly
seen in bladder cancer patients [12, 57, 64]. However, clus-
ters of mutations in genome regions have been reported
to provide a more robust representation of mutational
processes in tumor genomes that do average mutation
rates at single positions [13]. As discussed below, the
prevalence of APOBEC-like motifs and kataegis clusters
(Fig. 3) in bladder cancer cell lines and in cell lines from
several other cancer categories of our dataset was gener-
ally consistent with the relative ranking of cancer categor-
ies previously described using patient data.
Table 4 shows the abundance of the three APOBEC-

like motifs and their predicted kataegis clusters in WES
sequence data of CCLE cell lines in the combined

analysis of all cancer types. Among the three motifs, the
commonly reported APOBEC3B motif with narrow
specificity, T(C>K)W [7], resulted in the smallest num-
bers of predicted motifs (mean ± standard deviation of
603.58 ± 121.17) and kataegis clusters (0.12 ± 0.36 clusters
of 5 motifs in 1000-bp windows per cell line), followed by
higher numbers of motifs (743.51 ± 317.68) and kataegis
clusters (0.56 ± 0.77) for the T(C>D)R motif. The highest
numbers of APOBEC-like motifs (1184.94 ± 887.46) and
clusters (2 ± 1.2 per cell line) were predicted for the least
specific motif, T(C>D)D. That motif included possible nu-
cleotide changes of both motifs T(C>K)W and T(C>D)R.
Similar patterns were observed for the combined length of
the 5/1000 kataegis clusters, the numbers of motifs in
distinct 5/1000 clusters, or when considering 6/10000
kataegis clusters (Table 4).
Similar trends in the abundance of motifs and kataegis-

like clusters were also observed among individual cancer
categories, as presented in Fig. 3, which shows the

Fig. 3 a–c Overall motif counts in different cancer types and across all cell lines (pan-cancer analysis). The y axis is presented on the log10 scale. a T(C>K)W
motif counts. b T(C>D)R motif counts. c T(C>D)D motif counts. d–f Numbers of distinct, not overlapping 5/1000 kataegis clusters with ≥ 5 motifs on the
same genome strand per 1000 bp in different cancer types and in the pan-cancer dataset. d T(C>K)W motif counts. e T(C>D)R motif counts. f T(C>D)D
motif counts. Horizontal middle bars show the mean for each cancer category. Vertical bars show mean ± standard deviation. Negative values of (mean−
standard deviation) in d and e were truncated at 0. Cancer categories with no vertical columns had no predicted kataegis clusters (d–f) and/or too few cell
lines to compute the standard deviation (n= 2 for mesothelioma, a–c)
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distributions of motif counts and numbers of the 5/1000
kataegis clusters among cell lines from different cancer
types. For the most specific APOBEC motif, T(C>K)W, the
highest mean number of motifs per cell line was observed
in cervical squamous cell carcinoma and endocervical
adenocarcinoma (CESC; mean = 736 motifs per cell line),
followed by bladder cancer (mean = 716 motifs), and mel-
anoma (mean = 642 motifs; Fig. 3a). These categories have
been reported to have high levels of APOBEC3 activity
[12], although some C>K mutations in melanoma were
likely caused by ultraviolet (UV) radiation [10, 14]. The
highest mean number of the 5/1000 kataegis clusters with
the T(C>K)W motif was observed in bladder cancer (mean
= 0.33 clusters per cell line), followed by mature B cell
lymphoma (MATBCL; mean = 0.28 clusters), and NSCLC
(mean = 0.19 clusters; Fig. 3d). For a less specific motif,
T(C>D)R, the three cell line categories with the highest
mean numbers of motifs were CESC (mean = 1343 motifs
per cell line), uterine corpus endometrial carcinoma
(UCEC; mean = 842 motifs), and bladder cancer (mean =
781 motifs; Fig. 3b). While high levels of APOBEC3 activity
have been reported in these cancers, additional mecha-
nisms may also be contributing to UCEC mutagenesis [12];
in addition, only two UCEC cell lines had WES data, result-
ing in a very small sample size. The highest mean number
of the 5/1000 kataegis clusters with the T(C>D)R motif was
observed for THCA (mean = 1.00 cluster), followed by
MATBCL (mean = 0.83 clusters) and the liver hepatocellu-
lar carcinoma (LIHC; mean = 0.76; Fig. 3e). The highest
counts of the third and the least specific motif, T(C>D)D,
were found in CESC (mean = 2744 motifs per cell line),
UCEC (mean = 2177 motifs), and bladder cancer cell lines
(mean = 1221 motifs; Fig. 3c). These cancer categories been
reported to have strong APOBEC3 activity [12]. The high-
est numbers of 5/1000 kataegis clusters with the T(C>D)D
motif were observed in LIHC (mean = 2.65 clusters), renal
cell carcinoma (RCC; mean = 2.50 clusters), and UCEC

(mean = 2.50 clusters; Fig. 3f). When 6/10000 kataegis clus-
ters (data not shown), the two cancer types with the highest
mean numbers of kataegis clusters were LIHC (mean = 0.76
clusters for T(C>K)W, 1.24 clusters for T(C>D)R, and 3.24
clusters for the T(C>D)D motif) and RCC (mean = 0.38, 0.
88, and 2.13 clusters, respectively).
Our findings for bladder cancer, melanoma, non-small

cell lung cancer, uterine corpus endometrial carcinoma,
and prostate adenocarcinoma were consistent with pre-
vious reports which suggested the roles for APOBEC3
mutagenesis in those cancer types [5, 6, 12, 57, 60, 65].
In contrast, APOBEC3B was reported to be less likely to
play a role in mutagenesis of renal cell carcinoma cell
lines [6, 12, 65], suggesting that high prevalence of mu-
tation clusters in the RCC cell lines observed in our
study could be generated by molecular factors other
than APOBEC3B. The increased prevalence of muta-
genic clusters in mature B cell lymphoma cell lines may
be explained by the effects of translesion synthesis DNA
polymerase η [13, 66]. It is also possible that some of the
mutations in MATBCL could be explained by a partial
overlap of the motifs examined in our study with a char-
acteristic signature for another member of the APOBEC
family, the activation-induced cytidine deaminase (AID),
which has been linked to mutagenesis in MATBCL.
However, AID has a distinct preference for the WRCY/
RGYW motif, and its mutational signature is distin-
guishable from that of APOBEC3A/B [9, 10, 16, 67], and
therefore, it is less likely that an increased number of
APOBEC3-like motifs found in MATBCL could be at-
tributed to AID activity.
The statistically significantly increased APOBEC3B

gene and protein expression in hepatocellular carcinoma
as compared to non-tumor tissues, as well as the high
rates of C>D mutation changes in the genomes of hepa-
tocellular carcinoma tumors have been documented pre-
viously [68–72], in agreement with an increased

Table 4 Prevalence of APOBEC mutation motifs and kataegis clusters in a combined analysis of all cancer categories

Measure T(C>K)W T(C>D)R T(C>D)D

Range Mean ± SD Range Mean ± SD Range Mean ± SD

Total motif count 381–1369 603.58 ± 121.17 465–4633 743.51 ± 317.68 715–13,461 1184.94 ± 887.46

Predicted non-overlapping kataegis clusters, 5/1000

Number of motifs in distinct clusters 0–16 0.6 ± 1.87 0–21 2.9 ± 3.99 0–69 10.71 ± 6.8

Number of distinct clusters 0–3 0.12 ± 0.36 0–4 0.56 ± 0.77 0–11 2 ± 1.2

Combined length (bp) of distinct clusters 0–1994 76.95 ± 238.6 0–3148 418.47 ± 615.59 0–7484 1327.31 ± 894.04

Predicted non-overlapping kataegis clusters, 6/10000

Number of motifs in distinct non-overlapping clusters 0–95 0.87 ± 6.08 0–93 3.93 ± 8.34 0–221 10.26 ± 16.69

Number of distinct non-overlapping clusters 0–10 0.11 ± 0.67 0–8 0.53 ± 0.86 0–18 1.45 ± 1.65

Combined length (bp) of distinct clusters 0–89,163 750.11 ± 5802.03 0–78,974 2997.94 ± 7701 0–147,285 5323.27 ± 12,925.39

Shown are values per cell line, computed using whole-exome sequence data of each cell line
SD standard deviation, 5/1000 a kataegis cluster with ≥ 5 motifs on the same genome strand per 1000 bp, 6/10000 a kataegis cluster with ≥ 6 motifs on the same
genome strand per 10,000 bp
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prevalence of APOBEC-like motifs in LIHC cell lines in
our dataset (Fig. 3). However, the potential role of APO-
BEC3B in mutagenesis in hepatocellular carcinoma has
been controversial, with some studies reporting its
tumor-inducing roles and others suggesting that it may
play a role in tumor suppression. Mutation signature
analysis found the presence of signatures other than
those induced by APOBEC3B in patient samples of he-
patocellular carcinoma [11]. Other molecular factors
such as transcription-coupled repair, inhibition of UNG
accompanied by APOBEC3G-induced hypermutation,
translesion synthesis by one of the DNA polymerases, or
the role of APOBEC1 have been implicated in mutagen-
esis of hepatocellular carcinomas [10, 17, 69–71, 73, 74],
and therefore it may be possible that the increased
prevalence of APOBEC-like motif clusters in LIHC cell
lines may be caused by factors other than APOBEC3B.

Correlation of gene expression levels with mutation
counts and with prevalence of APOBEC-like motifs
Analysis of the pan-cancer dataset showed a very weak
correlation (|r| ≤ 0.161) of expression levels of candidate
genes with motif counts, counts of kataegis clusters, and
mutation counts in the WES data. None of these corre-
lations were statistically significant (padj ≥ 0.08). Among
the five candidate genes, the strongest correlations were
observed for APOBEC3A, APOBEC3B, and REV1.
Among individual cancer types, we observed a strong

(ρ between − 0.738 and − 0.902) and statistically signifi-
cant (padj < 0.05) negative correlation of the frequencies
of C>T, C>G, and C>K substitutions and overall nucleo-
tide substitution counts with REV1 expression in sar-
coma and UNG expression in melanoma (Table 5). The
third ranking gene for correlations with mutation counts
was APOBEC3A. Although it did not reach the stringent
threshold of FDR adjusted p < 0.05, it showed strong
positive correlations (ρ ≤ 0.90, padj ≥ 0.07) with several
categories of mutation counts in renal cell carcinoma.
APOBEC3B expression also had the strongest correlation
with mutation counts in RCC as opposed to other can-
cer categories; however, such correlations for APO-
BEC3B were somewhat weaker and less significant (ρ ≤
0.86, padj ≥ 0.16) than those for APOBEC3A (data not
shown). These correlation results suggest a strong con-
tribution of REV1, UNG, and possibly APOBEC3A to
overall mutagenesis in sarcoma, melanoma, and renal
cell carcinoma, respectively. A large proportion of C>T
and C>G substitutions in melanoma cell lines were likely
generated via mutagenic processes related to UV radi-
ation exposure [10, 14]. However, the role for APOBEC3
in melanoma mutagenesis has also been established in a
subset of melanomas [58], and experimental evidence
has suggested an important role of APOBEC3A generat-
ing mutations specific to skin lesions [75].

Among the correlations of gene expression levels with
APOBEC-like motif counts and measures of kataegis,
significant or nearly significant correlations were ob-
served for UNG expression with kataegis measures (ρ
between − 0.81 and − 0.80, 0.039 ≤ padj ≤ 0.063, n = 17,
Ntests = 475) of the T(C>D)D motif in melanoma, and for
APOBEC3A expression with motif counts and kataegis
measures in renal cell carcinoma (ρ between 0.93 and 0.
98, 0.008 ≤ padj ≤ 0.087 with n = 8 and Ntests = 510 for the
T(C>D)R and T(C>D)D motifs; data not shown).

Correlation of candidate gene expression with
chemosensitivity
Table 6 lists the strongest (|ρ| > 0.25) statistically signifi-
cant (padj < 0.05) correlations between candidate gene
expression levels and cell line chemosensitivity to drug
treatment. Several strong correlations were observed in
PAAD, PRAD, CESC, MM, SAR, RCC, NSCLC, MEL,
and SCLC cell lines.
In pancreatic adenocarcinoma (PAAD) cell lines,

both APOBEC3A and UNG expression was signifi-
cantly negatively correlated (Table 6; ρ ≤ − 0.819,
padj ≤ 0.0001; n = 28 for APOBEC3A and 5 for UNG;
Ntests = 26,610) with log(IC50) of the BET inhibitor
JQ1 (Fig. 4a). JQ1 has been reported to inhibit

Table 5 Statistically significant correlations of gene expression
levels with mutation counts

Gene Mutation count n ρ p padj Cancer type

REV1 C>Kb 12 − 0.902 6.00 × 10−5 0.0114 Sarcoma

REV1 C>Ka 12 − 0.895 8.37 × 10−5 0.0114 Sarcoma

REV1 C>Tb 12 − 0.895 8.37 × 10−5 0.0114 Sarcoma

REV1 Any 12 − 0.881 0.0002 0.0114 Sarcoma

REV1 C>Ta 12 − 0.881 0.0002 0.0114 Sarcoma

REV1 C>Ga 12 − 0.867 0.0003 0.0119 Sarcoma

REV1 C>Gb 12 − 0.867 0.0003 0.0119 Sarcoma

UNG C>Ka 17 − 0.816 6.45 × 10−5 0.0114 Melanoma

UNG Any 17 − 0.799 0.0001 0.0114 Melanoma

UNG C>Kb 17 − 0.797 0.0001 0.0114 Melanoma

UNG C>Ga 17 − 0.787 0.0002 0.0118 Melanoma

UNG C>Ta 17 − 0.779 0.0002 0.0119 Melanoma

UNG C>Tb 17 − 0.777 0.0002 0.0119 Melanoma

UNG C>Gb 17 − 0.738 0.0007 0.0308 Melanoma

Shown are correlations of gene expression levels with overall mutation counts
in the WES data with padj < 0.05. These p values were FDR adjusted for
multiple comparisons that included 5 candidate genes, 17 cancer categories
with ≥ 5 cell lines in each category having both WES and expression data, and
7 categories of mutation counts including C>T, C>G, and C>K on one or both
genome strands, as well as overall single nucleotide variant counts (Ntests =
595). “>” indicates the direction of substitution change
Any all types of nucleotide substitutions, K G or T, n sample size for correlation
analysis, ρ Spearman correlation coefficient, p p value prior to FDR adjustment,
padj FDR-adjusted p value
aMutation counts on the reference genome strand only
bMutation counts on both genome strands
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pancreatic cancer cells in vitro and in vivo [76–78].
Correlation of APOBEC3A and UNG expression with
PAAD sensitivity to JQ1 may suggest a possibility
that expression of both of these genes may be rele-
vant to the strength of the clinical response to this
agent.

Expression of REV1 in the non-small cell lung cancer
cell lines was significantly positively correlated with
log(IC50) of MEK (mitogen-activated protein kinase) in-
hibitors PD-0325901, RDEA119, and trametinib, as well
as AKT inhibitor VIII, XIAP inhibitor embelin, PI3Kβ
inhibitor AZD6482, and a cyclin-dependent kinase

Table 6 Strongest significant correlations between candidate gene expression and drug sensitivity

Cancer
category

Gene Agent n ρ p padj Drug action/alternative name Reference

PAAD APOBEC3A JQ1a 28 − 0.819 9.70 × 10−8 0.0001 BET inhibitor [78]

PRAD APOBEC3A PD-0332991a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Palbociclib; CDK 4/6 inhibitor [100]

PRAD APOBEC3B GDC0941a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Pictilisib; pan-class I PI3K inhibitor [101]

PRAD APOBEC3B KIN001-260a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 IKKb inhibitor [36]

PRAD APOBEC3B EHT 1864a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Rac inhibitor [102]

PRAD APOBEC3B Nutlin-3aa 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Inhibitor of MDM2-p53 interaction [87]

CESC APOBEC3B ZM-447439a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Aurora kinase inhibitor [103]

MM APOBEC3B QL-VIII-58a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Inhibitor of mTOR and ATR signaling [36]

MM APOBEC3B ZG-10a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Inhibitor of JNK1 and p38 signaling [36]

SAR APOBEC3B TGX221a 6 − 1.000 < 4.95 × 10−324 < 4.95 × 10−324 PI3Kβ inhibitor [36]

CESC REV1 MLN4924a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 Pevodenistat; NAE inhibitor [36]

RCC REV1 XMD8-92a 6 − 1.000 < 4.95 × 10−324 < 4.95 × 10−324 BMK1/ERK5 inhibitor [104]

NSCLC REV1 RDEA119a 123 0.381 1.35 × 10−5 0.0153 Refametinib; BAY 86-9766; MEK inhibitor [83]

NSCLC REV1 PD-0325901a 106 0.405 1.64 × 10−5 0.0179 MEK inhibitor [81]

NSCLC REV1 AKT inhibitor VIIIa 121 0.373 2.51 × 10−5 0.0262 AKT inhibitor [36]

NSCLC REV1 Embelina 121 0.366 3.61 × 10−5 0.0349 XIAP inhibitor [36]

NSCLC REV1 Trametiniba 121 0.361 4.71 × 10−5 0.0436 MEK inhibitor [84]

NSCLC REV1 AZD6482a 130 0.348 4.84 × 10−5 0.0436 PI3Kβ inhibitor [36]

NSCLC REV1 PD-0332991a 100 0.392 5.41 × 10−5 0.0471 Palbociclib; CDK 4/6 inhibitor [100]

PRAD REV1 NSC-207895a 5 1.000 1.40 × 10−24 1.75 × 10−21 MDMX inhibitor [105]

PRAD REV1 Piperlonguminea 5 1.000 1.40 × 10−24 1.75 × 10−21 Piplartine; ROS induction [36]

PRAD UNG ZM-447439a 5 1.000 1.40 × 10−24 1.75 × 10−21 Aurora kinase inhibitor [103]

PRAD UNG NU-7441a 5 1.000 1.40 × 10−24 1.75 × 10−21 DNA-PK inhibitor [36]

PRAD UNG CCT007093a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 PPM1D inhibitor [36]

PRAD UNG JQ1a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 BET inhibitor [78]

PRAD FHIT NVP-BHG712a 5 − 1.000 1.40 × 10− 24 1.75 × 10−21 EphB4 inhibitor [36]

CESC FHIT MK-2206a 5 − 1.000 1.40 × 10−24 1.75 × 10−21 AKT inhibitor [36]

MEL FHIT TAE684b 38 0.621 3.24 × 10−5 0.0325 ALK inhibitor [36]

SCLC FHIT ABT-869a 6 − 1.000 < 4.95 × 10−324 < 4.95 × 10−324 Linifanib; VEGFR/PDGFR family receptor
inhibitor

[106]

SCLC FHIT Mitomycin Ca 6 − 1.000 < 4.95 × 10−324 < 4.95 × 10−324 DNA cross-linking/monoalkylating agent [36, 107]

Pan-cancer APOBEC3B 17-AAGa 536 − 0.293 4.25 × 10−12 5.85 × 10−9 HSP90 inhibitor [85]

Shown are statistically significant correlations satisfying |ρ| > 0.25, padj < 0.05. The p values were adjusted for false discovery rate accounting for 5 genes and 255 agents
with 275 drug sensitivity measures from CCLE or GDSC resources (Ntests = 1375 for pan-cancer analysis). Among individual cancer categories, FDR adjustment also
accounted for 26 cancer categories with ≥ 5 available cell lines in each category with both gene expression and drug sensitivity data for correlation analysis (Ntests =
26,110). Abbreviations of cancer categories are provided in the legend of Table 1
n sample size for correlation analysis, ρ Spearman correlation coefficient, p p value prior to FDR adjustment, padj FDR-adjusted p value, BET bromodomain and
extraterminal family of proteins, BRAF v-raf murine sarcoma viral oncogene homolog B, CDK cyclin-dependent kinase, DNA-PK DNA-dependent protein kinase,
HDAC histone deacetylase, HSP90 molecular chaperone heat shock protein 90, MEK mitogen-activated protein kinase kinases, NAE NEDD8-activating enzyme E1,
PI3K phosphatidylinositol-3-kinase, ROS reactive oxygen species, XIAP X-linked inhibitor of apoptosis
aDrug sensitivity data from GDSC [30, 35]
bDrug sensitivity data from Cancer Cell Line Encyclopedia (CCLE) [33]
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(CDK) 4/6 inhibitor PD-0332991, or palbociclib (Table 6;
0.348 ≤ ρ ≤ 0.405, padj ≤ 0.0436, n ≥ 100, Ntests = 26,610).
A number of these agents, e.g., trametinib and its com-
bination with palbociclib, have been used or are under
investigation for treatment of NSCLC [79, 80]. PD-
0325901 has an in vitro inhibiting effect in NSCLC;
however, a phase II clinical trial of that antitumor agent
in NSCLC patients did not meet the primary efficacy
end point [81, 82]. RDEA119 (refametinib) has antitu-
mor activity in a variety of cancer types including in
vitro activity in NCSLC, and it has been under evalu-
ation for its effectiveness in NSCLC [82–84].
In melanoma cell lines, FHIT expression was associ-

ated with chemoresistance to the ALK inhibitor TAE684
(Table 6; ρ = 0.621, padj = 0.0326, n = 38, Ntests = 26,610).
Multiple strong significant correlations between ex-

pression levels of each of the five candidate genes and
sensitivity to multiple agents were found in prostate
adenocarcinoma (Table 6); however, the sample size of
the PRAD category was small (n = 5), and therefore the
validity of such correlations may require confirmation in
a larger dataset. Similarly, additional correlations found
in MM, SAR, CESC, RCC, and SCLC cell lines reported
in Table 6 had n between 5 and 6 and also require a
follow-up confirmation in larger datasets.
In agreement with an earlier report [31], we did not

observe an association between APOBEC3B expression
in breast cancer cell lines and sensitivity to CHK1 inhib-
itors AZD7762 (ρ = − 0.198, padj = 0.8660, n = 33, Ntests =

26,610) or Calbiochem 681,640 (ρ = 0.143, padj = 0.933,
n = 40, Ntests = 26,610, data not shown), and no other
correlations between gene expression and log(IC50) in
breast cancer cell lines were statistically significant. Al-
though an association between APOBEC3B expression
in breast cancer cells and sensitivity to another CHK1
inhibitor, CCT244747, was previously reported [29], that
agent was absent from both the CCLE and the GDSC
drug sensitivity data sets.
In the pan-cancer analysis, APOBEC3B expression was

significantly negatively correlated with sensitivity to an
HSP90 (molecular chaperone heat shock protein 90) in-
hibitor 17-AAG (tanespimycin) (Table 6; ρ = − 0.293,
padj = 5.85 × 10−9, n = 536, Ntests = 1375). Higher levels of
APOBEC3B expression were associated with higher
sensitivity to this agent, which may have a clinical
significance. 17-AAG acts in a variety of tumor types
[85], and sensitivity to this agent was also correlated
with APOBEC3B in an earlier analysis of RNA-seq gene
expression in the CCLE and GDSC cell lines by Cescon
and Haibe-Kains [31].
Some other strong association results did not reach

statistical significance, but they had padj close to 0.05.
For example, higher level of expression of APOBEC3B in
glioma was correlated with increased sensitivity to an
HSP90 inhibitor AUY922 (ρ = − 0.556, padj = 0.0701, n =
44, Ntests = 26,610; data not shown). This correlation
may have a clinical significance, as this agent has an an-
titumor effect in glioblastoma [85].

Fig. 4 Scatterplots of drug sensitivity measures from the GDSC dataset in selected cancer types. a log(IC50) of JQ1 vs log2 of the APOBEC3A gene
expression in pancreatic adenocarcinoma cell lines. b log(IC50) of bicalutamide vs the combined length of predicted 5/1000 kataegis clusters
with the T(C>D)D motif in breast cancer cell lines. The names of individual breast cancer cell lines are shown. r Pearson’s correlation coefficient
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Correlation between the prevalence of kataegis clusters
and chemosensitivity
We examined correlations between chemosensitivity to
anticancer drugs and the prevalence of predicted katae-
gis clusters of APOBEC-like motifs which were
identified using the 5/1000 criterion. None of the corre-
lations achieved statistical significance in the combined
analysis of all cancer cell lines (padj > 0.1 for compari-
sons). In a stratified analysis among cancer types, a
number of statistically significant strong correlations
(0.991 ≤ |ρ| ≤ 1.0, padj ≤ 0.0021) were observed in
BREAST, COAD/READ, GLIOMA, OVARIAN, and
PAAD cell lines (Table 7). However, the number of cell
lines in each cancer category with significant correla-
tions was small (n = 5–7), and therefore, these correla-
tions need future confirmation in larger collections of
cell lines of their respective cancer categories. Among
notable correlations, the combined length of clusters
with the T(C>D)D motif had a strong correlation
(5 ≤ n ≤ 7, Ntests = 1834) with chemoresistance to bica-
lutamide, a nonsteroidal antiandrogen drug, in the pan-
creatic adenocarcinoma and breast cancer cell lines
(Table 7; Fig. 4b). As discussed above, we did not ob-
serve a statistically significant correlation between ex-
pression of any candidate gene and the prevalence of
T(C>D)D or any other motif in breast cancer cell lines.
Sequence variation of breast cancer genomes is shaped
by a diversity of mutational processes [86], and further
investigation is needed to establish whether the T(C>D)
D motif in the breast cancer cell lines is predominantly
generated by APOBEC3B and APOBEC3A and/or re-
quires an additional role or REV1, UNG, and FHIT, or
whether it involves other molecular mechanisms. Bica-
lutamide is effective in androgen receptor (AR)-positive
breast tumors [87, 88]. Previous studies demonstrated
the effectiveness of this agent in triple negative breast
tumors [89]. To our knowledge, no relationship be-
tween the abundance of APOBEC-like signatures and
sensitivity to this agent has been reported, although
HER2-enriched cell lines have been reported to have
high levels of APOBEC mutagenesis and to be among
the breast cancer categories that are likely to be sensi-
tive to bicalutamide [6, 62, 89]. Consistent with an earl-
ier report that suggested the higher prevalence of
APOBEC signature in TNBC cells [62], we found that
the two TNBC lines with available WES data and bica-
lutamide sensitivity measures, HCC1395 and MDA-
MB-436, had large values of the combined length of the
kataegis clusters with the T(C>D)D motif (Fig. 4b).
However, both of these cell lines had relatively low sen-
sitivity to bicalutamide in the GDSC dataset (Fig. 4b).
We did not find any obvious association between mo-
lecular subtypes of the available breast cancer cell lines
in our dataset, including their HER2 status [51–53],

that could explain the inverse relationship between the
length of the T(C>D)D motif clusters and bicalutamide
sensitivity presented in Fig. 4b. It is possible that AR-
positive status which is associated with bicalutamide
sensitivity could affect the expression of genes involved
in T(C>D)D motif signature generation; however, the
exact molecular mechanisms underlying this relation-
ship remain unclear.
Multiple other strong correlations were observed in

different cancer categories. For example, in pancreatic
adenocarcinoma cell lines, log(IC50) values of tipifarnib,
a farnesyl transferase inhibitor of the Ras pathway [90],
the AKT kinase inhibitor VIII, and the IGF1R/insulin re-
ceptor inhibitor GSK-1904529A [36] were associated
(|ρ| = 1, padj ≤ 5.15 × 10−22, n = 5, Ntests = 1834) with the
overall counts of the motif T(C>K)W which is
commonly attributed to APOBEC3B activity. Similarly,
log(IC50) of the hedgehog signaling pathway inhibitor
vismodegib [91] and of the PPARγ/PPARδ inhibitor
FH535 [36] were associated with the overall counts of
the T(C>D)R motif. The overall counts of the T(C>D)D
motif were associated with log(IC50) of the PKCB
inhibitor LY317615 [36], whereas the length of its
predicted kataegis regions was associated with log(IC50)
of the Aurora kinase A/B inhibitor Genentech Cpd10, a
DNA-damaging agent gemcitabine, and, as discussed
above, with a nonsteroidal antiandrogen agent bicaluta-
mide (Table 7). While the correlation of these motif
counts and kataegis measures with drug sensitivity in
PAAD is notable, none of the five candidate genes had
significantly associated expression with sensitivity to
these agents in PAAD cell lines, although, as discussed
above, in the NSCLC cell lines, log(IC50) of AKT inhibi-
tor VIII was correlated with REV1 expression (Table 6;
ρ = 0.373, padj = 2.51 × 10−5, n = 121, Ntests = 26,610).
Further validation of observations presented in Table 7
is needed in larger datasets of specific cancer types.

Discussion
We observed a bimodal distribution of APOBEC3B ex-
pression and unimodal distributions of APOBEC3A,
REV1, UNG, and FHIT in the pan-cancer dataset (Figs.
2a–e). The bimodal distribution of APOBEC3B is likely
due to several reasons which include previously reported
differences in expression levels of this gene among spe-
cific cancer types and individual cell lines within specific
cancer categories, along with the germline deletion poly-
morphism that results in the loss the APOBEC3B gene
in a subset of the samples [7, 11, 17, 43, 58, 92]. The bi-
modal distribution of APOBEC3B expression is of inter-
est since some studies previously suggested the utility of
the genes with bimodally distributed expression patterns
as diagnostic and prognostic biomarkers within specific
cancer types [93, 94].
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We observed low expression levels of APOBEC3B in
a subset of cell lines and of APOBEC3A in many cell
lines (Fig. 2; Table 1). Low pre-treatment levels of
APOBEC3A have been reported previously, and ex-
pression of both APOBEC3B and APOBEC3A has
been reported to increase in response to cancer cell
treatment with DNA-damaging agents or as part of

cellular interferon-induced transcriptional response to
viral infections [7]. Low expression levels of APO-
BEC3A in nearly all cancer categories and of APO-
BEC3B in specific cancer categories may provide high
levels of noise in correlation analyses [95], and there-
fore, association results for these genes should be
interpreted with caution.

Table 7 Significant correlations between the measures of prevalence of APOBEC-like motifs or kataegis clusters and drug sensitivity

Motif Measure Agent n ρ p padj Cancer type

T(C>K)W Total number of motifs WZ3105 5 1.000 1.40 × 10−24 5.15 × 10−22 OVARIAN

T(C>K)W Total number of motifs XMD15-27 5 −1.000 1.40 × 10−24 5.15 × 10−22 OVARIAN

T(C>K)W Total number of motifs Tipifarnib 5 1.000 1.40 × 10−24 5.15 × 10−22 PAAD

T(C>K)W Total number of motifs AKT inhibitor VIII 5 −1.000 1.40 × 10−24 5.15 × 10−22 PAAD

T(C>K)W Total number of motifs GSK-1904529A 5 1.000 1.40 × 10−24 5.15 × 10−22 PAAD

T(C>D)R Total number of motifs rTRAIL 6 −1.000 < 4.95 × 10−324 < 4.95 × 10−324 OVARIAN

T(C>D)R Total number of motifs WZ3105 5 1.000 1.40 × 10−24 3.22 × 10−22 OVARIAN

T(C>D)R Total number of motifs XMD15-27 5 −1.000 1.40 × 10−24 3.22 × 10−22 OVARIAN

T(C>D)R Total number of motifs KIN001-266 5 −1.000 1.40 × 10−24 3.22 × 10−22 COAD/READ

T(C>D)R Total number of motifs BMS-536924 5 −1.000 1.40 × 10−24 3.22 × 10−22 GLIOMA

T(C>D)R Total number of motifs HG-5-113-01 5 1.000 1.40 × 10−24 3.22 × 10−22 BREAST

T(C>D)R Total number of motifs Vismodegib 5 −1.000 1.40 × 10−24 3.22 × 10−22 PAAD

T(C>D)R Total number of motifs FH535 5 −1.000 1.40 × 10−24 3.22 × 10−22 PAAD

T(C>D)D Total number of motifs rTRAIL 6 −1.000 < 4.95 × 10−324 < 4.95 × 10−324 OVARIAN

T(C>D)D Total number of motifs WZ3105 5 1.000 1.40 × 10−24 3.22 × 10−22 OVARIAN

T(C>D)D Total number of motifs XMD15-27 5 −1.000 1.40 × 10−24 3.22 × 10−22 OVARIAN

T(C>D)D Total number of motifs NVP-BEZ235 5 −1.000 1.40 × 10−24 3.22 × 10−22 COAD/READ

T(C>D)D Total number of motifs T0901317 5 −1.000 1.40 × 10−24 3.22 × 10−22 COAD/READ

T(C>D)D Total number of motifs RDEA119 5 −1.000 1.40 × 10−24 3.22 × 10−22 COAD/READ

T(C>D)D Total number of motifs HG-5-113-01 5 1.000 1.40 × 10−24 3.22 × 10−22 BREAST

T(C>D)D Total number of motifs LY317615 5 1.000 1.40 × 10−24 3.22 × 10−22 PAAD

T(C>D)D Length of kataegis regions PF-4708671 6 1.000 < 4.95 × 10−324 < 4.95 × 10−324 BREAST

T(C>D)D Length of kataegis regions EX-527 5 −1.000 1.40 × 10−24 2.15 × 10−22 COAD/READ

T(C>D)D Length of kataegis regions KIN001-236 5 −1.000 1.40 × 10−24 2.15 × 10−22 COAD/READ

T(C>D)D Length of kataegis regions CAL-101 5 −1.000 1.40 × 10−24 2.15 × 10−22 COAD/READ

T(C>D)D Length of kataegis regions Y-39983 5 −1.000 1.40 × 10−24 2.15 × 10−22 COAD/READ

T(C>D)D Length of kataegis regions KIN001-270 5 −1.000 1.40 × 10−24 2.15 × 10−22 COAD/READ

T(C>D)D Length of kataegis regions Ruxolitinib 5 −1.000 1.40 × 10−24 2.15 × 10−22 COAD/READ

T(C>D)D Length of kataegis regions XMD14-99 5 −1.000 1.40 × 10−24 2.15 × 10−22 COAD/READ

T(C>D)D Length of kataegis regions QL-VIII-58 5 1.000 1.40 × 10−24 2.15 × 10−22 BREAST

T(C>D)D Length of kataegis regions Genentech Cpd 10 5 1.000 1.40 × 10−24 2.15 × 10−22 PAAD

T(C>D)D Length of kataegis regions Gemcitabine 5 1.000 1.40 × 10−24 2.15 × 10−22 PAAD

T(C>D)D Length of kataegis regions Bicalutamide 5 1.000 1.40 × 10−24 2.15 × 10−22 PAAD

T(C>D)D Length of kataegis regions Bicalutamide 7 0.991 1.46 × 10−5 0.0021 BREAST

Shown are statistically significant correlations satisfying padj < 0.05. The p values were adjusted for false discovery rate accounting for 4 measures of abundance of
each motif category, 255 agents with 275 drug sensitivity measures, and 26 cancer categories with ≥ 5 available cell lines (Ntests between 1358 and 1874). Drug
sensitivity data for all significant correlations listed in the table were obtained from GDSC [30, 35]. Abbreviations of cancer categories are provided in the legend
to Table 1
n sample size for correlation analysis, ρ Spearman correlation coefficient, p p value prior to FDR adjustment, padj FDR-adjusted p value
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As shown in Fig. 2f, a strong correlation between APO-
BEC3A and APOBEC3B expression levels (Table 2) ap-
peared to be independent from the APOBEC3B deletion
polymorphism which removes the coding area of the
APOBEC3B gene and creates a fusion transcript of APO-
BEC3A with the 3′-UTR of the APOBEC3 gene, although
earlier reports suggest that this transcript increases APO-
BEC3A levels due to the increase in stability of the fusion
transcript [7, 17, 26]. According to Fig. 2f, the correlation
between the APOBEC3A and APOBEC3B gene expression
levels also appears to be independent of the copy number
status of the APOBEC3B gene. One possible explanation
could be a transcriptional co-regulation of these two
genes, which are located in proximity of one another in
the chromosomal region 22q13.1 [7].
Mutagenesis in cancer cells generated due to the activ-

ity of APOBEC family members, and in particular of
APOBEC3B, has been a subject of many recent studies.
While the contributing role of REV1, UNG, and FHIT
activity to mutagenic processes has been well established
[8, 9, 14, 20, 24, 66], their contribution to the generation
of signatures attributed to APOBEC3B and other APO-
BEC family members and their possible effects on sensi-
tivity to drug treatment have not been examined in
depth. Our analysis of cancer cell lines showed that ex-
pression levels of REV1 and UNG were significantly cor-
related with mutagenesis in sarcoma and melanoma cell
lines, respectively (Table 5), and that expression of all
the five genes examined in our study was significantly
correlated with chemosensitivity to various antitumor
agents (Table 6).
We focused our analyses on two members of the AID/

APOBEC family, APOBEC3A and APOBEC3B, and on
three additional genes which are involved in molecular
pathways associated in their mutagenesis. Several other
APOBEC family members have been implicated in muta-
genic processes, with some of them, e.g., AID, APOBEC3F,
and APOBEC3G, showing sequence specificities that are
distinct from APOBEC3A and APOBEC3B [9, 10, 16, 96].
However, the full extent of overlap among sequence speci-
ficities of different APOBEC family members remains an
active research area. While we found an increased number
of APOBEC-like motifs in mature B cell lymphoma, we
did not include the AID gene expression in our analysis
because both the mutational sequence specificity of AID
and the biological context in which AID mutations occur
are different from those of APOBEC3B and APOBEC3A
[1, 9, 10, 16]. AID is an important deaminating factor in
antigen-dependent antibody diversification process of im-
munoglobulin (Ig) genes through somatic hypermutation
and class-switch recombination, and it has also been sug-
gested to be involved in epigenetic processes of demethyl-
ation by deaminating cytosine, 5-methylcytosine (5-mC),
or 5-hmC [1, 9, 10, 16, 67]. While translocations involving

the Ig genes in B cell lymphomas and off-target hypermu-
tational activity of AID in other genome regions have been
found in several other cancer types (e.g., gastric, liver,
breast, ovarian, lung, and T cell lymphomas), AID-specific
mutational patterns are clearly distinguishable from the
APOBEC3B/A signature patterns [9, 10]. AID deaminates
cytosines within the characteristic WRC motif, or more
broadly the WRCY/RGYW motif, with several other AID
motif variants having been reported [1, 9, 10, 16]. The
AID-specific motif is different from the three motifs re-
ported for APOBEC3B and APOBEC3A that were ana-
lyzed in our study, and AID signature patterns can be
distinguished computationally from those of APOBEC3A
and APOBEC3B [10, 11]. For that reason, we excluded
AID gene expression from our analysis.
Cancer cell lines provide a convenient model for a com-

bined analysis of molecular information and drug re-
sponse to a wide range of antitumor agents which cannot
be achieved in a clinical setting. However, additional
factors may affect clinical outcomes in vivo, including, for
example, the strength of the immune response and inter-
action of the tumor with surrounding tissues. Expression
levels of APOBEC3A, APOBEC3B, APOBEC3D, APO-
BEC3G, and APOBEC3H in tumor specimens from cancer
patients were associated with varying clinical responses to
chemotherapy and with overall patient survival, and
possible suggested mechanisms of such associations,
which may also involve other APOBEC genes, include im-
mune targeting of increased mutation diversity due to
higher levels of APOBEC mutagenesis, associated inflam-
mation, PD-L1 expression on tumor-infiltrating mono-
nuclear cells, and the degree of T lymphocyte infiltration
[7, 92, 97–99].
Because our study analyzed cell line data, it could exam-

ine only cell line response to chemotherapy and did not ac-
count for in vivo effects that may also influence therapy
response. Several correlations of APOBEC3B and APO-
BEC3A expression and of motifs attributed to APOBEC3
activity observed in our study were consistent with drug
sensitivity associations with APOBEC3A and APOBEC3B
activity identified in cell line models by a previous study
[31]. Our analysis of breast cancer cell lines, however, was
not able to replicate the previously reported correlation of
APOBEC3B expression level in vivo with resistance to tam-
oxifen in a clinical setting or in murine xenograft models in
ER+ breast cancer [18] due to the lack of statistical
significance. We observed ρ between − 0.118 and − 0.049,
padj > 0.94 (n = 43, Ntests = 26,110) for correlations of both
APOBEC3B and APOBEC3A expression levels with
log(IC50) of tamoxifen in breast cancer cell lines. Stratified
analysis of ER− and ER+ breast cell lines with available
information about their estrogen receptor status showed
the absence of association in the ER− cell lines with
log(IC50) of tamoxifen (− 0.083 ≤ ρ ≤ − 0.026, unadjusted
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p > 0.67, n = 28). In the ER+ cell lines, we observed an
association with sensitivity to tamoxifen for both genes (ρ
= 0.− 0.362 for APOBEC3A and − 0.418 for APOBEC3B, n
= 13) which was consistent with that of Law et al. [18];
however, the results for both genes in our study were
statistically non-significant (p = 0.157 for APOBEC3A and
0.224 for APOBEC3B), possibly due to a small number of
ER+ breast cell lines in the dataset. Additionally, the study
of Law et al. [18], which reported association of the
APOBEC3B expression with tamoxifen resistance, included
primary breast tumors from hormone therapy-naïve pa-
tients, whereas some of the cell lines in our analysis were
likely obtained from patients with prior treatment. In our
study, none of the correlations of chemosensitivity to tam-
oxifen with expression of either of the five candidate genes
in any cancer category or in the pan-cancer analysis
achieved statistical significance. Therefore, while our use of
cell line resources was able to draw from a wealth of mo-
lecular information and the data on sensitivity to multiple
tumor agents, in using the cell line-based approach, we also
encountered several limitations including restricted clinical
information, much smaller sample sizes than those available
for patient-based clinical studies, and the absence of normal
tissues from the same patients that could allow for more
accurate inference of mutation calls and for tissue-specific
normalization of gene expression levels.
Despite these limitations, we observed a number of corre-

lations, e.g., those between APOBEC3A and APOBEC3B
expression levels, that have also been reported in patient
tumor samples [7]. In addition, our results presented in
Table 6 show that expression of all five candidate genes was
correlated with sensitivity to chemotherapy and that
log(IC50) of a number of antitumor agents was significantly
correlated not only with expression levels of APOBEC3B,
but also with those of APOBEC3A, REV1 UNG, and FHIT.
Three of these genes, REV1, UNG, and APOBEC3A, were
also associated with overall mutation activity and/or with
prevalence of APOBEC-like motifs and kataegis clusters in
specific cancer types. Because APOBEC3A is also involved
in RNA editing [26], association of its expression with drug
sensitivity might potentially involve the RNA editing mech-
anism instead of or in addition to DNA mutagenesis; how-
ever, both of these mechanisms would require additional
experimental validation. Additionally, as APOBEC3A has
also been linked to epigenetic processes of DNA demethyl-
ation [1, 3, 4], its involvement in epigenetic mechanisms of
sensitivity or resistance to cancer treatment cannot be ruled
out, even though the associations reported in Tables 6 and
7 involve non-epigenetic agents.
Recent studies suggest that clustered mutations, including

those attributed to APOBEC activity, more accurately repre-
sent mutagenic processes in tumors than do overall muta-
tion rates [13]. We observed significant correlations of the
prevalence of all the three APOBEC-like motifs with

chemosensitivity to multiple agents in small groups of cell
lines from specific cancer types (Table 7). When using mea-
sures of kataegis clusters, we observed correlations of the
combined length of kataegis clusters of the least specific
T(C>D)D motif with sensitivity to various agents in breast,
pancreatic adenocarcinoma, and colon adenocarcinoma and
rectum adenocarcinoma cancer cell lines. However, because
expression of none of the five candidate genes was signifi-
cantly associated with the abundance of the T(C>D)D motif
or with the clusters containing this motif, further studies
are needed to better understand the mutational pathways
generating the T(C>D)D motif and to examine whether
additional members of the APOBEC family or translesion
DNA polymerases may contribute to its occurrence. Mo-
lecular mechanisms underlying correlations of cell line re-
sponse to treatment with specific agents with motif
abundance or with expression of APOBEC3A, APOBEC3B,
REV1, UNG, and FHIT also require further investigation.
Nevertheless, specific correlations observed in our studies
suggest that both expression levels of candidate genes and
the prevalence of APOBEC-like motifs and their clusters
could potentially be examined for their roles as biomarkers
of drug sensitivity to several agents. Association of activity
of these genes with drug response could be examined fur-
ther when significantly associated agents are evaluated in
experimental in vitro studies and in a clinical setting.

Conclusions
Our analysis of cancer cell line data identified associa-
tions of drug sensitivity with expression levels of APO-
BEC3A, APOBEC3B, REV1, and UNG genes and with
abundance of sequence motifs and kataegis clusters at-
tributed to APOBEC activity. The analysis of exome se-
quence data suggested that expression of REV1 and
UNG and to a lesser extent of APOBEC3A was corre-
lated with mutation patterns attributed to APOBEC ac-
tivity, suggesting that APOBEC-like mutagenic patterns
may result from the complex interplay among multiple
molecular factors. Future studies may examine the bio-
logical mechanisms that could explain how each of the
five genes associated with APOBEC-like mutagenic pro-
cesses may contribute to sensitivity or resistance of
tumor cells to cancer drug treatment.

Abbreviations
5-hmC: 5-Hydroxymethyl-cytozine; 5-hmU: 5-Hydroxymethyl-uracil; 5-mC: 5-
Methylcytosine; ALL: Acute lymphocytic leukemia; APOBEC: Apolipoprotein B
mRNA-editing enzyme, catalytic polypeptide-like; BET: Bromodomain and
extraterminal family of proteins; BLADDER: Bladder cancer (including the
TCGA category of bladder urothelial carcinoma and other types of bladder
cancer); BRAF: V-raf murine sarcoma viral oncogene homolog B;
BREAST: Breast cancer (including the TCGA category of breast invasive
carcinoma and other types of breast carcinomas); CCLE: Cancer Cell Line
Encyclopedia; CDK: Cyclin-dependent kinase; CESC: Cervical squamous cell
carcinoma and endocervical adenocarcinoma; CLLE: Chronic lymphocytic
leukemia; COAD/READ: Colon adenocarcinoma and rectum adenocarcinoma;
DA: Duodenal adenocarcinoma; DNA-PK: DNA-dependent protein kinase;

Vural et al. Human Genomics  (2018) 12:20 Page 18 of 21



EC: Esophageal cancer (including esophageal carcinoma and Barrett
adenocarcinoma); ER−: Estrogen receptor-negative; ER+: Estrogen receptor-
positive; FDR: False discovery rate; FHIT: Fragile histidine triad protein;
GDSC: Genomics of Drug Sensitivity in Cancer; GLIOMA: Glioma brain tumors
(including astrocytoma, lower-grade glioma, and glioblastoma multiforme);
HDAC: Histone deacetylase; HNSC: Head and neck squamous cell carcinoma;
HSP90: Molecular chaperone heat shock protein 90; Ig: Immunoglobulin;
IGF1R: Insulin-like growth factor 1 receptor; IR: Insulin receptor; LAML: Acute
myeloid leukemia; LCML: Chronic myelogenous leukemia; LIHC: Liver
hepatocellular carcinoma; MATBCL: Mature B cell lymphoma (including
lymphoid neoplasm diffuse large B cell lymphoma, Burkitt lymphoma, and
other categories); MB: Medulloblastoma; MEK: Mitogen-activated protein
kinase kinase; MEL: Melanoma; MEN: Meningioma; MESO: Mesothelioma;
MGCT: Malignant giant cell tumor of bone; MISC: Miscellaneous categories of
cancer including rare cancers or cancers with unspecified information;
MM: Multiple myeloma; NAE: NEDD8-activating enzyme E1; NCI: National
Cancer Institute; NSCLC: Non-small cell lung cancer (including also lung
adenocarcinoma and lung squamous cell carcinoma); OVARIAN: Ovarian
cancer (including the TCGA category of ovarian serous cyctadenocarcinoma
and other categories); PAAD: Pancreatic adenocarcinoma; Pan-
cancer: Combined analysis of all cancer categories; PI3K: Phosphatidylinositol-
3-kinase; PKCB: Protein kinase C β type; PNET: Primitive neuroectodermal
tumors (including neuroblastoma and other categories); PPAR: Peroxisome
proliferator-activated receptor; PRAD: Prostate adenocarcinoma; RCC: Renal
cell carcinoma (including kidney clear cell carcinoma, kidney papillary
carcinoma, and other categories); ROS: Reactive oxygen species;
SAR: Sarcoma; SCLC: Small cell lung cancer; SD: Standard deviation;
STAD: Stomach adenocarcinoma; TCGA: The Cancer Genome Atlas;
THCA: Thyroid carcinoma; TNCB: Triple negative breast cancer; UCEC: Uterine
corpus endometrial carcinoma; UNG: Uracil-specific uracil DNA glycosylase;
WES: Whole-exome sequencing; XIAP: X-linked inhibitor of apoptosis

Acknowledgements
We are grateful to the editor, Dr. Vasilis Vasiliou, and two anonymous
reviewers for their helpful suggestions which improved the manuscript. We
also thank Drs. Johanna Shih, Anne Monks, Hossein Hamed, Lisa McShane,
and Yingdong Zhao for the helpful discussions and suggestions.

Funding
Not applicable.

Availability of data and materials
This study used publicly available data from the CCLE and GDSC resources.
Please contact the corresponding author with requests for any intermediate
output files or for original software programs which were developed to
generate the results.

Authors’ contributions
JK and SV conceived the study and drafted the manuscript. SV carried
out the computational analyses including the prediction of locations
of APOBEC-like motifs and correlations among expression of candidate
genes, APOBEC motifs prevalence, and cell line drug sensitivity. RS
oversaw the statistical design and analysis of the data. JK provided
biological interpretation of the study design and results and oversaw
bioinformatic aspects of data analysis. All authors edited the
manuscript and read and approved the final manuscript.

Ethics approval and consent to participate
Not applicable.

Consent for publication
Not applicable.

Competing interests
The authors declare that they have no competing interests.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Received: 21 December 2017 Accepted: 23 March 2018

References
1. Franchini DM, Petersen-Mahrt SK. AID and APOBEC deaminases: balancing

DNA damage in epigenetics and immunity. Epigenomics. 2014;6(4):427–43.
2. Kuong KJ, Loeb LA. APOBEC3B mutagenesis in cancer. Nat Genet. 2013;

45(9):964–5.
3. Lauschke VM, Barragan I, Ingelman-Sundberg M. Pharmacoepigenetics and

toxicoepigenetics: novel mechanistic insights and therapeutic opportunities.
Annu Rev Pharmacol Toxicol. 2018;58:161–85.

4. Guo JU, Su Y, Zhong C, Ming GL, Song H. Hydroxylation of 5-methylcytosine by TET1
promotes active DNA demethylation in the adult brain. Cell. 2011;145(3):423–34.

5. Zou J, Wang C, Ma X, Wang E, Peng G. APOBEC3B, a molecular driver of
mutagenesis in human cancers. Cell Biosci. 2017;7:29.

6. Roberts SA, Lawrence MS, Klimczak LJ, Grimm SA, Fargo D, Stojanov P,
Kiezun A, Kryukov GV, Carter SL, Saksena G, et al. An APOBEC cytidine
deaminase mutagenesis pattern is widespread in human cancers. Nat
Genet. 2013;45(9):970–6.

7. Middlebrooks CD, Banday AR, Matsuda K, Udquim KI, Onabajo OO, Paquin
A, Figueroa JD, Zhu B, Koutros S, Kubo M, et al. Association of germline
variants in the APOBEC3 region with cancer risk and enrichment with
APOBEC-signature mutations in tumors. Nat Genet. 2016;48(11):1330–8.

8. Harris RS. Molecular mechanism and clinical impact of APOBEC3B-catalyzed
mutagenesis in breast cancer. Breast Cancer Res. 2015;17:8.

9. Rebhandl S, Huemer M, Greil R, Geisberger R. AID/APOBEC deaminases and
cancer. Oncoscience. 2015;2(4):320–33.

10. Roberts SA, Gordenin DA. Hypermutation in human cancer genomes:
footprints and mechanisms. Nat Rev Cancer. 2014;14(12):786–800.

11. Alexandrov LB, Nik-Zainal S, Wedge DC, Aparicio SA, Behjati S, Biankin AV,
Bignell GR, Bolli N, Borg A, Borresen-Dale AL, et al. Signatures of mutational
processes in human cancer. Nature. 2013;500(7463):415–21.

12. Burns MB, Temiz NA, Harris RS. Evidence for APOBEC3B mutagenesis in
multiple human cancers. Nat Genet. 2013;45(9):977–83.

13. Supek F, Lehner B. Clustered mutation signatures reveal that error-prone
DNA repair targets mutations to active genes. Cell. 2017;170(3):534–47. e23

14. Helleday T, Eshtad S, Nik-Zainal S. Mechanisms underlying mutational
signatures in human cancers. Nat Rev Genet. 2014;15(9):585–98.

15. Fruman DA, O'Brien S. Cancer: a targeted treatment with off-target risks.
Nature. 2017;542(7642):424–5.

16. Siriwardena SU, Chen K, Bhagwat AS. Functions and malfunctions of
mammalian DNA-cytosine deaminases: the known knowns and the known
unknowns. Chem Rev. 2016;116(20):12688–710.

17. Zhang T, Cai J, Chang J, Yu D, Wu C, Yan T, Zhai K, Bi X, Zhao H, Xu J, et al.
Evidence of associations of APOBEC3B gene deletion with susceptibility to
persistent HBV infection and hepatocellular carcinoma. Hum Mol Genet.
2013;22(6):1262–9.

18. Law EK, Sieuwerts AM, LaPara K, Leonard B, Starrett GJ, Molan AM, Temiz
NA, Vogel RI, Meijer-van Gelder ME, Sweep FC, et al. The DNA cytosine
deaminase APOBEC3B promotes tamoxifen resistance in ER-positive breast
cancer. Sci Adv. 2016;2(10):e1601737.

19. Chan K, Roberts SA, Klimczak LJ, Sterling JF, Saini N, Malc EP, Kim J,
Kwiatkowski DJ, Fargo DC, Mieczkowski PA, et al. An APOBEC3A hypermutation
signature is distinguishable from the signature of background mutagenesis by
APOBEC3B in human cancers. Nat Genet. 2015;47(9):1067–72.

20. Taylor BJ, Nik-Zainal S, Wu YL, Stebbings LA, Raine K, Campbell PJ, Rada C,
Stratton MR, Neuberger MS. DNA deaminases induce break-associated
mutation showers with implication of APOBEC3B and 3A in breast cancer
kataegis. elife. 2013;2:e00534.

21. Burns MB, Lackey L, Carpenter MA, Rathore A, Land AM, Leonard B, Refsland
EW, Kotandeniya D, Tretyakova N, Nikas JB, et al. APOBEC3B is an enzymatic
source of mutation in breast cancer. Nature. 2013;494(7437):366–70.

22. Nik-Zainal S, Alexandrov LB, Wedge DC, Van Loo P, Greenman CD, Raine K,
Jones D, Hinton J, Marshall J, Stebbings LA, et al. Mutational processes
molding the genomes of 21 breast cancers. Cell. 2012;149(5):979–93.

23. Landry S, Narvaiza I, Linfesty DC, Weitzman MD. APOBEC3A can activate the DNA
damage response and cause cell-cycle arrest. EMBO Rep. 2011;12(5):444–50.

24. Suspene R, Aynaud MM, Guetard D, Henry M, Eckhoff G, Marchio A, Pineau P,
Dejean A, Vartanian JP, Wain-Hobson S. Somatic hypermutation of human
mitochondrial and nuclear DNA by APOBEC3 cytidine deaminases, a pathway
for DNA catabolism. Proc Natl Acad Sci U S A. 2011;108(12):4858–63.

Vural et al. Human Genomics  (2018) 12:20 Page 19 of 21



25. Bohn MF, Shandilya SMD, Silvas TV, Nalivaika EA, Kouno T, Kelch BA, Ryder SP,
Kurt-Yilmaz N, Somasundaran M, Schiffer CA. The ssDNA Mutator APOBEC3A is
regulated by cooperative dimerization. Structure. 2015;23(5):903–11.

26. Salter JD, Bennett RP, Smith HC. The APOBEC protein family: united by
structure, divergent in function. Trends Biochem Sci. 2016;41(7):578–94.

27. Gyorffy B, Surowiak P, Kiesslich O, Denkert C, Schafer R, Dietel M, Lage H.
Gene expression profiling of 30 cancer cell lines predicts resistance towards
11 anticancer drugs at clinically achieved concentrations. Int J Cancer. 2006;
118(7):1699–712.

28. Nikkila J, Kumar R, Campbell J, Brandsma I, Pemberton HN, Wallberg F, Nagy
K, Scheer I, Vertessy BG, Serebrenik AA, et al. Elevated APOBEC3B expression
drives a kataegic-like mutation signature and replication stress-related
therapeutic vulnerabilities in p53-defective cells. Br J Cancer. 2017;117(1):
113-23.

29. Kanu N, Cerone MA, Goh G, Zalmas LP, Bartkova J, Dietzen M, McGranahan
N, Rogers R, Law EK, Gromova I, et al. DNA replication stress mediates
APOBEC3 family mutagenesis in breast cancer. Genome Biol. 2016;17(1):185.

30. Iorio F, Knijnenburg TA, Vis DJ, Bignell GR, Menden MP, Schubert M, Aben
N, Goncalves E, Barthorpe S, Lightfoot H, et al. A landscape of
pharmacogenomic interactions in cancer. Cell. 2016;166(3):740–54.

31. Cescon DW, Haibe-Kains B. DNA replication stress: a source of APOBEC3B
expression in breast cancer. Genome Biol. 2016;17(1):202.

32. Waters CE, Saldivar JC, Amin ZA, Schrock MS, Huebner K. FHIT loss-induced
DNA damage creates optimal APOBEC substrates: insights into APOBEC-
mediated mutagenesis. Oncotarget. 2015;6(5):3409–19.

33. Barretina J, Caponigro G, Stransky N, Venkatesan K, Margolin AA, Kim S,
Wilson CJ, Lehar J, Kryukov GV, Sonkin D, et al. The Cancer Cell Line
Encyclopedia enables predictive modelling of anticancer drug sensitivity.
Nature. 2012;483(7391):603–7.

34. CCLE Cancer Cell Line Encyclopedia. http://www.broadinstitute.org/ccle.
Accessed 22 Sept 2016.

35. Garnett MJ, Edelman EJ, Heidorn SJ, Greenman CD, Dastur A, Lau KW,
Greninger P, Thompson IR, Luo X, Soares J, et al. Systematic
identification of genomic markers of drug sensitivity in cancer cells.
Nature. 2012;483(7391):570–5.

36. Genomics of Drug Sensitivity in Cancer. http://www.cancerrxgene.org/.
Accessed 22 Sept 2016.

37. National Cancer Institute GDC Legacy Archive. https://portal.gdc.cancer.gov/
legacy-archive. Accessed 10 Mar 2018.

38. Chang LC, Vural S, Sonkin D. Detection of homozygous deletions in tumor-
suppressor genes ranging from dozen to hundreds nucleotides in cancer
models. Hum Mutat. 2017;38(11):1449–53.

39. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, Philippakis
AA, del Angel G, Rivas MA, Hanna M, et al. A framework for variation
discovery and genotyping using next-generation DNA sequencing data. Nat
Genet. 2011;43(5):491–8.

40. McKenna A, Hanna M, Banks E, Sivachenko A, Cibulskis K, Kernytsky A,
Garimella K, Altshuler D, Gabriel S, Daly M, et al. The Genome Analysis
Toolkit: a MapReduce framework for analyzing next-generation DNA
sequencing data. Genome Res. 2010;20(9):1297–303.

41. Van der Auwera GA, Carneiro MO, Hartl C, Poplin R, Del Angel G, Levy-
Moonshine A, Jordan T, Shakir K, Roazen D, Thibault J, et al. From FastQ
data to high confidence variant calls: the genome analysis toolkit best
practices pipeline. Curr Protoc Bioinformatics. 2013;11(1110):11.10.1–11.10.33.

42. Koboldt DC, Zhang Q, Larson DE, Shen D, McLellan MD, Lin L, Miller CA, Mardis
ER, Ding L, Wilson RK. VarScan 2: somatic mutation and copy number alteration
discovery in cancer by exome sequencing. Genome Res. 2012;22(3):568–76.

43. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, Marchini
JL, McCarthy S, McVean GA, Abecasis GR. A global reference for human
genetic variation. Nature. 2015;526(7571):68–74.

44. Alexandrov LB, Nik-Zainal S, Wedge DC, Campbell PJ, Stratton MR.
Deciphering signatures of mutational processes operative in human cancer.
Cell Rep. 2013;3(1):246–59.

45. Irizarry RA, Hobbs B, Collin F, Beazer-Barclay YD, Antonellis KJ, Scherf U,
Speed TP. Exploration, normalization, and summaries of high density
oligonucleotide array probe level data. Biostatistics. 2003;4(2):249–64.

46. The Cellosaurus: a cell line knowledge resource. http://web.expasy.org/
cellosaurus/. Accessed 25 Apr 2017.

47. Cancer Cell Line Encyclopedia C, Genomics of Drug Sensitivity in Cancer C:
Pharmacogenomic agreement between two cancer cell line data sets.
Nature 2015;528(7580):84–87.

48. Safikhani Z, Smirnov P, Freeman M, El-Hachem N, She A, Rene Q,
Goldenberg A, Birkbak NJ, Hatzis C, Shi L, et al. Revisiting inconsistency in
large pharmacogenomic studies. F1000Res. 2016;5:2333.

49. Haverty PM, Lin E, Tan J, Yu Y, Lam B, Lianoglou S, Neve RM, Martin S,
Settleman J, Yauch RL, et al. Reproducible pharmacogenomic profiling of
cancer cell line panels. Nature. 2016;533(7603):333–7.

50. Benjamini Y, Hochberg Y. Controlling the false discovery rate: a practical and
powerful approach to multiple testing. J R Statist Soc. 1995;B57:289–300.

51. Lehmann BD, Bauer JA, Chen X, Sanders ME, Chakravarthy AB, Shyr Y,
Pietenpol JA. Identification of human triple-negative breast cancer subtypes
and preclinical models for selection of targeted therapies. J Clin Invest.
2011;121(7):2750–67.

52. Conley SJ, Bosco EE, Tice DA, Hollingsworth RE, Herbst R, Xiao Z. HER2
drives Mucin-like 1 to control proliferation in breast cancer cells. Oncogene.
2016;35(32):4225–34.

53. Neve RM, Chin K, Fridlyand J, Yeh J, Baehner FL, Fevr T, Clark L, Bayani N,
Coppe JP, Tong F, et al. A collection of breast cancer cell lines for the study
of functionally distinct cancer subtypes. Cancer Cell. 2006;10(6):515–27.

54. Kao J, Salari K, Bocanegra M, Choi YL, Girard L, Gandhi J, Kwei KA,
Hernandez-Boussard T, Wang P, Gazdar AF, et al. Molecular profiling of
breast cancer cell lines defines relevant tumor models and provides a
resource for cancer gene discovery. PLoS One. 2009;4(7):e6146.

55. Hayes DN, Van Waes C, Seiwert TY. Genetic landscape of human
papillomavirus-associated head and neck cancer and comparison to
tobacco-related tumors. J Clin Oncol. 2015;33(29):3227–34.

56. Roberts SA, Sterling J, Thompson C, Harris S, Mav D, Shah R, Klimczak LJ,
Kryukov GV, Malc E, Mieczkowski PA, et al. Clustered mutations in yeast and
in human cancers can arise from damaged long single-strand DNA regions.
Mol Cell. 2012;46(4):424–35.

57. Kim J, Akbani R, Creighton CJ, Lerner SP, Weinstein JN, Getz G, Kwiatkowski
DJ. Invasive bladder cancer: genomic insights and therapeutic promise. Clin
Cancer Res. 2015;21(20):4514–24.

58. Hayward NK, Wilmott JS, Waddell N, Johansson PA, Field MA, Nones K,
Patch AM, Kakavand H, Alexandrov LB, Burke H, et al. Whole-genome
landscapes of major melanoma subtypes. Nature. 2017;545(7653):175–80.

59. Manier S, Salem KZ, Park J, Landau DA, Getz G, Ghobrial IM. Genomic
complexity of multiple myeloma and its clinical implications. Nat Rev Clin
Oncol. 2017;14(2):100–13.

60. Walker BA, Wardell CP, Murison A, Boyle EM, Begum DB, Dahir NM, Proszek
PZ, Melchor L, Pawlyn C, Kaiser MF, et al. APOBEC family mutational
signatures are associated with poor prognosis translocations in multiple
myeloma. Nat Commun. 2015;6:6997.

61. Nik-Zainal S, Davies H, Staaf J, Ramakrishna M, Glodzik D, Zou X,
Martincorena I, Alexandrov LB, Martin S, Wedge DC, et al. Landscape of
somatic mutations in 560 breast cancer whole-genome sequences. Nature.
2016;534(7605):47–54.

62. Jiang T, Shi W, Wali VB, Pongor LS, Li C, Lau R, Gyorffy B, Lifton RP,
Symmans WF, Pusztai L, et al. Predictors of chemosensitivity in triple
negative breast cancer: an integrated genomic analysis. PLoS Med. 2016;
13(12):e1002193.

63. Swanton C, McGranahan N, Starrett GJ, Harris RS. APOBEC enzymes:
mutagenic fuel for cancer evolution and heterogeneity. Cancer Discov.
2015;5(7):704–12.

64. Weinstein JN, Akbani R, Broom BM, Wang W, Verhaak RGW, McConkey D, Lerner
S, Morgan M, Creighton CJ, Smith C, et al. Comprehensive molecular
characterization of urothelial bladder carcinoma. Nature. 2014;507(7492):315–22.

65. Lawrence MS, Stojanov P, Polak P, Kryukov GV, Cibulskis K, Sivachenko A,
Carter SL, Stewart C, Mermel CH, Roberts SA, et al. Mutational heterogeneity
in cancer and the search for new cancer-associated genes. Nature. 2013;
499(7457):214–8.

66. Sale JE. Translesion DNA synthesis and mutagenesis in eukaryotes. Cold
Spring Harb Perspect Biol. 2013;5(3):a012708.

67. Dominguez PM, Shaknovich R. Epigenetic function of activation-induced cytidine
deaminase and its link to lymphomagenesis. Front Immunol. 2014;5:642.

68. Gao Q, Wang ZC, Duan M, Lin YH, Zhou XY, Worthley DL, Wang XY, Niu G,
Xia Y, Deng M, et al. Cell culture system for analysis of genetic
heterogeneity within hepatocellular carcinomas and response to
pharmacologic agents. Gastroenterology. 2017;152(1):232–42. e4

69. Wu PF, Chen YS, Kuo TY, Lin HH, Liu CW, Chang LC. APOBEC3B: a potential
factor suppressing growth of human hepatocellular carcinoma cells.
Anticancer Res. 2015;35(3):1521–7.

Vural et al. Human Genomics  (2018) 12:20 Page 20 of 21

http://www.broadinstitute.org/ccle
http://www.cancerrxgene.org/
https://portal.gdc.cancer.gov/legacy-archive
https://portal.gdc.cancer.gov/legacy-archive
http://web.expasy.org/cellosaurus/
http://web.expasy.org/cellosaurus/


70. Totoki Y, Tatsuno K, Yamamoto S, Arai Y, Hosoda F, Ishikawa S, Tsutsumi S,
Sonoda K, Totsuka H, Shirakihara T, et al. High-resolution characterization of
a hepatocellular carcinoma genome. Nat Genet. 2011;43(5):464–9.

71. Kitamura K, Wang Z, Chowdhury S, Simadu M, Koura M, Muramatsu M.
Uracil DNA glycosylase counteracts APOBEC3G-induced hypermutation of
hepatitis B viral genomes: excision repair of covalently closed circular DNA.
PLoS Pathog. 2013;9(5):e1003361.

72. Luo X, Huang Y, Chen Y, Tu Z, Hu J, Tavis JE, Huang A, Hu Y. Association of
hepatitis B virus covalently closed circular DNA and human APOBEC3B in
hepatitis B virus-related hepatocellular carcinoma. PLoS One. 2016;11(6):
e0157708.

73. Fujimoto A, Totoki Y, Abe T, Boroevich KA, Hosoda F, Nguyen HH, Aoki M,
Hosono N, Kubo M, Miya F, et al. Whole-genome sequencing of liver
cancers identifies etiological influences on mutation patterns and recurrent
mutations in chromatin regulators. Nat Genet. 2012;44(7):760–4.

74. Totoki Y, Tatsuno K, Covington KR, Ueda H, Creighton CJ, Kato M, Tsuji S,
Donehower LA, Slagle BL, Nakamura H, et al. Trans-ancestry mutational
landscape of hepatocellular carcinoma genomes. Nat Genet. 2014;46(12):
1267–73.

75. Pham P, Landolph A, Mendez C, Li N, Goodman MF. A biochemical analysis
linking APOBEC3A to disparate HIV-1 restriction and skin cancer. J Biol
Chem. 2013;288(41):29294–304.

76. Garcia PL, Miller AL, Kreitzburg KM, Council LN, Gamblin TL, Christein JD,
Heslin MJ, Arnoletti JP, Richardson JH, Chen D, et al. The BET bromodomain
inhibitor JQ1 suppresses growth of pancreatic ductal adenocarcinoma in
patient-derived xenograft models. Oncogene. 2016;35(7):833–45.

77. Mazur PK, Herner A, Mello SS, Wirth M, Hausmann S, Sanchez-Rivera FJ,
Lofgren SM, Kuschma T, Hahn SA, Vangala D, et al. Combined inhibition of
BET family proteins and histone deacetylases as a potential epigenetics-
based therapy for pancreatic ductal adenocarcinoma. Nat Med. 2015;21(10):
1163–71.

78. Leal AS, Williams CR, Royce DB, Pioli PA, Sporn MB, Liby KT. Bromodomain
inhibitors, JQ1 and I-BET 762, as potential therapies for pancreatic cancer.
Cancer Lett. 2017;394:76–87.

79. Tao Z, Le Blanc JM, Wang C, Zhan T, Zhuang H, Wang P, Yuan Z, Lu B.
Coadministration of trametinib and palbociclib radiosensitizes KRAS-
mutant non-small cell lung cancers in vitro and in vivo. Clin Cancer
Res. 2016;22(1):122–33.

80. Zhao Y, Adjei AA. The clinical development of MEK inhibitors. Nat Rev Clin
Oncol. 2014;11(7):385–400.

81. Ishida N, Fukazawa T, Maeda Y, Yamatsuji T, Kato K, Matsumoto K, Shimo T,
Takigawa N, Whitsett JA, Naomoto Y. A novel PI3K inhibitor iMDK
suppresses non-small cell lung Cancer cooperatively with A MEK inhibitor.
Exp Cell Res. 2015;335(2):197–206.

82. Zhou X, Yang XY, Popescu NC. Preclinical evaluation of combined
antineoplastic effect of DLC1 tumor suppressor protein and suberoylanilide
hydroxamic acid on prostate cancer cells. Biochem Biophys Res Commun.
2012;420(2):325–30.

83. Adjei AA. Other signal transduction agents. In: Pass HI, Carbone DP, Johnson
DH, MD JDM, Scagliotti GV, III ATT, editors. Principles and practice of lung
cancer: the official reference text of the International Association for the
Study of Lung Cancer (IASLC). 4th ed. Philadelphia, PA: Wolters Kluwer
Health/Lippincott Williams & Wilkins; 2010. p. 739–52.

84. Akinleye A, Furqan M, Mukhi N, Ravella P, Liu D. MEK and the inhibitors:
from bench to bedside. J Hematol Oncol. 2013;6:27.

85. Gaspar N, Sharp SY, Eccles SA, Gowan S, Popov S, Jones C, Pearson A, Vassal G,
Workman P. Mechanistic evaluation of the novel HSP90 inhibitor NVP-AUY922
in adult and pediatric glioblastoma. Mol Cancer Ther. 2010;9(5):1219–33.

86. Morganella S, Alexandrov LB, Glodzik D, Zou X, Davies H, Staaf J, Sieuwerts AM,
Brinkman AB, Martin S, Ramakrishna M, et al. The topography of mutational
processes in breast cancer genomes. Nat Commun. 2016;7:11383.

87. Yang P, Chen W, Li X, Eilers G, He Q, Liu L, Wu Y, Wu Y, Yu W, Fletcher JA,
et al. Downregulation of cyclin D1 sensitizes cancer cells to MDM2
antagonist Nutlin-3. Oncotarget. 2016;7(22):32652–63.

88. Arce-Salinas C, Riesco-Martinez MC, Hanna W, Bedard P, Warner E. Complete
response of metastatic androgen receptor-positive breast cancer to
bicalutamide: case report and review of the literature. J Clin Oncol. 2016;
34(4):e21–4.

89. Prat A, Pineda E, Adamo B, Galvan P, Fernandez A, Gaba L, Diez M, Viladot
M, Arance A, Munoz M. Clinical implications of the intrinsic molecular
subtypes of breast cancer. Breast. 2015;24(Suppl 2):S26–35.

90. Asati V, Mahapatra DK, Bharti SK. K-Ras and its inhibitors towards
personalized cancer treatment: pharmacological and structural perspectives.
Eur J Med Chem. 2017;125:299–314.

91. Sandhiya S, Melvin G, Kumar SS, Dkhar SA. The dawn of hedgehog
inhibitors: Vismodegib. J Pharmacol Pharmacother. 2013;4(1):4–7.

92. Cescon DW, Haibe-Kains B, Mak TW. APOBEC3B expression in breast cancer
reflects cellular proliferation, while a deletion polymorphism is associated
with immune activation. Proc Natl Acad Sci U S A. 2015;112(9):2841–6.

93. Kernagis DN, Hall AH, Datto MB. Genes with bimodal expression are robust
diagnostic targets that define distinct subtypes of epithelial ovarian cancer
with different overall survival. J Mol Diagn. 2012;14(3):214–22.

94. Hellwig B, Hengstler JG, Schmidt M, Gehrmann MC, Schormann W,
Rahnenfuhrer J. Comparison of scores for bimodality of gene expression
distributions and genome-wide evaluation of the prognostic relevance of
high-scoring genes. BMC Bioinformatics. 2010;11:276.

95. McClintick JN, Edenberg HJ. Effects of filtering by Present call on analysis of
microarray experiments. BMC Bioinformatics. 2006;7:49.

96. Ebrahimi D, Alinejad-Rokny H, Davenport MP. Insights into the motif
preference of APOBEC3 enzymes. PLoS One. 2014;9(1):e87679.

97. Mullane SA, Werner L, Rosenberg J, Signoretti S, Callea M, Choueiri TK,
Freeman GJ, Bellmunt J. Correlation of Apobec Mrna expression with overall
survival and pd-l1 expression in urothelial carcinoma. Sci Rep. 2016;6:27702.

98. Leonard B, Starrett GJ, Maurer MJ, Oberg AL, Van Bockstal M, Van Dorpe J, De
Wever O, Helleman J, Sieuwerts AM, Berns EM, et al. APOBEC3G expression
correlates with T-cell infiltration and improved clinical outcomes in high-grade
serous ovarian carcinoma. Clin Cancer Res. 2016;22(18):4746–55.

99. Lan H, Jin K, Gan M, Wen S, Bi T, Zhou S, Zhu N, Teng L, Yu W. APOBEC3G
expression is correlated with poor prognosis in colon carcinoma patients
with hepatic metastasis. Int J Clin Exp Med. 2014;7(3):665–72.

100. Finn RS, Dering J, Conklin D, Kalous O, Cohen DJ, Desai AJ, Ginther C, Atefi
M, Chen I, Fowst C, et al. PD 0332991, a selective cyclin D kinase 4/6
inhibitor, preferentially inhibits proliferation of luminal estrogen receptor-
positive human breast cancer cell lines in vitro. Breast Cancer Res. 2009;
11(5):R77.

101. Sarker D, Ang JE, Baird R, Kristeleit R, Shah K, Moreno V, Clarke PA, Raynaud
FI, Levy G, Ware JA, et al. First-in-human phase I study of pictilisib (GDC-
0941), a potent pan-class I phosphatidylinositol-3-kinase (PI3K) inhibitor, in
patients with advanced solid tumors. Clin Cancer Res. 2015;21(1):77–86.

102. Shutes A, Onesto C, Picard V, Leblond B, Schweighoffer F, Der CJ. Specificity
and mechanism of action of EHT 1864, a novel small molecule inhibitor of
Rac family small GTPases. J Biol Chem. 2007;282(49):35666–78.

103. Umene K, Banno K, Kisu I, Yanokura M, Nogami Y, Tsuji K, Masuda K, Ueki A,
Kobayashi Y, Yamagami W, et al. Aurora kinase inhibitors: potential
molecular-targeted drugs for gynecologic malignant tumors. Biomed Rep.
2013;1(3):335–40.

104. Yang Q, Deng X, Lu B, Cameron M, Fearns C, Patricelli MP, Yates JR 3rd, Gray
NS, Lee JD. Pharmacological inhibition of BMK1 suppresses tumor growth
through promyelocytic leukemia protein. Cancer Cell. 2010;18(3):258–67.

105. Wang H, Ma X, Ren S, Buolamwini JK, Yan C. A small-molecule inhibitor of MDMX
activates p53 and induces apoptosis. Mol Cancer Ther. 2011;10(1):69–79.

106. Albert DH, Tapang P, Magoc TJ, Pease LJ, Reuter DR, Wei RQ, Li J, Guo J,
Bousquet PF, Ghoreishi-Haack NS, et al. Preclinical activity of ABT-869, a
multitargeted receptor tyrosine kinase inhibitor. Mol Cancer Ther. 2006;5(4):
995–1006.

107. Li VS, Tang MS, Kohn H. The effect of C(5) cytosine methylation at CpG
sequences on mitomycin-DNA bonding profiles. Bioorg Med Chem. 2001;
9(4):863–73.

Vural et al. Human Genomics  (2018) 12:20 Page 21 of 21


	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Analysis of whole-exome sequencing data
	Gene expression analysis
	Analysis of drug response
	Statistical analysis

	Results
	Candidate gene expression patterns
	APOBEC-like mutation motifs and mutation loads in cancer cell lines
	Correlation of gene expression levels with mutation counts and with prevalence of APOBEC-like motifs
	Correlation of candidate gene expression with chemosensitivity
	Correlation between the prevalence of kataegis clusters and chemosensitivity

	Discussion
	Conclusions
	Abbreviations
	Funding
	Availability of data and materials
	Authors’ contributions
	Ethics approval and consent to participate
	Consent for publication
	Competing interests
	Publisher’s Note
	References

