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Abstract

Infections by schistosomes result in granulomatous lesions around parasite eggs entrapped

within the host tissues. The host and parasite determinants of the Schistosoma mansoni

egg-induced granulomatous response are areas of active investigation. Some studies in

mice implicate Tumor Necrosis Factor (TNF) produced in response to the infection whereas

others fail to find a role for it. In addition, in the mouse model, the S. mansoni secreted egg

antigen omega-1 is found to induce granulomas but the underlying mechanism remains

unknown. We have recently developed the zebrafish larva as a model to study macrophage

recruitment and granuloma formation in response to Schistosoma mansoni eggs. Here we

use this model to investigate the mechanisms by which TNF and omega-1 shape the early

granulomatous response. We find that TNF, specifically signaling through TNF receptor 1,

is not required for macrophage recruitment to the egg and granuloma initiation but does

mediate granuloma enlargement. In contrast, omega-1 mediates initial macrophage recruit-

ment, with this chemotactic activity being dependent on its RNase activity. Our findings fur-

ther the understanding of the role of these host- and parasite-derived factors and show that

they impact distinct facets of the granulomatous response to the schistosome egg.

Author summary

Schistosomiasis is a disease caused by parasitic flatworms which lay eggs within the veins

of their human host. Upon sensing the parasite egg, macrophages, the first line defense
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cells, aggregate tightly around the egg to encapsulate it within an immune structure

known as a granuloma. These granulomas are the key pathological structures which deter-

mine both host disease outcome and parasite transmission. Studies in mice have impli-

cated omega-1, a secreted parasite protein. Omega-1 is an RNase, an enzyme that

degrades host RNA. Mouse studies have also suggested that a host defense protein, Tumor

Necrosis Factor (TNF), is required to form granulomas around the egg. We used the small

and transparent zebrafish larva to examine the requirement of omega-1 and TNF for gran-

uloma formation. We find that omega-1 induces rapid macrophage migration and that its

RNase activity is required for this. In contrast, TNF is not involved in the initial recruit-

ment of macrophages. Rather, it enlarges granulomas after they are initiated. These find-

ings improve our understanding of the role of omega-1 and TNF, and show that they

impact distinct facets of granuloma formation around Schistosoma eggs.

Introduction

Schistosomiasis is a major granulomatous disease, caused by parasitic flatworms of the genus

Schistosoma with Schistosoma mansoni being the most widespread agent of the disease [1]. The

events of Schistosoma egg-induced granulomas have been deduced mainly from histological

assessments of human clinical samples and the use of experimental mammalian models [2,3]. We

have recently reported the use of the optically transparent and genetically tractable zebrafish larva

as a model to study early macrophage recruitment and granuloma formation in response to S.

mansoni eggs [4]. Because the zebrafish larva lacks adaptive immunity during their first few

weeks of development, this model can be used to dissect mechanisms in the sole context of innate

immunity [4–6]. We found that while epithelioid granulomas form rapidly around mature eggs,

immature eggs fail to provoke granulomas, consistent with the mature stage-specific secretion of

antigens and their function to induce granuloma formation in mammalian models [4,7–12].

In the zebrafish, we can additionally examine macrophage recruitment within hours of

implantation, and find that whereas injections of schistosome soluble egg antigen (SEA)

obtained from mature eggs induce early macrophage recruitment, implantation of immature

eggs fail to do so [4]. Together these findings both validate the zebrafish model to study S.

mansoni egg-induced granuloma formation and reveal new insights into the underlying

molecular mechanisms [4].

In mice, the cytokine Tumor Necrosis Factor (TNF) and the S. mansoni secreted antigen

omega-1 have been identified as host and parasite factors, respectively, that promote granu-

loma formation around the egg [13–17]. However, the role of TNF remains controversial and

the mechanism by which omega-1 exerts its role is unresolved. In this work, we use the zebra-

fish model to explore their roles in macrophage recruitment and innate granuloma formation.

Materials and methods

Ethics statement

All animal experiments were conducted in compliance with guidelines from the UK Home

Office and approved by the Wellcome Sanger Institute (WSI) Animal Welfare and Ethical

Review Body (AWERB).

Zebrafish husbandry

All zebrafish lines were maintained on a recirculating aquaculture system with a 14 hour light

—10 hour dark cycle. Fish were fed dry food and brine shrimp twice a day. Zebrafish embryos
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were housed in fish water (reverse osmosis water containing 0.18 g/l Instant Ocean) at 28.5˚C.

Embryos were maintained in 0.25 μg/ml methylene blue from collection to 1 day post-fertiliza-

tion (dpf). At 24 hours post-fertilization 0.003% PTU (1-phenyl-2-thiourea, Sigma) was added

to prevent pigmentation.

Generation of the TNFR1 mutant and its usage

The zebrafish TNFR1 mutant (tnfrsf1arr19) was generated using CRISPR Cas9 technology,

targeting the sequence TGGTGGAAACAAGACTATGAA of the third exon of the gene

(ENSG00000067182) using a T7 promoter-generated guide RNA. Sequencing verified the

mutation as a 25 bp deletion (ATGAAGGGAAATTGTCTTGAAAATG) and 6 bp insertion

(TGGTGG), resulting in a frame shift and introduction of a premature stop codon soon after

the start codon. HRM genotyping was performed using the TNFR1-HRM1- forward and

reverse primer set (5’-GTTCCCCACAGGTTCTAACCAG-3’ and 5’-CTTGATGGCATTTAT

CACAGCAGA-3’, respectively). TNFR1 heterozygotes in the macrophage reporter back-

ground, Tg(mpeg1:YFP)w200 [18], were incrossed, genotyped, and sorted as fluorescence-posi-

tive, homozygous TNFR1 mutants or WT siblings. Homozygous TNFR1 mutants or WT

siblings were then incrossed to generate larvae for experiments.

Soluble egg antigens, WT and RNase mutant recombinant omega-1

For preparation of SEA, eggs were isolated from S. mansoni-infected hamsters as previously

described [19], and then homogenized in PBS, pH 7.5, using a sterile glass homogenizer. The

homogenate was then centrifuged at 21 krcf for 20 minutes. Supernatants were pooled and

then dialyzed overnight in PBS using a 3.5 kDa molecular weight cutoff dialyzer. Sample was

then centrifuged at 21 krcf for 20 minutes, and supernatant (SEA) was aliquoted and stored at

-80˚C. SEA was quantified for protein concentration using the Micro-BCA assay (Pierce,

23225), and quality controlled by SDS-PAGE and western blotting against the S. mansoni anti-

gens, omega-1, alpha-1, and kappa-5. Quality control for low LPS content was performed

using the Chromo-LAL assay (Associate of Cape Cod, Inc., C0031-5). SEA from WT and cor-

responding omega-1 knockout eggs were injected at 1 ng per hindbrain ventricle. For compar-

ison of SEA and plant-expressed omega-1, SEA was injected at 2 ng per hindbrain ventricle

(1.5 nL injection of 1.4 mg/mL SEA), and plant-expressed omega-1 with LeX glycans [20] was

injected at 0.02 ng per hindbrain ventricle, the relative concentration of omega-1 present in

SEA (G. Schramm, personal communication). For DEPC inactivation of plant-expressed

omega-1, 1 μL of 0.07 M DEPC (1/100 dilution of Sigma, D5758) was added to 5 μL of 1.5 mg/

mL omega-1 (12 mM final concentration of DEPC), and then incubated for 1 hour at 37˚C.

Because the small volume of protein did not allow for ultrafiltration and requantification of

protein, the sample was simply diluted 1/100 in PBS and then 0.02 ng of protein injected into

the hindbrain ventricle. For comparison, control sample was incubated at 37˚C (without

DEPC-treatment) and then diluted 1/100 in PBS. Because the HEK-expressed WT and RNase

mutant omega-1 (H58F) lack the native-like LeX glycans in plant-expressed and natural

omega-1 [21,22], they were injected at a 5-fold higher concentration of 0.1 ng per hindbrain

ventricle. All hindbrain injections of antigens were assayed at 6 hours post-injection.

Hindbrain injection of antigens

Hindbrain injections were performed as previously described [5] using 2 ng of WT or Δω1

SEA, 0.02 ng of plant-expressed omega-1 untreated or DEPC-treated, or 0.1 ng of HEK-

expressed WT or RNase mutant omega-1.
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Hindbrain implantation of eggs

Schistosome eggs were individually implanted into the zebrafish hindbrain ventricle as previ-

ously described [4]. Briefly, an incision was made into the zebrafish using a microinjection

needle, after which an individual egg was passed though the incision and implanted into the

hindbrain ventricle.

Bacterial infections and quantification of infection burden

Bacterial infections and quantification of infection burden was performed as previously

described [5]. Briefly, 75 CFU Mycobacterium marinum M strain was microinjected into the

caudal vein of zebrafish larvae at 36 hours post-fertilization. At 4 days post-infection larvae

were imaged by inverted fluorescence microscopy and bacterial fluorescence quantified from

images.

Confocal microscopy

Zebrafish were anesthetized in fish water containing tricaine and then and mounted onto opti-

cal bottom plates (MatTek Corporation, P06G-1.5-20-F) in 1% low melting point agarose

(Invitrogen, 16520–100) as previously described [5]. Microscopy was performed using a

Nikon A1 confocal laser scanning confocal microscopy with a 20x Plan Apo 0.75 NA objective

and a Galvano scanner, acquiring 30–80 μm z-stacks with 2–3 μm z-step intervals. Timelapse

microscopy was performed at physiological temperature using a heat chamber set to 28˚C

(Okolab) with an acquisition interval of 3 minutes.

Granuloma quantification

Confocal images were used for quantifying the number of macrophages in contact with the

egg, and subsequent classification of the immune response. Granuloma size was quantified by

fluorescence analysis of confocal z-stacks which were flattened, and then fluorescent macro-

phages comprising the granuloma area was measured by fluorescent pixel counts (FPC) [5].

Quantification of macrophage recruitment

Quantification of macrophage recruitment was performed by counting the number of fluores-

cently labeled macrophages within the hindbrain ventricle by fluorescence microscopy. Exper-

iments quantifying macrophage recruitment following injection of egg antigens, utilized Tg
(mpeg1:Brainbow)w201 larvae [23].

Results

TNF signaling through TNF Receptor 1 promotes macrophage recruitment

to nascent S. mansoni egg-induced granulomas but is dispensable for initial

macrophage recruitment to the eggs

The role of TNF in S. mansoni egg-induced granulomas remains unresolved after two decades

of studies in the murine model of schistosomiasis. Early findings showed that S. mansoni-
infected SCID mice were deficient in both granuloma formation and egg extrusion, pheno-

types which was rescued by recombinant TNF and activated T cell medium, but not by TNF-

depleted T cell medium [13]. These findings suggested a role for TNF in granuloma formation

and egg excretion [13]. However, subsequent work from this group found that TNF knockout

mice did not have a defect in granuloma formation [24]. Mice lacking both receptors through

which TNF signals did exhibit a mild granuloma deficit, leading the authors to propose that it
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might be due to a defect in signaling of the ligand lymphotoxin [24]. However, this would not

explain their earlier findings that exogenous TNF rescued granuloma formation in SCID mice

[13]. Meanwhile, a different group reported that TNF did not rescue granuloma formation in

SCID mice [25]. Additionally, S. mansoni-infected SCID mice displayed normal levels of TNF

expression, suggesting that other cells may be the major source of TNF during the infection

[25]. It has been suggested that Ly6Chi monocytes, which are known to express TNF in

response to the schistosome egg, might be the innate source of TNF [26].

To delineate the role of TNF in macrophage recruitment and granuloma formation around

S. mansoni eggs, we used a TNFR1 zebrafish mutant created by CRISPR-Cas technology (see

Materials and Methods). We first confirmed that the lack of TNFR1 signaling rendered zebra-

fish larvae susceptible to Mycobacterium marinum infection, consistent to our previous find-

ings using TNFR1 morpholino [27] (S1 Fig). Next, we implanted the Hindbrain Ventricle

(HBV) of wildtype and TNFR1 mutant larvae with S. mansoni eggs and evaluated granuloma

formation after five days (Fig 1A–1C). We have recently categorized early macrophage recruit-

ment and granuloma formation based on the number and characteristics of macrophages in

contact with the egg: Minimal recruitment, 0–6 macrophages; Macrophages recruited, >6

macrophages; Granulomas, confluent epithelioid macrophage aggregates [4]. At 5 days post-

implantation of the eggs, the TNFR1 mutants had similar macrophage responses to wildtype

animals with ~50% of the animals forming epithelioid granulomas in each group (Fig 1B).

However, we found that the TNFR1 deficient granulomas were significantly smaller than wild-

type granulomas, with the mean granuloma size being 62% smaller than in wildtype (Fig 1C

and 1D). We also noted that the TNFR1 mutant granulomas, though smaller, showed a charac-

teristic epithelioid morphology with confluent macrophages and loss of intercellular bound-

aries. This finding suggest that epithelioid transformation may also be independent of TNFR1

signaling [4] Fig 1D). Because the S. mansoni granuloma is comprised solely of macrophages

at this early stage [4], our findings imply that TNFR1 signaling would promote macrophage

recruitment to a nascent granuloma around the egg. In the zebrafish model, we can also exam-

ine the initiation of macrophage recruitment to S. mansoni eggs within hours of implantation

[4]. However, we found that TNFR1 signaling is not required for initiation of macrophage

recruitment (Fig 1E).

Together, these results show that TNF signaling through TNFR1 is required specifically for

macrophage recruitment after the initial macrophages reach the egg through other signal(s).

Thereby, TNF mediates granuloma enlargement rather than granuloma initiation. Further-

more, TNFR1 is not required for epithelioid transformation. Finally, TNF plays a role in the

granulomatous response in the sole context of innate immunity.

S. mansoni omega-1 promotes initial macrophage recruitment to the egg

through its RNase activity

Next, we wanted to probe the parasite determinants that induce granuloma formation. In

recent work we found that immature S. mansoni eggs invoked neither granuloma formation

nor even initial macrophage recruitment, indicating that mature egg antigens were required

for the first macrophages to be recruited to the egg [4]. Mature eggs express a variety of anti-

gens [7,28,29], of which omega-1 is known to be the major contributor to granuloma forma-

tion, as knockdown of its expression leads to greatly diminished granuloma formation around

eggs [16,17]. Omega-1 is an RNase involved in several processes. In dendritic cells, it inhibits

protein synthesis, alters cell morphology, induces IL-33 expression, and reduces conjugation

affinity with T cells [21,22,30,31]. If and how this leads to granuloma formation is not known.

However, it is well-established that its RNase activity is essential for inducing the Th2
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Fig 1. TNF affects late-stage granuloma formation. Comparison of macrophage recruitment and granuloma

formation in WT and TNFR1 mutant zebrafish larvae with fluorescent macrophages following implantation with a
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polarization of granulomas [21,22,30,31]. This in turn induces expression of IL-4 and IL-13,

known egg-induced host factors that can mediate granuloma formation [25,32,33]. Addition-

ally, omega-1 is a major hepatotoxin [28,34,35], and it has been proposed that the granuloma

itself would prevent the cytotoxic effects of this egg antigen on the host liver.

Our attempts to test the role of omega-1 by implanting omega-1 knockout (KO) eggs [17]

into the larvae failed, as the genetically modified eggs did not survive shipment. As an alterna-

tive approach, we tested if the SEA obtained from omega-1 KO eggs could recruited macro-

phages. We examined macrophage recruitment 6 hours post-injection of the SEA into the

hindbrain ventricle (Fig 1A). Omega-1-deficient SEA recruited macrophages similar to wild-

type SEA (Fig 2A). Knockdown of omega-1 expression is not 100% efficient, with pools of

CRISPR/Cas9-treated eggs still retaining ~20% of the omega-1 transcript, and their SEA still

retaining ~20% of its RNase activity, suggesting that even though reduced compared to wild

type eggs, the residual omega-1 may still be sufficient for macrophage recruitment [17]. Alter-

natively, the omega-1 activity may be redundant with other SEA components [36]. To investi-

gate these hypotheses, we used a recombinant omega-1 that contain the native-like LeX

glycosylation, which is important for its uptake by dendritic cells and subsequent Th2 polariza-

tion [20,21]. Injection of 0.02 ng of omega-1, the approximate amount of omega-1 in the corre-

sponding SEA injections [4], induced macrophage recruitment, although less than SEA,

consistent with other components inducing macrophage recruitment (Fig 2B and 2C).

Next, we asked if omega-1-associated recruitment of macrophages is dependent on its

RNase activity. The inhibition of RNase activity in the recombinant omega-1 with diethyl pyr-

ocarbonate (DEPC) [30], led to loss of macrophage-recruiting activity (Fig 2D). Because

DEPC inhibits RNase function through covalent binding to the essential histidine in the

single schistosome egg into their hindbrain ventricle. (A) Zebrafish larva at 36 hours post-fertilization with the

hindbrain ventricle (HBV) site of injection and implantation outlined. Scale bar, 300 μm. (B-D) Granuloma formation

at 5 days post-implantation. (B) Percent of animals with; granuloma formation (confluent epithelioid macrophage

aggregates), macrophages recruited (>6 macrophages in contact with the egg), or minimal recruitment (0–6

macrophages in contact with egg) [4]. (C) Granuloma size and (D) images, with each image from top to bottom

corresponding with each red data point, top to bottom, respectively. Scale bar, 50 μm. Horizontal bars in (C), means.

Statistics, Student’s t-test. (E) Mean macrophage recruitment kinetics during the first 6 hours post-implantation. Error

bars, SEM. Sample size, n = 5 animals per group.

https://doi.org/10.1371/journal.pntd.0008814.g001

Fig 2. Omega-1 recruits macrophages via its RNase activity. Macrophage recruitment at 6 hours post-injection (hpi) with egg

antigens. (A) Macrophages recruited to SEA from WT or omega-1 knockout eggs (Δω1). (B) Macrophages recruited to SEA or omega-

1. (C) Mean macrophage recruitment to omega-1 for each of four experiments. Individual experiments represented with unique

symbols; triangles and squares represent means of panels B and D, respectively. (D) Macrophages recruited to omega-1 or DEPC-

treated omega-1. (E) Macrophages recruited to WT or RNase mutant omega-1. All omega-1 injections were performed using 0.02 ng of

plant-expressed omega-1, with the exception of (E) which used HEK-expressed WT or mutant omega-1 injected at a 5-fold higher

concentration of 0.1 ng to compensate for lack of LeX glycosylation in plant-expressed and natural omega-1. Statistics, ANOVA with

Dunnett’s post-test comparing all samples to PBS (B) or WT (A,E); (D) non-parametric ANOVA with Dunn’s post-test comparing all

samples to omega-1; (C) paired t-test. All horizontal bars, means. Statistics; � p<0.05, �� p<0.01, and ��� p<0.001.

https://doi.org/10.1371/journal.pntd.0008814.g002
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catalytic domain, one caveat is that it can create off-target modifications to the protein struc-

ture and function through binding to other histidine residues as well as, to a lesser extent, tyro-

sine, lysine, and cysteine [37]. To validate our findings, we used recombinant omega-1 mutant

lacking RNase activity, with a phenylalanine substitution of the essential histidine of the cata-

lytic domain [21,38]. As expected, the omega-1 mutant failed to recruit macrophages (Fig 2E).

These findings confirmed that the omega-1 macrophage chemotactic activity is mediated

through its RNase activity (Fig 2B).

Discussion

This study reinforces the use of the zebrafish model to study molecular pathways involved in S.

mansoni egg-induced granuloma formation. Particularly, it provides new insights on host and

parasite factors modulating this critical process that drives the pathology associated with

schistosomiasis.

We demonstrate that the cytokine TNF is required for granuloma enlargement but not initia-

tion, in agreement with previous observations in the mouse [13–15,39]. Further, we show that

TNF is dispensable for the first wave of macrophage recruitment to the egg. These findings are

consistent with TNF not being a direct chemotactic agent, but mediating cell recruitment through

interactions with other cells that, in turn, synthesize macrophage chemokines [40,41]. SEA is

known to induce the expression of TNF [14,26,42], therefore, we reason that it might be only

after granuloma initiation, at which point significant numbers of macrophages are in contact with

the egg, that TNF is produced above the threshold to induce these chemokines. In addition, the

close cell-to-cell contacts following the initiation of granuloma formation and epithelioid trans-

formation may be vital; if TNF is acting in both an autocrine and paracrine manner, then the cell-

to-cell interaction would allow for maximal signal exchange between cells, the optimal amplifica-

tion of this signal and subsequent expression of chemokines [43,44]. Epithelioid transformation is

primarily associated with Th2-polarized immune responses involving IL-4/IL-13, expression of

which can occur in the context of innate immunity alone [42,45–47]. Therefore, it is not surpris-

ing to observe epithelioid transformation in the absence of TNF. Chronic mTORC1 signaling,

which does not require adaptive immunity, can also induce epithelioid transformation [48].

We have recently shown that S. mansoni eggs, upon reaching maturity, induce granuloma

formation that benefits the parasite by extruding the egg into the environment [4]. This would

be achieved by mature egg stage-dependent secretion of antigens such as omega-1 [7,11].

Here, we show that recombinant omega-1 recruited macrophages rapidly, similar to SEA. Our

finding supports the hypothesis that omega-1 is sufficient yet dispensable for early macrophage

recruitment. This may have parallels in observations regarding its role in granuloma forma-

tion; omega-1 knockdown eggs form granulomas in the mouse, albeit smaller ones, suggesting

other egg antigens such as IPSE could contribute to this process [16,17].

In addition, we have demonstrated that the omega-1 RNase activity is required for macro-

phage recruitment. This finding indicates that omega-1 does not act directly as a chemoattrac-

tant, and that recruitment must be mediated through downstream effects stemming from its

RNase activity. Prior work has shown that its RNase activity mediates Th2 polarization

through inhibition of protein synthesis in dendritic cells [21,22,30]. In the context of the

6-hour recruitment assay performed herein, we speculate that the protein is taken up by epi-

thelial cells that line the hindbrain ventricle cavity, perturbing cellular homeostasis by an

RNase-induced inhibition of protein synthesis and in turn, inducing cell stress signals which

would trigger macrophage recruitment.
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As for tuberculous granulomas [47,49], we expect this report will stimulate the use of this

facile model to dissect mechanisms underlying the genesis of schistosome egg-induced granu-

lomas, the main drivers of schistosomiasis pathogenesis and transmission.

Supporting information

S1 Fig. TNFR1 mutant zebrafish larvae have increased infection burden. WT and TNFR1

mutant zebrafish larvae were systemically infected at 36 hours post-fertilization via caudal vein

injection with 75 CFU Mycobacterium marinum, and then imaged at 4 days post-infection for

bacterial burden. (A) The two animals closest to the mean. Scale bar, 300 μm. (B) Quantifica-

tion of bacterial burden, with the two red data points corresponding to the animals in (A).

Horizontal bar, means. Statistics, Student’s t test. FPC: fluorescent pixel counts.
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