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Nitric oxide (NO) is produced by a family of isoenzymes, nitric oxide synthases (NOSs),
which all utilize L-arginine as substrate. The production of NO in the lung and airways can
play a number of roles during lung development, regulates airway and vascular smooth
muscle tone, and is involved in inflammatory processes and host defense. Altered
L-arginine/NO homeostasis, due to the accumulation of endogenous NOS inhibitors
and competition for substrate with the arginase enzymes, has been found to play a
role in various conditions affecting the lung and in pulmonary diseases, such as asthma,
chronic obstructive pulmonary disease (COPD), cystic fibrosis (CF), pulmonary
hypertension, and bronchopulmonary dysplasia. Different therapeutic strategies to
increase L-arginine levels or bioavailability are currently being explored in pre-clinical
and clinical studies. These include supplementation of L-arginine or L-citrulline and
inhibition of arginase.
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INTRODUCTION

Nitric oxide (NO) is formed by Nitric oxide synthase (NOS) enzymes, in a two-step reaction
that uses oxygen and the amino acid, L-arginine, to form NO and L-citrulline. L-Citrulline can
be recycled back to L-arginine (Curis et al., 2005), and this L-citrulline recycling has been shown
to be particularly important in conditions of reduced substrate availability for NOS, for
instance when NOS expression is increased or in the presence of increased endogenous
NOS inhibitors (Wu and Morris, 1998; Winnica et al., 2017) Figure 1. NOS monomers,
consisting of an oxygenase and a reductase domain, form a homodimer complex at the
oxygenase domains that is important for normal NOS functioning. All three of the NOS
isozymes can become uncoupled under conditions of low L-arginine availability, low levels of
the cofactor tetrahydrobiopterin (BH4), increased levels of inhibitors or oxidative stress
(Förstermann and Sessa, 2012; Berka et al., 2014). Uncoupled NOS produces superoxide
(O2

−) from oxygen which reacts with NO to form peroxynitrite (ONOO−), thus potentiating the
uncoupling of NOS by lowering the levels of BH4, disrupting the NOS homodimer, and
oxidizing the zinc-containing core (Münzel et al., 2005; Förstermann and Sessa, 2012).
Uncoupling of NOS thus results in a shift of NO production to the formation of
peroxynitrite and oxidative stress. Increasing the bioavailability of L-arginine restores NO
production and inhibit O2

− production by NOS.
The intracellular activity of all NOS isoenzymes, i.e., the so called constitutively expressed

NOS1 (neuronal; nNOS) and NOS3 (endothelial; eNOS) isoforms, as well as the inducible NOS
(NOS2; iNOS), is regulated by the availability of substrate L-arginine, which is determined by
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cellular uptake (Closs et al., 1997), competition with other
L-arginine-metabolizing enzymes, particularly the arginase
isozymes (arginase I and II) (Wu and Morris, 1998), the
presence of endogenous NOS inhibitors, including
asymmetric (ADMA) and symmetric dimethylarginine
(SDMA) and monomethylarginine (MMA) (Leiper et al.,
2007), and L-citrulline/L-arginine recycling (Curis et al.,
2005). Methylation of arginine residues in proteins is
catalyzed by protein arginine methyltransferases (PRMTs).
These methylated arginine derivatives (the endogenous NOS
inhibitors ADMA, SDMA and MMA) are liberated as a result
of protein degradation. The L-arginine:ADMA ratio (Bode-
Böger et al., 2007) provides some insight into NOS activity
alterations in pulmonary disease (Holguin et al., 2013; Scott
and Grasemann, 2013), with a higher ratio indicating the more
normal homeostatic circumstance.

INCREASING ARGININE AVAILABILITY

Since reduced L-arginine availability for NOS has been observed
in a number of clinical conditions and diseases, different
strategies have been explored to increase L-arginine or the
L-arginine:ADMA ratio. L-Arginine is a semi-essential amino
acid, which is supplied in the diet and also synthesized from
L-citrulline, mainly in the intestinal mucosa (Wu and Morris,
1998). The enzymatic conversion of L-citrulline to L-arginine
mainly takes place in the kidney (Curis et al., 2005). In most cells,
L-arginine requirements are met primarily by uptake of
extracellular L-arginine via specific transport systems (Closs
et al., 1997). The efficacy of oral L-arginine to increase
L-arginine availability for NOS and subsequently NO
formation is limited by a significant first-pass effect.
Interestingly, this is not the case for L-citrulline. Oral
L-citrulline therefore results in greater increases of circulating
L-arginine (via the recycling pathway) and longer circulation time
than L-arginine supplementation (Curis et al., 2005; Suzuki et al.,
2017).

Asthma
Elevated fractional exhaled NO (FeNO) in asthmatics is due to
activity of NOS2, which is induced during inflammation, in the
airways (Ricciardolo et al., 2004). Positive correlations between
FeNO, NOS2 expression in airway epithelial and inflammatory
cells, airway eosinophilia, and airway hyperresponsiveness
(AHR) have been described (Meurs et al., 2003). Reduced
L-arginine availability appears to play a key role in allergen-
induced AHR, but protein expression of the cationic amino acid
transporters CAT1 and CAT2, which facilitate L-arginine uptake,
have both been found to be unaltered in lung tissue from asthma
subjects (North et al., 2009). However, NOS2 expression in
bronchial biopsies from people with asthma was associated
with increased presence of nitrotyrosine (Saleh et al., 1998)and
ONOO− content correlated with FeNO and AHR suggesting
uncoupling of NOS and subsequent ONOO− related airway
inflammation in asthma (Saleh et al., 1998). One contributing
factor to this could be substrate limitation due to competition for
substrate by arginase, which converts L-arginine to L-ornithine
and urea. The expression and activity of arginase is increased in
lung tissue and airways obtained from various animal models of
acute and chronic asthma, as well as in asthmatic patients (Merus
et al., 2002; Zimmermann et al., 2003; Maarsingh et al., 2008a;
North et al., 2009; Maarsingh et al., 2011); specifically, arginase I
expression is upregulated in airway epithelial cells from
asthmatics (Zimmermann et al., 2003), and in animal models
(North et al., 2009), which may directly affect NO production in
the airways. Furthermore, mitochondrial arginase II expression
has also been reported to be upregulated in asthma, which may
more broadly affect cellular energetics (Xu et al., 2016; Asosingh
et al., 2020). Increased serum arginase activity and reduced
plasma L-arginine levels have been observed in people
experiencing asthma attacks (Morris et al., 2004). The
relevance of reduced plasma L-arginine levels to asthma is
supported by the finding that allergen-induced AHR in mice
was higher in mice that had 50% lower circulating L-arginine

FIGURE 1 | Changes in L-Arginine metabolism in disease and potential
interventions. (A) Under normal physiologic conditions, cationic amino acid
transporters (CAT) transport L-arginine into the cell where it can be
metabolized by nitric oxide synthase (NOS) to NO and L-citrulline in a
two-step process with Nω-hydroxy-L-arginine (NOHA) as intermediate. Under
pathophysiologic conditions, excess induction of the arginase isozymes can
lead to increased competition for substrate, thus limiting the L -arginine
available for the NOS isozymes, and leading to NOS uncoupling and the
production of peroxynitrite. (B) As potential sites of intervention, local or
systemic administration of arginase inhibitors can increase the cellular
bioavailability of L-arginine for the NOS isozymes and improve the production
of NO. Supplemental L-citrulline can be recycled to L-arginine by
argininosuccinate synthase (ASS) and argininosuccinate lyase (ASL), with
argininosuccinate as an intermediate; thus, also improving intracellular
bioavailability of L-arginine to improve NO production.
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levels due to genetic overexpression of arginase I in enterocytes
(Cloots et al., 2018). Increased arginase also contributes to NOS
impairment by reducing the L-arginine:ADMA ratio (North et al.,
2009; Scott et al., 2011; Scott et al., 2014b) and by promoting
uncoupling of NOS (Mabalirajan et al., 2010). Increased levels of
L-ornithine, the product of arginase activity, could also contribute
to the observed NO deficiency in asthma by inhibiting cellular
L-arginine uptake (Maarsingh et al., 2008a) and by providing
substrate for the production of polyamines, which can also act as
potent inhibitors of NOS (North et al., 2013).

Both L-arginine and L-citrulline have been shown to reduce
AHR in animal models of allergic asthma (De Boer et al., 2001;
Maarsingh et al., 2006; Maarsingh et al., 2008b; Maarsingh et al.,
2009a; Maarsingh et al., 2009b; Mabalirajan et al., 2010), and
L-arginine alone has also been shown to reduce allergen-induced
inflammation in mice (Mabalirajan et al., 2010; Zhang et al.,
2015). Oral and inhaled L-arginine increased FeNO in healthy
subjects and asthmatic (Kharitonov et al., 1995; Sapienza et al.,
1998), but did not affect AHR to histamine (De Gouw et al.,
1999). Oral L-arginine supplementation (6–8 g/day) in patients
with mild to moderate asthma resulted in an increase in serum
L-arginine, ADMA and L-ornithine compared to placebo but had
no effects on FeNO, number of exacerbations, or lung function
(Kenyon et al., 2011). In a more recent study, oral L-arginine
supplementation in severe asthmatics and low FeNO also did not
reduce asthma exacerbation rates. However, the higher plasma
L-citrulline levels in this study were associated with increased
FeNO (Liao et al., 2020).

The effect of the two arginase isozymes on airway
inflammation in allergic asthma has also been studied. Genetic
ablation of arginase I in myeloid cells did not affect airway
inflammation–or AHR–in mouse models of allergic asthma
(Niese et al., 2009; Barron et al., 2013). However, a study in
female mice demonstrated that deletion of arginase I in myeloid
cells attenuated allergen-induced airway inflammation (Cloots
et al., 2017), suggesting gender differences in the role of arginase I
in regulating inflammation in asthma. Genetic ablation of
arginase II actually further increased allergen-induced airway
inflammation in mice (Xu et al., 2017; Asosingh et al., 2020),
indicative for a protective role of arginase II in airway
inflammation. The use of arginase inhibitors that inhibit both
arginase I and II has therefore been cautioned. However, in
studies in male guinea pigs, arginase inhibitors have shown to
decrease (Maarsingh et al., 2008b; Maarsingh et al., 2011) or not
alter (van den Berg et al., 2020) allergen-induced airway
inflammation. By contrast, arginase inhibition increased
allergen-induced airway inflammation in female mice (Ckless
et al., 2008). These findings with arginase inhibitors support a
potential gender specific role or arginase I in allergic
inflammation in asthma.

Obesity is a major co-morbidity in asthma and is associated
with poor asthma control. Blood samples from obese asthmatics
show increased arginase activity, and lower L-arginine:ADMA
ratios, leading to uncoupling of NOS, production of O2

− as well as
oxidative and nitrosative stress (Holguin et al., 2013; Winnica
et al., 2017). In a recent clinical trial in obese asthmatics with low
FeNO (<30 ppb), oral L-citrulline (15 g/day) supplementation for

two weeks increased plasma L-arginine along with the L-arginine:
ADMA ratio, increased FeNO, and improved asthma control and
lung function, especially in obese females with late-onset asthma
(Holguin et al., 2019).

Chronic Obstructive Pulmonary Disease
Methods for estimating flow-independent airway NO
concentrations have suggested that COPD is associated with
elevated alveolar NO (Roy et al., 2007). The expression of
NOS2 has been shown to be increased in alveolar walls, small
airway epithelium, vascular smooth muscle. NOS2 is also
increased in sputum macrophages from COPD patients and so
is the generation of ONOO− in macrophages and ONOO−

content in exhaled breath condensate from COPD patients
(Ichinose el al., 2000; Osata et al., 2009). Other studies in
COPD patients have shown that FeNO correlated with pre-
and post-bronchodilator forced expiratory volume in 1 s
(FEV1), and sputum L-ornithine levels correlated with
L-arginine and ADMA concentrations. Arginase activity
correlated inversely with total NO metabolite (NOx) in
sputum, and with pre- and post-bronchodilator FEV1 (Scott
et al., 2014a). In a different study, ADMA levels in serum
correlated with airway resistance, particularly in patients with
poor COPD control (Tajti et al., 2017); further suggesting that
ADMA in COPD airways results in a functionally relevant shift of
L-arginine metabolism towards the arginase pathway. The
functional relevance of this was demonstrated in a guinea
model where arginase inhibition shifted the L-ornithine:
L-citrulline ratio towards L-citrulline and prevented
neutrophilia, mucus hypersecretion and collagen synthesis
(Pera et al., 2014). Studies in humans with COPD aiming to
increase L-arginine availability for NOS are, to our knowledge,
currently lacking. Thus similar to asthma, increasing substrate
availability for NOS by arginase inhibition, or supplementation of
L-arginine or L-citrulline or a combination thereof, may also be
feasible in COPD.

Cystic Fibrosis
Multiple studies have shown that FeNO is decreased in people
with cystic fibrosis (CF) (Grasemann et al., 1997; Elphick et al.,
2001), and this may contribute to lower lung function and
increased infection risk. Mechanisms contributing to low
airway NO in CF may include reduced NOS2 expression
(Downey and Elborn, 2000), increased metabolism of NO with
the formation of ONOO− (Robbins et al., 2000) and retention in
airway secretions (Grasemann et al., 1998) and consumption of
NO by denitrifying bacteria (Gaston et al., 2002). In addition, CF
airway secretions are rich in neutrophil-derived arginase I, as well
as ADMA. These factors all lead to lowered airway L-arginine
levels and a state of NO-deficiency (Grasemann et al., 2005b;
Grasemann et al., 2006b; Grasemann et al., 2011). A recent study
suggested that decreased NO formation and increased protein-
arginine methylation may be associated with poor nutritional
status in people with CF (Brinkmann et al., 2020). Interestingly,
the CFTR modulating drug ivacaftor, which improves CFTR
function and clinical outcomes including nutritional status,
also increases FeNO in treated CF patients (Grasemann et al.,
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2015b; Grasemann et al., 2020). Previous studies had shown that
increasing L-arginine in CF patients by infusion, inhalation or
oral supplementation can increased FeNO, but that only inhaled
L-arginine improved lung function (Grasemann et al., 1999;
Grasemann et al., 2005a; Grasemann et al., 2006a).
Interestingly, a recent study utilizing patient-derived bronchial
and nasal cultured epithelial cells, showed that the addition of
arginine together with inhibition of arginase activity increased
cytosolic NO and enhanced the rescue effect of the CFTR
targeting drug ORKAMBI on F508del-CFTR-mediated
chloride conductance. The combination of arginine addition
with concomitant arginase inhibition also enhanced
ORKAMBI-mediated increases in ciliary beat frequency and
mucociliary movement. Thus, increasing L-arginine availability
for NOS may further increase the efficacy of CFTR modulator
therapies (Wu et al., 2019). Another approach to increase
L-arginine availability for NOS is through arginase inhibition.
Clinical trials are currently underway to study the effect of an oral
arginase inhibitor (CB-280) on lung disease in patients with CF
(ClinicalTrials.gov: NCT04279769).

Pulmonary Hypertension
The cause of pulmonary hypertension (PH) is increased
vascular resistance in the lung. This often occurs as a
consequence of endothelial cell dysfunction, reduced NO,
impaired NO-mediated vasodilatory response and/or vascular
remodeling (Kaneko et al., 1998; Klinger et al., 2013). The NO
deficiency could at least in part be explained by NOS3
uncoupling and increased scavenging of NO due to oxidative
stress, and by increased levels of ADMA (Kao et al., 2015;
Morris et al., 2005). Increased serum arginase activity and more
specifically, endothelial arginase II expression, low plasma
L-arginine levels and low l--arginine:ADMA ratios have been
described in patients with both primary and secondary PH
(Morris et al., 2003; Xu et al., 2004; Morris et al., 2005; Kao
et al., 2015). Arginase inhibition has been shown to prevent
right ventricular hypertrophy in a guinea pig model of COPD
(Pera et al., 2014) and reduce the elevated right ventricular
systolic pressure in various animal models of PH (Jiang et al.,
2015; Grasemann et al., 2015a; Jung et al., 2017). Arginase
inhibition has also been shown to inhibit the hypoxia-
induced proliferation of human pulmonary arterial smooth
muscle cells (Jiang et al., 2015; Chu et al., 2016), implicating
that increased arginase activity could also contribute to vascular
remodeling in PH.

Clinical studies in patients with PH have shown positive effects
of L-arginine supplementation (Nagaya et al., 2001; Brown et al.,
2018). L-Arginine may also be useful in patients with PH and
sickle cell disease (Morris et al., 2003;Morris, 2014; Morris, 2017).
Supplementation with L-citrulline in newborn infants with
chronic PH (Fike et al., 2014) and in patients with idiopathic
pulmonary arterial hypertension and Eisenmenger Syndrome
(Sharif Kashani et al., 2014) have also been shown to result in
improved hemodynamics. Recent studies have also suggested that
L-citrulline reduces the risk of postoperative PH in children with
congenital heart disease (CHD) undergoing surgery (Smith et al.,
2006; Silvera Ruiz et al., 2020).

Chronic Lung Disease/Bronchopulmonary
Dysplasia
Chronic lung disease (CLD) or bronchopulmonary dysplasia
(BPD is the major cause of morbidity and mortality in very low
birth weight infants (VLBW). BPD is characterized by arrested
alveolar development and is complicated by pulmonary
hypertension (PH). During lung development, NO has been
reported to promote alveolar growth. We have reported
changes in the expression of lung arginase throughout the
development of experimental BPD/PH, the inhibition of
which and/or abrogation leading to improvement in the PH
phenotype (Belik et al., 2008; Belik et al., 2009). Supplemental
inhaled NO (iNO) also ameliorates the BPD phenotype in
experimental models and in some premature infants. Lung
parenchymal NO-mediated relaxation is impaired in rat neonates
exposed to hyperoxia (Sopi et al., 2007), which could be restored by
inhibition of the increased arginase activity (Ali et al., 2012), or with
supplementation with L-arginine (Ali et al., 2012) or L-citrulline
(Sopi et al., 2012). L-Citrulline supplementation prevents hyperoxia-
induced lung injury and PH in newborn rats (Vadivel et al., 2010). A
cross-sectional study in neonates reported that L-citrulline levels <
29 μmol/L was associated with BPD/PH (100% sensitivity and 75%
specificity); thus, monitoring L-citrulline may be used as a screening
tool for BPD/PH (Montgomery et al., 2016). In a clinical study in
VLBW infants L-arginine supplementation resulted in survival
without CLD was significantly higher in the L-arginine-treated
compared with the control group (Polycarpou et al., 2013). As
noted previously, the oral bioavailability of L-arginine is limited
significantly by the first pass effect, and that this can be circumvented
by administration of L-citrulline to engage the L-citrulline/L-arginine
recycling pathway. As such, there is currently a trial of oral
L-citrulline supplementation in preterm infants that aims to
determine the safety, efficacy and dosing for the treatment of
BPD/PH (ClinicalTrials.gov Identifier: NCT03649932). Thus,
there appears promise in the potential for treatment of BPD/PH
through modification of L-arginine bioavailability in the lung.

SUMMARY

Dysregulation of Larginine/NO metabolism in the lung and airways
can contribute to the development of chronic lung diseases,
including asthma, COPD, cystic fibrosis, bronchopulmonary
dysplasia and pulmonary hypertension. New work aiming to
correct for these dysfunctions by increasing L-arginine availability
toNOS, focusing on the provision of supplemental L-arginine and/or
L-citrulline, as well as inhibition of the competing enzyme, arginase,
may lead to improvements in our understanding of the pathogenesis
and treatment of these diseases.
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