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The requirement for vaccine-induced tissue-resident immunity for protection against one or
repeated infections withChlamydia trachomatis (C.t.) is still not fully resolved. In this study, our
aim was to investigate to which degree tissue-resident Th1/Th17 T cells in the genital tract
(GT) could add to the protection mediated by circulating immunity. Out of several mucosal
vaccine strategies, a strategy termed SIM (for simultaneous intrauterine and parenteral
immunization with CAF01 adjuvanted CTH522), was superior in generating genital tract
tissue-resident Th1/Th17 T cell immunity. This led to a faster and stronger local CD4 T cell
response post infection, consisting of multifunctional IFNg/TNFa-producing Th1 T cells and
IFNg/TNFa/IL-17-producing Th17 T cells, and a faster recruitment of innate immune cells.
Post infection, SIM animals showed an additional significant reduction in bacterial levels
compared to mice having received only a parenteral vaccine. Nevertheless, the parenteral
strategy reduced bacterial levels by 75%, and interestingly, post infection, these mice
generated their own vaccine-derived genital tract tissue-resident memory Th1/Th17 T cells,
which upon a subsequent infection showed as fast an activation in the genital tract, as
observed in SIM mice. Furthermore, in contrast to after the first infection, both groups of mice
now showed a similar infection-induced boost in local vaginal IgA and IgG titers. Thus,
vaccine-induced resident immunity, generated pre-infection, led to an advantage in the
response against the first infection, but not the second infection, suggesting that a parenteral
vaccine strategy is a suitable vaccine strategy against infections with Chlamydia trachomatis.

Keywords: vaccine, Th1, Th17, infection, Chlamydia
INTRODUCTION

Chlamydia trachomatis (C.t.) is the most common sexually transmitted bacterium with an estimated
127 million new cases occurring every year globally (1). C.t. is an obligate intracellular bacterium
infecting both men and women. Genital infections are frequently asymptomatic and consequently left
untreated. Untreated women can experience serious sequelae such as pelvic inflammatory disease that
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can lead to fatal ectopic pregnancy and infertility (2–4). Moreover,
as repeated infections with C.t. are not uncommon (5), it has
become clear that the goal of a vaccine against Chlamydia is to
prevent not only a first infection, but also subsequent infections.
To develop such a vaccine, a better understanding of the most
optimal protective immune response is required.

Protective CD4 tissue-resident memory T (Trm) cells have
been observed at barrier sites such as the lung and skin (6) and
genital tract (GT) (7, 8). Trm cells rapidly respond to local
antigen recognition by a cytokine release, which in turn facilitate
recruitment of circulating memory T cells and innate cells (9–
13). In the genital tract, Trm cells have been studied in both HSV
(7) and C.t. models (8). Intravaginal immunisation has shown
that CD4 T cells in the GT associated with macrophages to form
clusters that elicited increased protection compared with
circulating immunity (7). Topical application of CXCL9 and
CXCL10 induced recruitment of vaccine-induced CD8 T cells
into the GT, which showed superior protection compared to
systemic vaccine-induced CD8 T cells recruited upon genital
HSV challenge (14). Using a C.t. transcervical (TC) infection
model, CD4 Trm cells showed superior protection compared to
systemic CD4 T cells (8). These results show that Trm cells have
an important protective potential, but they do not show if Trm
cells are absolutely required in a vaccine strategy against
Chlamydia. Moreover, the requirement for vaccine-induced
Trm cells for protection against repeated infections has not
been investigated. We recently showed that a parenteral
vaccine inducing only systemic immunity, given prior to the
first infection, induced protective systemic Th1/Th17 T cell
immunity that could be measured between day 3 and 7 post
infection (15). The question that we therefore addressed in the
present study, was if and how the induction of vaccine specific
tissue-resident Th1/Th17 Trm cells in the GT, prior to infection,
could add to this response, and if pre-infection generated Trm
cells would also add to the response against repeated infections.
We used the Chlamydia vaccine antigen CTH522, formulated in
the adjuvant CAF01, which possesses a unique property of
inducing both Th1 and Th17 T cells (16–18).
MATERIALS AND METHODS

Ethics Statement
Experiments were conducted in accordance with the regulations
set forward by the Danish Ministry of Justice and animal
protection committees by Danish Animal Experiments
Inspectorate Permit 2020-15-0201-00637 and in compliance
with European Community Directive 2010/63/EU of the
European parliament and of the council of 22 September 2010
on the protection of animals used for scientific purposes, as well
as Directive 86/609 and the U.S. Association for Laboratory
Animal Care recommendations for the care and use of laboratory
animals. The experiments were approved by a local animal
protection committee at Statens Serum Institut, IACUC,
headed by DVM Kristin Engelhart Illigen.
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Animals
Studies were performed with 6- to 8-week-old female B6C3F1
hybrid mice from Envigo, Scandinavia. Animals were housed in
appropriate animal facilities at Statens Serum Institut and
handled by authorized personnel.

Bacteria Preparations and
Transcervical Infection
C.t. SvD (ATCC) were grown in HeLa cells (ATCC) in RPMI 1640
media (Invitrogen) supplemented with 1%HEPES, 1% of Non-
essential amino acids (NEAA) (MP Biomedicals), 1% L-Glutamin
(Gibco) and 1% pyruvate (Gibco). The infected HeLa cells were
grown for 2-3 days at 37°C at 5% CO2. Infected HeLa cells were
harvested and C.t. were purified from the cells (19). Purified C.t.
were resuspended in SPG buffer (250 mM Sucrose, 10 mM
Na2HPO4, 5 mM L-glutamic acid) and divided into aliquots at a
concentration of 2.7x107 IFUs/ml. Aliquots were stored at -80°C

All mice were treated 10 and 3 days before infection with 50
mg of medroxyprogesteron to synchronize the murine estrous
cycle. Mice were transcervically infected using a thin, exible
probe: nonsurgical embryo transfer (NSET) device (Paratechs) to
bypass the cervix and to inject bacteria directly into the uterine
horn lumen.

Antigens, Adjuvant and Immunization
Mice were immunized three times at two-week intervals with
MOMP-based recombinant antigen CTH522 (17) (5µg per dose)
formulated in CAF01 (DDA/TDB 250µg/50µg per dose).
Subcutaneous administration was done by injecting 200µl of
the vaccine at the base of the tail. Intrauterine administration was
done in the same manner as TC inoculation with C.t. where 20 µl
of the vaccine [5ug CTH522 in CAF01 (DDA/TDB 250µg/50µg
per dose)] was administered in the uterine horn lumen by using a
NSET device. Non vaccinated mice received no treatment.

Bacterial Burden
To quantify the bacterial burden in the infected mice, the upper
genital tract was swabbed (one stick for each uterine horn).
Swabsticks were stored at -80°C in 600 mL SPG buffer (250 mM
Sucrose, 10 mM Na2HPO4, 5 mM L-glutamic acid) with plastic
beads. For cell passage, 80,000 McCoy cells (ATCC) in infection
media (RPMI 1640 (Invitrogen), 1 %HEPES (Gibco), 5 % FBS
(VWR), 0.01% Gentamicin (Gibco), 0.5 % Glucose) were seeded
in a 48-well plate (Costar) and incubated at 37°C with 5 % CO2

overnight. When the samples reached 85-90% confluence cell
media was aspirated and 0.2 ml infection medium was added to
the wells and incubated at 37°C with 5 % CO2. Undiluted and 1:2
diluted samples were added to the wells and centrifuged at 700 G
for 1 hour with no brake at room temperature. Afterwards, the
plates where placed at 37°C with 5% CO2 for 2 hours. Next,
supernatants were aspirated and 0.5 ml infection medium with
1:1000 Cycloheximide (Sigma) were added to the wells and
incubated for one day at 37°C. The cells were then fixated with
0.4 mL 96 % ethanol per well and kept in 0.4 mL 1xPBS overnight
at 4°C. The nucleius were dyed with 0.2 mL/well propidiumiodid
(Sigma) (solution 1:2) and 0.25 mL/well of sterile-filtrated
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diluted rabbit anti-SerovarD MOMP antibody (in house) was
added to label the inclusion bodies and incubated for 1 hour at
room temperature. Next the cells were incubated at room
temperature for 1 hour with Alexa Flour 488 conjugated
secondary antibody goat anti-rabbit IgG (0.1mL/well, Life
Technologies) diluted 1:500 in 1xPBS 1 % BSA. IFUs were
quantified using ImageExpress® PICO (Molecular Devices)
and the CellReporterXpress® software.

Total IgG, IgG Subclasses and IgA-ELISA
Nunc MaxiSorp 96-well plates (Sigma-Aldrich) were coated with
CTH522 antigen (1µg/ml) diluted in carbonate buffer overnight
at 4°C. For detection of IgG antibodies the plates were blocked
with 1xPBS (made from 10x PBS, Gibco Invitrogen) with 2%
BSA for 2 hours. For detection of IgA antibodies the plates were
blocked with 1% skim milk and 0.05% Tween (Merck).
The plates were afterwards washed 3 times with washing buffer
(PBS+0.2% Tween). The samples were titrated with 1% BSA as
indicated in each figure, and incubated for 2 hours at room
temperature. The samples were then incubated for 1 hour at
room temperature with secondary HRP-conjugated against IgG
antibodies: rabbit anti-mouse IgG (H+L) (AH Diagnostics), goat
anti-mouse IgG1 (Southern Biotech), rabbit anti-mouse IgG2a
(AH Diagnostics), rabbit anti-mouse IgG2b (AH Diagnostics)
or goat anti-mouse IgG2c (Southern Biotech). For IgA detection
the samples were incubated with goat anti-mouse IgA-biotin
for 1 hour at room temperature followed by incubation with
Streptavidin-HRP antibody for 30 minutes at room temperature.
The samples were developed by adding 3, 3 ’ , 5, 5 ’-
tetramethylbenzidine (TMB PLUS2®, Kementec). After 5-15
minutes the reactions were stopped by adding 0.5 M H2SO4

sulfuric acid (Honeywell Fluka™). Plates were read at 450 nm
and with a background correction at 620 nm by using SunriseTM
Absorbance Reader (Tecan Life Sciences).

For vaginal IgG/IgA, vaginal swabs were collected for IgA/
total IgG quantification. Swabsticks were stored at -80°C in
600 ml SPG buffer (250 mM Sucrose, 10 mM Na2HPO4, 5
mM L-glutamic acid) with plastic beads. Mice are not
exsanguinated before collecting vaginal swabs.

Sandwich IFNg and IL-17A ELISA
Single-cell suspension were adjusted to 105 cells per well in 96
well round (U) Bottom plate (ThermoFisher). The cells were
stimulated with 5 µg/ml antigen or peptides and incubated at
37°C at 5% CO2 for stimulation. Supernatants were harvested
after 72 hours of stimulation. Each sample was done in
triplicates. Nunc MaxiSorp 96-well plates (Sigma-Aldrich) were
coated with rat anti-mouse IFNg (1:1000, BD Pharmingen, clone
R46A2) or rat anti-mouse IL-17 (1:500, Biolegend, clone TC11-
18H10.1) in carbonate buffer (SSI Diagnostica) and incubated
overnight at 4°C. The plates were blocked with 1xPBS with 2%
skim milk powder (Natur Drogeriet) for 2 hours at room
temperature. Supernatants and recombinant IFNg/IL-17A
(Biolegend) were diluted in PBS 2% Bovine Serum Albumin
(BSA) (Sigma-Aldrich), and plates were incubated for 2 hours at
room temperature. The samples were incubated with biotin rat
anti-mouse IFNg (1:5000, BD Pharmingen, clone XMG1.2) or
Frontiers in Immunology | www.frontiersin.org 3
biotin anti-mouse IL-17A (1:2000, Biolegend, clone TC11-8H4)
in 1xPBS 1% BSA for 1 hour at room temperature. Plates were
then incubated for 30 minutes in 1:5000 diluted streptavidin-
conjugated horseradish peroxidase (HRP) (BD Pharmingen) in
1xPBS 1% BSA. The samples were developed by adding TMB
Ready-to-use substrate (Kem-En-Tec Diagnostics) and the
enzyme reaction was stopped after 5-15 minutes by using 0.5
M H2SO4. Plates were read at 450 nm and with a background
correction at 620 nm by using SunriseTM Absorbance Reader
(Tecan Life Sciences). Standard curves were generated using
known concentrations of recombinant IFNg and IL-17.

Sample Collection and Cell Preparation
Samples were obtained from 4-12 mice per group (individually
or pooled in groups of 2) in RPMI 1640 (Gibco Invitrogen). 3
minutes before euthanasia, 250 µl of anti-CD45.2 – fluorescein
isothiocyanate (BD Pharmingen, clone 104, 1:100 dil.) were
intravenously injected into the tail of the mice to label vascular
leukocytes. Single-cell suspensions were created by
homogenizing organs through a 100 µm nylon filter (Falcon).
In addition. GTs were incubated before homogenization for 1
hour at 37°C CO2 in type IV collagenase (0.8 mg/ml) (Sigma), 30
minutes in DNAse I (Roche) (0.08 mg/ml). Before and after
incubation GTs were processed with gentleMACS™ Dissociator
(Miltenyi Biotec). Cell suspensions were centrifuged (700 x g,
5 min) and washed twice in RPMI 1640. For PBMC isolation
from blood, the blood was kept in tubes with EDTA and diluted
1:1 in 1xPBS. The blood was added on top of Lympholyte®

solution and centrifuged at 800 x g for 20 minutes at room
temperature. The PBMC layer was harvested and washed twice
in RPMI 1641. Cell pellets from all organs were resuspended in
RPMI-1640 (Gibco Invitrogen) supplemented with 5 × 10−5 M
2-mercaptoethanol, 1 mM glutamine, 1% pyruvate, 1% penicillin-
streptomycin, 1% HEPES, and 10% FCS (Gibco Invitrogen).

Flow Cytometry and Biodistribution Analysis
For intracellular cytokine staining, cells were stimulated for 1
hour in the presence of CTH522 antigen and 1 µg/ml of
costimulatory antibodies CD28 (BD Pharmingen,clone: 37.51)
and CD49d (BD Pharmingen, clone: 9C10 (MFR4.B)). Brefeldin
A was added afterwards at a concentration of 200µg/ml to each
sample and were subsequently incubated at 37°C for 5 hours and
kept at 4°C until staining. Cell suspensions were Fc-blocked with
anti-CD16/CD32 antibody (BD Pharmingen, clone 2.4G2, 1:100
dil.) for 10 min. at 4°C. Cells were stained with combinations
of the following anti-mouse antibodies conjugated to
fluorochromes (company, clone, dilution): a-CD4-BV786 (BD
Horizon, GK 1.5, 1:600), a-CD44-Alexa fluor 700 (Biolegend,
IM7, 1:150), a-CD8-BV421 (Biolegend, 53-6.7, 1:200), a-CD69-
PE-Cy7 (BD Pharmingen, H1.2F3, 1:200), a-IL-2-APC-Cy7 (BD
Pharmingen, JES6-5H4, 1:200), a-IFNg-PE (BD Pharmingen,
XMG1.2, 1:200), a-TNF-APC (BD Pharmingen, MP6-XT22,
1:200), a-IL-17-PerCP-Cy5.5 (Invitrogen, eBIO17B7, 45-7177-
82, 1:200), a-CD11b-APC-Cy7 (Biolegend, M1/70, 1:100), a-
CD11c-APC (BD Pharmingen, HL3, 1:100), a-Ly6G-PE (BD
Pharmingen, HL3, 1 :100) , and Viabi l i ty-eFluor506
(Invitrogen, 1:500).
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The stained cells were analyzed using a Flow cytometer (BD
LSRFortessa, BD Bioscience) and FlowJo Software (version 10). To
analyse the cells in the organs we excluded doublets on forward
scatter height (FSC-H) and FSC area (FSC-A) plot, excluded cell
debris on side scatter height (SSC-H) and FSC-H and last excluded
“dead” cells using the viability marker. Leukocytes were divided
into CD4 T cells (CD4+), CD8 T cells (CD8+), neutrophils (Ly6G+

CD11b+), macrophages (Ly6G-CD11b+CD11c-) and dendritic
cells (Ly6G-CD11b+CD11c+MHC-II+).

Statistical Analysis
Cell percentages and IFU counts among groups were analyzed by
a one-way ANOVA followed by Tukey’s multiple comparison
test, if more than two groups were compared as indicated in the
figure legend. If only two groups were compared an unpaired
student t test was used to determine significance. Prism version 8
software (GraphPad) was used for analysis. A p value of ≤0.05
was considered a significant difference.
RESULTS

Only a Mucosal SIM Vaccination Strategy
Induces Local Genital Tract T Cells and
IgA Pre-Challenge
We first compared three vaccine strategies, a parenteral
(subcutaneous, SC) CAF01 adjuvanted administration, an
intrauterine mucosal CAF01 adjuvanted administration (IU) and
a combination of the two given simultaneously (SIM). The latter
strategy was chosen as we previously showed that combining a
local immunization with a parenteral immunization led to a strong
local T cell response (20). For the vaccine antigen we chose
Frontiers in Immunology | www.frontiersin.org 4
CTH522, which has previously been shown to protect against a
vaginal or TC infection with C.t (15, 17) and to generate both Th1
and Th17 T cells (16, 18).

Female B6C3F1 mice were vaccinated three times, at two
weeks intervals with CTH522/CAF01, and analyzed at week 6
post last vaccination. To measure leukocytes in the genital tract
tissue, and not intravascular leukocytes, mice were subjected
to in vivo intravascular staining by injecting fluorescein
isothiocyanate (FITC)-labeled anti-CD45 monoclonal
antibody (mAb) intravenously (iv.CD45) 3 min before the
mice were euthanized. This selectively stains intravascular, but
not tissue leukocytes [as described by Anderson et al. (21)] and
enabled us to exclude intravascular cells from the subsequent
flow cytometry analysis. Gating strategy is shown in
Supplementary Figure 1. We first analyzed the percentage of
CD4 positive T cells out of all iv.CD45 negative cells in the
upper genital tract (uGT). 5.6% of all cells in the GT were CD4 T
cells in the SIM group, and out of these CD4 T cells, 19.5%
expressed either IFNg, TNFa, IL2 or IL-17 (Figures 1A, B). Of
the cytokine positive (Cyt+) CD44+CD4+ T cells, more than
80% also expressed CD69, a marker for resident T cells (data not
shown). Even 20 weeks after the last vaccination, we could
measure a population of cytokine positive CD4 T cells in the GT
(Figure 1C). In the SC and IU group we did not detect an
increase in neither the percentage of CD4 T cells, nor the
percentage of Cyt+ CD4 T cells in the GT, compared to non
vaccinated mice (Figures 1A, B).

To compare the systemic T cell response, splenocytes were
stimulated in vitro with CTH522 and secretion of IFNg and IL-17
was measured. The results showed that stimulated cells from SC
or SIM vaccinated animals released both IFNg and IL-17. In
contrast, mice from the IU group did not show a systemic CMI
response (Figure 2A). We also tested the serum IgG. In contrast
A B C

FIGURE 1 | Only mucosal SIM vaccine strategy induces local T cells pre-challenge. Groups of female B6C3F1 mice (n=6-8, pooled pairwise) were vaccinated three
times as indicated with two weeks intervals. The antigen was CTH522 and the administration route is indicated in the figure. (A) Percentage of CD4 T cells among all
cells in the GT were determined by flow cytometry. (B) Among the CD4+ T cells, percentages of cytokine (IFNg, IL-2, IL-17, and/or TNFa) positive antigen-specific
CD44+ CD4+ T cells were determined. SIM Cyt+ indicate only the cytokine positive cells in the genital tract of SIM vaccinated mice. (C) Percentages of cytokine
(IFNg, IL-2, IL-17, and/or TNFa) positive antigen-specific CD44+ CD4+ T cells at week 20 post last vaccination. Bars indicate means ± SD. Statistical significance
was evaluated by an ANOVA test followed by Tukey’s multiple comparisons. *p < 0.05 or by an unpaired t test (C). **p < 0.001, ***p < 0.0001. The data shown are
representative of 3 experiments (A, B) or 1 experiment (C).
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to the IU group, both the SC and SIM group showed a high
CTH522 specific IgG titer in serum, consisting of both IgG1 and
IgG2 subclasses, in agreement with the subclass distribution
normally associated with the CAF01 adjuvant (Figure 2B).
Finally, we also tested vaginal fluids for IgA and IgG. SIM
Frontiers in Immunology | www.frontiersin.org 5
mice showed the highest IgA response, whereas SC and IU
mice showed no IgA at this time point. Both SC and SIM
animals did, however contain vaginal IgG (Figure 2C).

Thus, only the CAF01 adjuvanted SIM vaccine strategy was
able to induce both an increased local Th1/Th17 T cell response
A

B

C

FIGURE 2 | Systemic and local response pre-infection. (A) Groups of female B6C3F1 mice (n=6, pooled pairwise) were vaccinated three times as indicated with
two weeks intervals. 6 weeks post last vaccination splenocytes were stimulated with CTH522 for 72 hours and secreted IFNg or IL-17 in supernatant was measured.
(B) IgG1/IgG2a/IgG2b/IgG2c levels were determined in the serum. (C) Total IgG and IgA levels in the vagina. Points and bars indicate means ± SD. Statistical
significance was evaluated by an ANOVA test followed by Tukey’s multiple comparisons. **p < 0.01. ***p < 0.001, ****p < 0.0001. (A, B) Are representative of 3
experiments, and (C) of two experiments.
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in the genital tract, combined with systemic IgG and local IgG
and IgA.

The Th1/Th17 Immune Response in the
Genital Tract Post Infection
We next examined how the vaccine-induced immunity would
respond to a TC infection with 1.5x103 IFU of C.t. serovar D
(SvD). For these analyses, we chose only the SC and SIM groups,
as the objective was to examine if the resident immunity,
observed in the SIM mice, would increase the local post-
infection response and the protection. As before, we analyzed
the i.v CD45 negative Th1/Th17 T cells in the GT. At day 1 the
percentage of CD4 T cells out of all cells in the uGT constituted
7.5% in the SIM group, of which 13% were cytokine positive
(Figures 3A, B). The percentage of CD4 T cells in the SC group
was not different from the non vaccinated group. This showed
that no systemic CTH522-specific T cells in the SC had yet been
Frontiers in Immunology | www.frontiersin.org 6
recruited to the GT. To further analyse the local T cells, we
plotted the Th1/Th17 cytokine subsets based on their cytokine
expression. In particular, this would show the development of
effector Th1/Th17 subtypes (22) in SC and SIM animals
(indicated by arrows in Figure 3C). Effector Th1 T cells were
defined as IL-17-, INFg+, +/- other cytokines, and effector Th17
subtypes as IL-17+, TNFa+, +/- other cytokines. The data
demonstrated that at day 1 post infection, the SIM group
showed activated multifunctional vaccine-specific CD4 T cells
(IL-17+/TNFa+ Th17 or IFNg+/TNFa+ Th1 T cells) in the GT.
SC mice showed some TNFa+ T cells, but these were also seen in
non vaccinated animals or vaccinated animals only stimulated
with media (Supplementary Figure 2).

At day 3 post infection, CD4 T cells in the uGT constituted
10.3% of all cells in the SIM group, compared to 3.9% in the SC
group. Cyt+ CD4 T cells constituted 17.6% in the SIM group and
6.1% in the SC group (Figures 3A, B). This was in contrast to the
A

B

C

D

E

F

FIGURE 3 | Day 1-14 post infection Th1 and Th17 cytokine subsets. Female B6C3F1 mice (n=8, pooled pairwise) were vaccinated three times as indicated with
two weeks intervals. 6 weeks post immunization the mice received a TC infection with 1.5x103 IFU of C.t. SvD. (A, B) The percentages of CD4 T cells, and cytokine
positive (Cyt+) (IFNg, IL-2, IL-17, and/or TNFa) in uGT at day 1-14 post infection were analyzed by flow cytometry. (C–F) Percentages of IL-17 negative CD4 T cells
(Th1) and IL-17 positive CD4 cells (Th17) out of all CD4+ T cells in the uGT were analyzed by flow cytometry for the frequency of cytokine subsets (expression of
TNFa, IL-2, IFNg and/or IL-17). Points and bars indicate means ± SD. Small arrows in (C) indicate Th1 or Th17 effector subsets. In A and B statistical significance
between SC and SIM animals was evaluated by an ANOVA test followed by Tukey’s multiple comparisons using Graphpad Prism 8.3.0. *p < 0.05. **p < 0.01,
****p < 0.0001 (A) or by a t-test (B). The data shown are representative of 2-3 experiments.
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spleen and blood where there was no difference between SIM and
SC mice (Supplementary Figure 3). As observed for day 1 post
infection, in the SIM group we observed increased percentage of
multifunctional effector CD4 T cells expressing IFNg/TNFa or
IL-17/TNFa (Figure 3D). At this time point only a few Th17 T
cells co-expressed IFNg. At day 7 there was a further increase in
the percentage of CD4 T cells in the GT in both vaccine groups,
as well as in non vaccinated animals. SIM animals showed
21.03% CD4 T cells, whereas SC animals showed 17.8% and
non vaccinated 8.7%. Regarding the percentage of Cyt+ CD4 T
cells, in SC mice there was a significant increase to 20.5%,
whereas the SIM group only showed a minor increase
compared to day 3 post infection (Figures 3A, B). At this time
point the SC and SIM groups showed similar percentages in Cyt+
CD4 T cells. This similarity between SC and SIM animals was
also observed in another experiment where we infected the
animals at a much later time point (day 154) (Supplementary
Figure 4), demonstrating efficient recruitment to the GT of
systemic CAF01-induced Th1/Th17 T cells, irrespective of
their effector-memory/memory status in SC animals post
infection. The Th1/Th17 cytokine subsets in the GT were
dominated by IFNg/TNFa or IL-17/TNFa CD4 T cells, and
CD4 T cells expressing only IL-17 or IL-17/TNFa (Figure 3D).

From day 7 to 14, the SC and SIM groups again showed a
different development regarding Cyt+ CD4 T cells. In the SIM
group the percentage of Cyt+ CD4 T cells retracted slightly from
20.5% to 17.6%, but in the SC group it increased from 20.5% to
29.3% (Figure 3B).

Th17 T cells increased their IFNg expression in both vaccine
groups (Figures 3E, F). Thus, while Th1 T cells in the GT
increased their IFNg expression from the onset of the infection,
Th17 T cells showed the highest increase in IFNg expression
between day 7 and 14.

Taken together, the SIM group showed a faster local CMI
response consisting of multifunctional CD4 T cells. This
correlated with an increased activation/recruitment of innate
immune cells in the SIM group (dendritic cells, monocytes and
neutrophils) (Supplementary Figure 5). Finally, the SIM group
also exhibited a faster retraction of the local CMI response,
compared to SC animals. Between day 3 and 14 the SIM animals
showed no increase in % Cyt+ CD4 T cells. In marked contrast,
the SC animals showed a 366% increase in the same period. The
faster retraction between day 7 and 14 in the SIM group was also
reflected in the local population of dendritic cells, monocytes and
neutrophils in the SIM group (Supplementary Figure 5).

Protection Against Infection Is Increased
in the SIM Group
We next examined if the increased response in SIM animals,
compared to SC animals, correlated with increased protection.
As a measure of bacterial burden, the bacterial shedding was
measured in the uterus at day 7 post a TC infection with 1.5x103

IFU of C.t SvD. This time point was chosen based on our
previous data (15). The data [depicted as inclusion forming
units (IFU)] showed that the SC vaccine induced a significant
reduction in the IFU from 4.05 +/- 0.54 (Log10 mean +/- SD) to
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3.44 +/- 0.40 (corresponding to a reduction of 75% in IFU)
(Figure 5). However, in the SIM group, the IFUs was further
reduced to 2.67 +/- 0.65, corresponding to a further reduction in
bacterial numbers of 86% compared to the SC group (or 96%
reduction compared to non vaccinated mice). Interestingly, to
achieve the increased protection (and a stronger local immunity)
compared to the parenteral vaccine, a requirement for the
mucosal intrauterine vaccine in the SIM strategy was that it
contained the adjuvant CAF01. Thus, supplementing an SC
vaccine with a non-adjuvanted uterine administered CTH522
antigen had a negative effect on both the local and systemic
immune responses, and compromised the protection against
infection (Supplementary Figure 6).

The Local Immune Response in the
Genital Tract Following a Second Infection
As repeated infections are often observed in women (5), we next
examined whether the double adjuvanted SIM group would also
show an advantage in the response against a subsequent infection.

Female B6C3F1 mice were vaccinated three times with two
weeks intervals, using the SC or SIM strategy. 14 weeks post
immunization the mice received the first TC infection with
1.5x103 IFU of C.t. SvD. 14 days post infection the mice
received a total of 4 mg azithromycin treatment over a four-
day period to clear the infection in all mice. 32 days post
infection the mice received a second infection with C.t. SvD,
and the local immune responses were analyzed at day 3 and 6
post this second infection.

In contrast to day 3 post the infection no. 1 (PI-1) which is
shown in Figure 4, we found that at day 3 post infection no. 2
(PI-2), the percentage of CD4 T cells in the GT was now similar
in the SC and SIM groups (20.8% in SC animals and 18.9% in
SIM animals) (Figure 5). Also in contrast to day 3 PI-1, the
percentage of Cyt+ CD4 T cells was also similar in SC and SIM
mice (Figure 5A). Both SC and SIM mice showed an increase in
both CD4 T cells and Cyt+CD44+CD4 T cells compared to mice
that did not receive the second infection (Supplementary
Figure 7). The Th1 and Th17 cytokine subset composition was
also similar in SC and SIM animals (Figure 5B). The Th1
cytokine subset pattern reminded of the pattern observed at
day 7 PI-1, whereas the Th17 cytokine subsets reminded of those
observed only at day 14 PI-1 (Figures 3 and 5), which suggested
a higher activation state of the Th1/Th17 Trm cells after the
second infection.

At day 6 PI-2, SC and SIM mice were still similar in terms
percentage of CD4 T cells and the percentage of cyt+CD4 T cells,
which had now increased to approximately 30% of all CD4 T
cells in the GT (Figure 5C). In both SC and SIM mice, we
observed multifunctional CD4 Th1 and Th17 T cells in the GT
and few CD4 Th1/Th17 T cells expressing only IFNg or IL-17/
IFNg (Figure 5D).

A similar CMI response in SC and SIMmice was also observed
in the draining iliac lymph node, that showed multi-cytokine
expressing Th1 and Th17 T cells (Supplementary Figure 8).

Concerning the local and systemic humoral response, after
the second infection the SC mice showed a boost in the vaginal
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https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Nguyen et al. Vaccine Strategies Against Repeated C.t. Infections
IgA and IgG response, which was as high as in the SIM group
(Figures 6A, B). This was in contrast to the IgA levels after the
first infection, where the levels were similar to background levels
in SC mice (Supplementary Figure 5B). In addition, the
systemic IgG titer was similar between the SC and SIM groups,
as were the IFUs post a second infection (Figures 6C, D).
However, we also noticed that a previous infection also
protected strongly against reinfection, demonstrating that in
contrast to measuring the immune response against a second
infection, the protective effect of a vaccine, given prior to the first
infection, could not be measured in this model using bacterial
shedding following a second infection as readout (Figure 6E).

Taken together, in contrast to the response observed
following the first infection, which showed an increased local
response in the SIM group, both SC and SIM animals showed a
similar fast response after the second infection. This response
was dominated by multifunctional Th1 and Th17 effector cells,
and a fast increase in the local IgA/IgG response.
DISCUSSION

It is well known that the genital tract is not an optimal inductive
site, and moreover is a site where immune tolerance can develop
(8, 23). In agreement with this, although CAF01 is an efficient
Th1/Th17 T cell adjuvant, immunization with CTH522/CAF01
in the uterus (IU) did not lead to increased local or systemic cell
mediated immunity, and did not increase the systemic IgG titer
Frontiers in Immunology | www.frontiersin.org 8
(Figures 1, 2). Moreover, supplementing a parenteral
immunization with unadjuvanted antigen in the uterus had a
negative effect on both the local and systemic immunity
(Supplementary Figure 6). This could be due generation
regulatory T cells mediated by the non adjuvanted antigen
(8, 24), but this was not shown in this study. In contrast, when
combined with a parenteral immunization, an adjuvanted IU
immunization did increase both the local genital tract Th1/Th17
response, as well as a local IgA response, prior to infection.
Although the SIM animals received a higher total antigen dose
(2x5ug) compared to SC animals (5ug), the effect of including the
adjuvanted IU antigen was observed in the genital tract and not
in the systemic response (Figures 1, 2). Concerning the dose in
the SIM group, we have previously tested higher antigen doses of
CTH522 and not seen seeding of the GT prior to infection, and
compared to SC animals, SIM-PBS animals that also received 10
ug Ag in total, did not show increased T cell numbers in the GT
before infection (data not shown), or after infection
(Supplementary Figure 6). Finally, we have unpublished
results where we compared a parenteral vaccine with CAF01/
5ug Ag with another group that simultaneously received two
parenteral doses of CAF01/5ug Ag, and saw no increased seeding
of the GT due to the additional parenteral vaccine. We therefore
believe that the effect observed in SIM animals in this study is not
merely due to the increase in the total antigen dose. It is not
known if the IU antigen is required in the SIM strategy to
generate the local CMI response. It could be speculated that the
mechanism for Th1/Th17 T cell recruitment is solely due to
CAF01-induced expression of cytokines and chemokines from
APCs located in the GT (14). Taken together, our results
indicated that although an IU immunization could not
efficiently prime a response by itself, if adjuvanted it could
induce sufficient immunity to alert circulating immunity to be
recruited to the genital tract.

Using the SIM strategy to induce GT Th1/Th17 Trm cells, we
observed, after infection, a substantial dynamic development in
cytokine expression within both the Th1 and Th17 populations,
which was driven by the infection. Other studies examining
Chlamydia muridarum specific Th1 and Th17 T cells, either
transgenically generated or induced by vaccine, also showed that
Th1/Th17 T cells that express multiple cytokines (IFNg, IL-2,
TNFa and or IL-17) although the local post infection
development of these cells was not analysed in these studies
(25–27). By comparing the SC and SIM vaccine strategies, we
also observed a clear difference in the GT immune response at
day 1 and 3 post infection. At day 1 post infection, the SC group
was not different from the non vaccinated group, and only the
SIM group showed activated multifunctional CD4 T cells in the
GT (Figures 3B, C). At day 3, the SIM group showed a stronger
local T cell response with more developed Th1/Th17 T cell
cytokine subsets expressing more effector cytokines. Th17 T cells
expressed TNFa and IL-17 and Th1 T cells expressed TNFa and
IFNg (Figure 3D). At day 7, the vaccinated SC and SIM groups
were not significantly different in terms of Th1/Th17 cytokine
subsets. The subsets in the GT were dominated by IFNg/TNFa or
IL-17/TNFa CD4 T cells, and CD4 T cells expressing primarily
FIGURE 4 | Bacterial levels in the GT in vaccinated or non-vaccinated
groups. Groups of female B6C3F1 mice (n=12/16) were vaccinated as
indicated, with two weeks intervals. 6 weeks post immunization the mice
received a TC infection with 103 IFU of C.t. SvD. At day 7 the genital tract
bacterial numbers (Log10 IFU) were determined. Bars indicate means ± SD.
Statistical significance was evaluated by an ANOVA test followed by Tukey’s
multiple comparisons using Graphpad Prism 8.3.0. *p < 0.05. ***p < 0.001,
****p < 0.0001. The data shown are representative of 2 experiments.
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IL-17 or TNFa (Figure 3E). At day 14, although the CD4 T cell
levels in the GT were the same in SC and SIM groups, the % Cyt+
CD4 T cells had retracted markedly more in the SIM group
compared to SC mice (which instead showed an increase)
(Figures 3A, B). Thus, the SIM group showed a faster
initiation of the local response, and a faster retraction of the
response. This applied to both the adaptive and innate immune
response. We also noted that at day 14, the Th17 T cells had
increased their production of IFNg to a level where almost 40% of
all Th17 T cells co-expressed IFNg. It is known that fully
differentiated Th17 cells can deviate toward a Th1 phenotype
(28), acquiring the ability to secrete IFN-g, which can be useful
for host defense against infections, as IFNg may contribute to a
protective response. Th17 T cells have however also been
associated with immunopathology. One study showed that
Th17 T cells within inflamed joints of rheumatoid arthritis
patients had gained expression of IFNg (and lost expression of
IL-17) (29). During a C.t. infection, Th17 T cells have also been
suggested to be involved in a pathological response (30).
However, we recently showed that recruitment to the GT of
vaccine-induced Th17 T cells did not correlate with increased
pathology, but rather with protection against both infection and
chronic pathology (15). It will be important to study if Th17 T
cells that start to express IFNg play a protective, or pathology
promoting, role.

Generating tissue-resident memory T cells with the SIM
strategy, prior to infection, correlated with an additional
reduction of bacterial shedding of 86% compared to a
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parenteral vaccine. It should be noted that bacterial levels were
measured as bacterial shedding, which during an active and
ongoing infection most probably is an adequate readout to reflect
vaccine-induced protection, even though it may underestimate
the total number of bacteria in the tissue. Our result is in
agreement with previous studies, in which mucosal immunity,
generated by intranasal or intrauterine immunization, was found
to increase protection (8, 16, 31, 32). As mentioned above, the
increased protection in the SIM group correlated with a faster,
and increased, CMI and innate response in the genital tract, as
well as with increased IgA levels in the vagina. Given the
evidence that mucosal immunity can add to the protection
[Figure 4, and (8, 16, 31–33)], the question is whether it
should be induced by a future Chlamydia vaccine. The
question is important since a parenteral administration will
facilitate delivery of a C. trachomatis subunit vaccine, especially
when combined with other STI vaccines, and because a
parenteral administration is considered more safe and practical
than a mucosal vaccine (34). Importantly, several studies have
shown sufficient protection with a parenteral immunity (15, 31,
35, 36). Furthermore, the present study showed that although
SIM animals had an advantage against the first infection
compared to SC animals, no advantage in the immune
response could be observed against a second infection
(Figures 5, 6). Already at day 3 post a second infection
SC animals showed increased numbers of CD4 T cells, and
more Cyt+ CD4 T cells in the GT (compared to after the first
infection). Both in terms of the percentage of Cyt+ CD4 T cells in
A B

C D

FIGURE 5 | CMI response at day 3 and 6 post a second infection in the genital tract. Groups of female B6C3F1 mice were vaccinated three times as indicated with
two weeks intervals. The antigen was CTH522 and the administration route is indicated in the figure. 14 weeks post immunization the mice received the first TC
infection (Inf1) with 1.5x103 IFU of C.t. SvD. 14 days post infection the mice received 4 mg azithromycin treatment over 4 day-period. 32 days post infection the mice
received a second infection (Inf1+2) with 1.5x103 IFU of C.t. SvD. (A, B) Percentage of CD4+ T cells out of all iv. CD45neg. Cells in the GT and percentage of Cyt+
CD44+ CD4 T cells out of all CD4 T cells in the genital tract at day 3 (n=4) (A) or 6 (n=12) (C) post infection 2. (B–D) Percentages of IL-17 negative CD4 T cells (Th1)
and IL-17 positive CD4 cells (Th17) out of all CD4+ T cells in the uGT were analyzed by flow cytometry for the frequency of cytokine subsets (expression of TNFa, IL-
2, IFNg and/or IL-17) in the genital tract at day 3 (n=4) (B) or 6 (n=12) (D) post infection 2. Small arrows in (D) indicate Th1 or Th17 effector subsets. Bars indicate
means ± SD. Statistical significance was evaluated by an ANOVA test followed by Tukey’s multiple comparisons. ***p < 0.001, ****p < 0.0001. The data shown are
representative of 2 experiments.
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the GT, and in the Th1 or Th17 cytokine subset pattern, and
regarding the local humoral response, the SC and SIM animals
looked similar following a second infection. We conclude that
the advantage in the SIM group, regarding a fast vaccine antigen-
specific CMI/humoral response, was only apparent after the
first infection.

Concerning the animal model used in this study, our results
demonstrated that it is useful for testing protection and local
immunity after the first infection, as well as vaccine antigen-
specific local immunity after the second infection. However, we
also found that the first infection induced its own protective
response, most probably consisting of infection-induced T cells
and antibodies. In addition, activation of innate immunity due
the first infection may also have contributed to protection against
a subsequent infection. Taken together, it is a not model that is
appropriate to measure vaccine-induced protection after the
second infection, unless the infection-induced response is
decreased, e.g. by applying the second infection later (to reduce
trained innate immunity), or by treating the animals with
antibiotics after the first infection (to reduce the infection
induced adaptive response). We are currently testing several
options, with the goal of developing a model to test vaccine-
induced protection after repeated infections. A more realistic
mucosal vaccine strategy to compare with the parenteral strategy
in such a future model could be the intranasal strategy, as this has
been shown to induce both systemic and mucosal immunity (8).
Finally, a model that might allow us to measure increased
protection after a primary and a second infection is the
Frontiers in Immunology | www.frontiersin.org 10
Chlamydia muridarum model. In this model it is not required
to bypass the cervix to achieve solid infection of uterus and upper
genital tract, and both bacterial burden and pathology can be
used as readouts when comparing parenteral and mucosal
vaccine strategies. Interestingly, in this model a recent study
did show that immunity induced by an IN infection did protect
against a subsequent vaginal infection, although the data
indicated that it was not due to increased seeding of the genital
tract caused by the IN vaccine (37).

Taken together, our results suggest that systemic immunity,
induced by a parenteral CAF01 adjuvanted vaccine, provide
sufficient protection against a first infection with Chlamydia
trachomatis. Moreover, whereas the SIM strategy induced
memory Th1/Th17 T cells in the GT prior to infection, a
parenteral vaccine led to long-lived memory Th1/Th17 T cells
in the GT after the first infection. This correlated with an increased
local response following a second infection to a level seen in mice
having received a mucosal SIM vaccine. Given the practical and
safety issues associated with mucosal delivery of adjuvanted
vaccines, these results are encouraging for future parenteral
vaccine strategies against infection with Chlamydia trachomatis.
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FIGURE 6 | Humoral response and protection following a second infection. Female B6C3F1 mice were vaccinated three times as indicated, with two weeks
intervals. 14 weeks post immunization the mice received the first TC infection with 103 IFU of C.t. SvD. 14 days post infection the mice received 4 mg azithromycin
treatment over 4 days. 32 days post infection the mice received a second infection with 1.5x103 IFU of C.t. SvD. (A, B) At day 3 post infection 2 (n=4), IgA (A) or
total IgG (B) was measured in the vaginal fluids. As a comparison the IgA levels at day 0 post infection 2 is also shown (inverted solid triangles). (C, D) Total IgG (C)
or IgG subclasses (D) at day 3 post infection 2 in serum. (E) Genital tract bacterial numbers (Log10 IFU) were determined at day 6 post infection 2 (n=12). Bars
indicate means ± SD. Statistical significance was evaluated by an ANOVA test followed by Tukey’s multiple comparisons. **p < 0.01, ***p < 0.001. The data shown
are representative of 2 experiments.
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