
1/12https://vetsci.org

ABSTRACT

Background: Naringin and its aglycone naringenin are citrus-derived flavonoids with several 
pharmacological effects. On the other hand, the mechanism for the anti-diabetic effects of 
naringenin and naringin are controversial and remain to be clarified further.
Objective: This study examined the relationship between glucose uptake and AMP-activated 
protein kinase (AMPK) phosphorylation by naringenin and naringin in high glucose-treated 
HepG2 cells.
Methods: Glucose uptake was measured using the 2-NBDG fluorescent D-glucose analog. 
The phosphorylation levels of AMPK and GSK3β (Glycogen synthase kinase 3 beta) were 
observed by Western blotting. Molecular docking analysis was performed to evaluate the 
binding affinity of naringenin and naringin to the γ-subunit of AMPK.
Results: The treatment with naringenin and naringin stimulated glucose uptake regardless 
of insulin stimulation in high glucose-treated HepG2 cells. Both flavonoids increased 
glucose uptake by promoting the phosphorylation of AMPK at Thr172 and increased the 
phosphorylation of GSK3β. Molecular docking analysis showed that both naringenin and 
naringin bind to the γ-subunit of AMPK with high binding affinities. In particular, naringin 
showed higher binding affinity than the true modulator, AMP with all three CBS domains 
(CBS1, 3, and 4) in the γ-subunit of AMPK. Therefore, both naringenin and naringin could be 
positive modulators of AMPK activation, which enhance glucose uptake regardless of insulin 
stimulation in high glucose-treated HepG2 cells.
Conclusions: The increased phosphorylation of AMPK at Thr172 by naringenin and naringin 
might enhance glucose uptake regardless of insulin stimulation in high glucose treated 
HepG2 cells.
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INTRODUCTION

AMPK activation is involved in non-insulin mediated glucose uptake, suggesting it is a 
potential strategy to enhance glucose uptake in an insulin-resistant state, such as Type 
2 diabetes [1]. AMPK is activated by a low energy status (increased AMP/ADP:ATP) and 
regulates the metabolic process and energy homeostasis by triggering ATP-generating 
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processes, including glucose uptake and fatty acid oxidation [2]. The activation of AMPK 
regulates insulin-independent glucose uptake via stimulating GLUT2 translocation and 
regulating the systemic glucose homeostasis [3]. Once activated, AMPK phosphorylates 
GSK3, which is responsible for maintaining glucose homeostasis [4,5]. The phosphorylation 
and inhibition of GSK3 activate glycogen synthase (GS), which is a target for glycogen 
synthesis [6]. Therefore, AMPK is an important pharmaceutical target for the treatment of 
diabetes [1].

AMPK is inactive unless phosphorylated on the α-subunit activation loop at Thr172. On the 
other hand, AMP binding to the γ-subunit enhances Thr172 phosphorylation by upstream 
kinases, liver kinase B1 (LKB1), and Ca2+/calmodulin-dependent protein kinase kinase 
(CaMKK) [7]. A previous study reported that flavonoids and other polyphenolic compounds 
are possible activators of AMPK, which have similar functions to adenosine nucleotides [8,9].

Naringin is a flavanone glycoside found in grapes and citrus fruits. Naringenin is formed 
by the attachment of two rhamnose units to the 7-carbon of naringin (Fig. 1A) [10]. For 
naringenin and naringin, diverse biological activities of therapeutic interests have been 
described, including anti-diabetic effects [11,12]. On the other hand, the mechanisms 
through which these flavonoids promote glucose uptake in the insulin-resistant state remains 
to be clarified.

The present study hypothesized that naringenin and naringin increase glucose uptake 
by activating the AMPK pathway in high glucose-treated HepG2 cells. For this, this 
study examined the effects of naringenin and naringin on the glucose uptake and the 
phosphorylation of AMPK and GSK3β in high glucose-treated HepG2 cells. In addition, 
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Fig. 1. Effect of naringenin and naringin on the viability of HepG2 cells. Chemical structures of naringenin and naringin (A). Effect of naringenin and naringin on 
the HepG2 cell viability. HepG2 cells were cultured at a density of 1 × 105 in a 96 well plate. After reaching confluence, the cells were treated with 0–100 µM of 
flavonoids for 24 h, and the cell viability was measured using a MTT assay (B). The values are the mean ± SE. 
***p < 0.0005 vs. control.



molecular docking analysis was conducted to observe the binding affinity of naringenin and 
naringin to the γ-subunit of AMPK.

MATERIALS AND METHODS

Cell culture and treatment
HepG2 cells (KCLB 42707) were obtained from the Korean Cell Line Bank (KCLB) 
(Seoul, Korea) and cultured routinely in Dulbecco's modified Eagle's medium (DMEM) 
supplemented with 10% Fetal Bovine Serum (FBS), 100 U/mL penicillin, and 100 μg/mL 
streptomycin (Gibco, USA) in a humidified atmosphere containing 5% CO2 at 37°C. After 
reaching confluence, the cells were then seeded in culture plates for further experiments.

The insulin-resistant HepG2 cell model was established using the reported method with 
slight modifications [13]. Briefly, after seeding in 96 well plates, the cells were serum-
starved for 12 h. and incubated in serum-free DMEM (Gibco, USA) containing either 
normal concentrations of glucose (5.5 mM D-glucose) or high concentrations of glucose 
(30 mM D-glucose) with or without the flavonoids (Sigma-Aldrich, USA) (10 and 50µM) and 
metformin (Sigma-Aldrich, USA) (2 mM) for an additional 24 h. The high glucose-treated 
cells were used as the insulin-resistant model. The cells were stimulated with or without 100 
nM insulin (Sigma-Aldrich, USA) for 30 min before harvesting.

Cell viability assay
The HepG2 cells were seeded in 96-well plates at a cell density of 1 × 105 cells/well and 
cultured overnight using routine culture media. After reaching confluence, the cells were 
treated with different concentrations (0–100 µM) of the flavonoids for 24 hrs. The cell culture 
medium was removed, and fresh medium containing 10% Ez-cytox (DogenBio, Korea) was 
added to each well, according to the manufacturer's instructions. The plates were incubated 
for 3 h at 37°C and 5% CO2. The cell viability indicated by formazan production was measured 
using an ELISA microplate reader (TECAN, Austria) at 450 nm.

2-NBDG glucose uptake
HepG2 cells were cultured in 96-well plates. After reaching confluence, the cells were 
serum-starved for 12 h and incubated in a serum-free medium containing either normal or 
high glucose concentrations with or without the samples (flavonoids 10 µM and 50 µM) for 
an additional 24 h. The cells were incubated with 40 μM 2-NBDG [2-N-(7-Nitrobenz-2-oxa-
1,3-diazol-4-yl)amino-2-deoxy-d-glucose] (Invitrogen, Carlsbad, USA) with or without 100 
nM insulin (Sigma-Aldrich, USA) for 30 min at 37°C. The cells were washed three times with 
PBS, and the fluorescent images were taken from IncuCyte ZOOM Fluorescent Microscope 
at 20× magnification (Essen BioScience, Inc. USA). IncuCyte ZOOM Fluorescent Processing 
Software was used to measure the total fluorescent intensities of each well.

Western blotting
The cells were washed with PBS (Gibco, USA) and lysed with ice-cold RIPA buffer (Tech 
and Innovation, Korea) containing protease inhibitor mixture. The whole-cell lysates were 
centrifuged at 12,000 rpm for 10 min. The supernatant was separated, and the amount of 
protein was assessed using a Bradford assay (Bio-Rad Laboratories, USA). Equal amounts 
of protein from the cell homogenates were subjected to SDS PAGE and transferred to PVDF 
membranes. The membranes were probed with the primary antibodies, GSK3β, p-GSK3β, 
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AMPK, and p-AMPK (Cell signaling technology, USA), and detected with peroxidase-
conjugated secondary antibodies for 1hr at room temperature. β-actin (Thermofisher, USA) 
was used as a loading control. A chemiluminescence bioimaging instrument (NeoScience 
Co., Ltd., Korea) was used to detect the proteins of interest. Densitometry analysis was 
performed using ImageJ analysis software.

Molecular docking
The crystal structure of AMPK in complexes with AMP (PDB ID; 2V8Q) was obtained from 
Protein Data Bank (PDB). The sitemap tool (Schrodinger Software, Germany) was used to 
identify the four CBS domains (CBS1, CBS2, CBS3, and CBS4) in the γ-subunit of AMPK. All 
the AMP molecules in the γ-subunit of AMPK were removed for docking of the flavonoids. 
The 3D structures of AMP and flavonoids (naringenin and naringin) were downloaded from 
the PubChem database (https://pubchem.ncbi.nlm.nih.gov/) and minimized energetically 
using PyRx software (Python Prescription 0.8, The Scripps Research Institute). The grid box 
used for focused docking was set to 26 × 44 × 46 Å to ensure the structure of the γ-subunit 
of AMPK. The docking experiments were carried out using the AutoDock Vina module 
(Molecular Graphics Lab, The Scripps Research Institute, USA). The best-docked pose was 
selected based on binding energy, and 3D images were generated using the PyMOL (The 
PyMOL Molecular Graphics System, Ver.2.5.0, Schrodinger, LLC, USA). The docked complex 
of AMPK was optimized further, validated, and explored using the Discovery Studio visualizer 
(Ver.21.1.0.20298). The hydrogen bond and hydrophobic interactions between the receptor 
and ligand were analyzed using the Ligplot program [14].

Statistical analysis
The values are presented as the mean ± SE for each group. Statistical analysis was performed 
using IBM SPSS Statistics (Ver.17.0; USA) and one-way analysis of variance with Tukey's post 
hoc tests for multi-group comparisons. The p values < 0.05 were considered significant.

RESULTS

Cell viability
The MTT assay was performed to assess the cellular toxicity of naringenin and naringin 
on HepG2 cells. No significant cellular toxicity was observed in HepG2 cells at flavonoid 
concentrations up to 50 μM (Fig. 1B). Accordingly, the experiments were conducted using the 
non-toxic concentrations of naringenin and naringin (10 and 50 µM).

Glucose uptake
The effects of naringenin and naringin on the glucose uptake in high glucose-treated HepG2 
cells were determined using a 2-NBDG uptake assay (Fig. 2). The glucose uptake was reduced 
in the high glucose-treated HepG2 cells compared to low glucose-treated cells. In contrast, 
the treatment of metformin (positive control) resulted in a significant increase (p < 0.005) 
the 2-NBDG uptake compared to the high glucose-treated HepG2 cells (Fig. 2A and B). In 
addition, the naringenin and naringin treatment increased the 2-NBDG glucose uptake in 
high glucose treated cells, regardless of insulin stimulation (Fig. 2A and B). In particular, 
the naringin treatment showed higher glucose uptake than the naringenin treatment in high 
glucose treated cells. The results suggest that naringenin and naringin enhanced the glucose 
uptake in high glucose-treated HepG2 cells regardless of insulin stimulation.
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Phosphorylation of AMPK
Western blot analysis was conducted to observe the effects of naringenin and naringin 
on AMPK phosphorylation (Fig. 3). The levels of AMPK phosphorylation (Thr172) in high 
glucose-treated HepG2 cells were decreased significantly (p < 0.05) compared to low 
glucose-treated cells. In contrast, the level of AMPK phosphorylation (Thr172) was increased 
significantly by the metformin, naringenin, or naringin treatments in high glucose-treated 
HepG2 cells (Fig. 3A and B). The effects of naringin on the levels of AMPK phosphorylation 
(Thr172) were comparatively higher than the effect of naringenin. The results suggest that 
both naringenin and naringin increased the level of AMPK phosphorylation in high glucose-
treated HepG2 cells.

Phosphorylation of GSK3β
Western blotting was performed to determine the effects of naringenin and naringin on the 
level of GSK3β phosphorylation (Ser9) (Fig. 4). The phosphorylation levels of GSK3β (Ser9) 
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in high glucose treated HepG2 cells were decreased significantly (p < 0.0005) compared 
to the low glucose-treated cells. In contrast, the levels of GSK3β phosphorylation were 
increased by the metformin, naringenin, or naringin treatment compared to high glucose-
treated cells in either the presence or absence of insulin. In particular, the treatment of 
naringin showed significantly higher (p < 0.0005) levels of GSK3β phosphorylation compared 
to naringenin treatment (Fig. 4A and B). These results suggest that both naringenin and 
naringin increased the levels of GSK3β phosphorylation (Ser9) in high glucose-treated 
HepG2 cells regardless of insulin stimulation.

Molecular docking analysis
Molecular docking analysis was performed to simulate the binding affinity between the 
flavonoids and γ-subunit of AMPK (Fig. 5). As shown in Fig. 5A, the γ-subunit of AMPK 
contains four cystathionine β-synthase (CBS) domains. Among the four CBS domains, 
however, only three CBS (CBS1, CBS3, and CBS4) domains can bind to their modulator, 
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adenosine nucleotides (ATP, ADP, or AMP). Both naringenin and naringin bind to each of the 
binding sites (CBS1, 3, and 4) in the γ-subunit of AMPK with high binding affinities, which 
were close to the affinity of AMP (Table 1). With all CBS domains (CBS1, 3, and 4), naringin 
showed higher binding affinities than the true modulator, AMP (Table 1). In particular, 
naringin (−9.1 kcal/mol) showed higher binding affinity than naringenin (−7.6 kcal/mol) or 
AMP (-8.1 kcal/mol) at the CBS4 domain. With all CBS domains (CBS1, 3, and 4), naringin 
forms more hydrogen bonds or hydrophobic interactions than AMP or naringenin (Table 1). 
The results suggest that both naringenin and naringin could be potent positive modulators 
for AMPK activation.
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DISCUSSION

This study examined the effects of naringenin and naringin on glucose uptake and AMPK 
phosphorylation in high glucose-treated HepG2 cells. The naringenin and naringin treatment 
showed increased glucose uptake with increased AMPK phosphorylation (Thr172) and 
GSK3β. Molecular docking simulation showed that both naringenin and naringin bind to the 
cavity of the γ-subunit of AMPK with high binding affinities, suggesting that the flavonoids 
could be positive modulators for AMPK activation.

Naringenin and naringin enhanced the glucose uptake significantly regardless of the insulin 
stimulation in high glucose treated HepG2 cells, as observed previously [15]. Hepatic 
glucose uptake is largely an insulin-independent process, which contributes to whole-body 
glucose homeostasis [16]. For example, hepatic glucose uptake can be enhanced by the 
entry of glucose into the portal vein, which stimulates a portal glucose signal [17]. When 
hyperglycemia occurs, plasma glucose enters the cytoplasm of the hepatocytes through 
GLUT2, which is an insulin-independent system [18]. In this process, AMPK suppresses 
gluconeogenesis in the liver and promotes glucose uptake in peripheral tissues [19].

In the liver, AMPK enhances glucose uptake by up-regulating the expression of GLUT2 
[18]. In addition, the activation of AMPK suppresses hepatic gluconeogenesis and 
promotes glycogen synthesis by the direct phosphorylation of its substrates, including 
GSK3β, which will ultimately increase the glucose uptake by the liver [20,21]. The AMPK-
induced phosphorylation of GSK3β inhibited the transcriptional activity of the cAMP 
response element-binding protein (CREB), a key transcription factor, which regulates the 
phosphorylation of gluconeogenic enzymes [20].

AMPK is a heterotrimer consisting of catalytic α subunits and regulatory β and γ subunits 
[22]. The phosphorylation of Thr172 within the activation loop of the α-subunit can cause 
AMPK activation [7]. AMP is a natural activator of AMPK and binds to the CBS domains of 
the γ-subunit and indirectly promotes the activity of the catalytic domain in α-subunit [23]. 
The binding of AMP to the γ-subunit of AMPK stimulates the phosphorylation of Thr172 in 
the α-subunit by upstream kinases LKB1 and CaMKKβ, and prevents the dephosphorylation 
of Thr172 in α-subunit [24,25]. In addition, a recent study suggested that transforming 
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Table 1. Binding energy of AMP and flavonoids at three sites that were identified in the γ-subunit after removing all the co-crystallized ligands
Molecule Description Binding site of γ-subunit of AMPK

CBS1 CBS3 CBS4
AMP Binding energy (kcal/mol) −7.8 −7.4 −8.1

Hydrogen bonds D89, R151, T88, T86, K148, H150 A294, R69, R298, R268, D244, H297, 
K169, S241

N202, S225, S313, S315, H150, H297

Hydrophobic interactions M84, I149, I87 L276, I239, F243, V296 I203, V224, I311, T199, K148
Naringenin Binding energy (kcal/mol) −7.7 −8.0 −7.6

Hydrogen bonds R117, H150, V129 R298 A226, R298, T199, S225
Hydrophobic interactions D89, I149, L128, G83, T86, T88, M84 R268, I239, H270, F243, F272, L276, 

V275, V296
S315, V224, I311

Naringin Binding energy (kcal/mol) −8.5 −8.3 −9.1
Hydrogen bonds R151, K242, K148 R298, R268, R69, D244, G273, G247, 

L276
R298, N202, A201, H297, S313, S225, 
T99

Hydrophobic interactions R223, R117, D89, R69, S225, T88, T86, 
W116, M84, H150, I87, I149, L121

I239, S241, F243, V296, K169, G295, 
F272, V275

A226, R223, D316, I311, I203, H150, 
K148, S315, V224



growth factor β-activated kinase (TAK1) phosphorylates AMPK on Thr172 through AMP 
binding [26]. Therefore, AMP binding to CBS causes allosteric activation subsequent to the 
phosphorylation of Thr172 in the activation loop of the α-subunit, which results in AMPK 
activation [25].

The molecular docking results suggest that both naringenin and naringin bind to the cavity 
of γ-subunit of AMPK with high binding affinities. AMP and flavonoids interacted with the 
R-groups of amino acids in CBS domains 1, 3, and 4 of the γ-subunit. In particular, naringin 
showed higher binding affinities than AMP in the CBS domains 1, 3, and 4 of the γ-subunit, 
where naringin forms a larger number of hydrophobic interactions or hydrogen bonds 
than true modulator, AMP. The results suggest that naringin could be a potent positive 
modulator for activating AMPK. In addition, both naringenin and naringin enhanced AMPK 
phosphorylation at Thr172, which might enhance glucose uptake by stimulating GLUT2 
translocation in HepG2 cells. These results suggest that both naringenin and naringin could 
positively modulate AMPK activation, enhancing glucose uptake.

As reported previously, flavonoid glucuronic acids had a beneficial effect on glucose 
homeostasis with high binding affinities to AMPK [27]. A recent study reported that Lippia 
citriodora-derived polyphenols act as direct agonists of AMPK by binding to the AMP binding 
sites of the γ-subunit and the interaction zones between the γ and β-subunits [28]. An in silico 
study on Chinese medicinal compounds eugenyl β-D-glucopyranoside and 6-O-cinnamoyl-
D-glucopyranose revealed similar functions as AMP for AMPK activation [8]. Overall, the 
molecular docking analysis of the present study confirmed that both naringenin and naringin 
could be positive modulators of AMPK activation.

Naringin has a higher anti-diabetic potential than naringenin. In general, glycosides have 
higher biological activities than their aglycones because the bound sugar modifies the 
hydrophilicity of glyscosides, enhancing the bioavailability of the compounds [29,30]. On the 
other hand, the glycoside linkages are unstable under the acidic conditions in the stomach. 
In addition, the cleavage of sugar moieties of naringin by glycosidase from intestinal bacteria 
will produce the aglycone, naringenin [31]. Therefore, the intestinal absorption of naringenin 
should be clarified [32]. In the present study, however, naringin, being a glycoside, had a 
higher anti-diabetic effect than its aglycone naringenin on HepG2 cells.

Molecular docking results showed that both naringenin and naringin are potential AMPK 
activators with high binding affinities to the γ-subunit of AMPK. These findings suggest that 
the glucose uptake by naringenin and naringin depends on the phosphorylation of AMPK at 
Thr172, which will enhance glucose uptake by stimulating GLUT2 translocation in HepG2 
cells (Fig. 6). Overall, the results suggest that both naringenin and naringin could be positive 
modulators of AMPK activation, enhancing glucose uptake regardless of insulin stimulation 
in high glucose-treated HepG2 cells. Nevertheless, further efforts will be needed to define the 
precise role of naringenin and naringin on the glucose uptake underlying the AMPK pathway 
in HepG2 cells.
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