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Abstract: Submicroscopic chromosomal copy number variations (CNVs), such as deletions and
duplications, account for about 15–20% of patients affected with developmental delay, intellectual
disability, multiple congenital anomalies, and autism spectrum disorder. Most of CNVs are de novo
or inherited rearrangements with clinical relevance, but there are also rare inherited imbalances
with unknown significance that make difficult the clinical management and genetic counselling.
Chromosomal microarrays analysis (CMA) are recognized as the first-line test for CNV detection and
are now routinely used in the clinical diagnostic laboratory. The recent use of CMA platforms that
combine classic copy number analysis with single-nucleotide polymorphism (SNP) genotyping has
increased the diagnostic yields. Here we discuss the application of the Cytoscan high-density (HD)
SNP-array for the detection of CNVs. We provide an overview of molecular analyses involved in
identifying pathogenic CNVs and highlight important guidelines to establish pathogenicity of CNV.
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1. Introduction

A contribution to the human genome variability comes from copy number variations (CNVs),
which involves unbalanced rearrangements, such as deletions and duplications, of intermediate size
(>50 base pairs, bp). Higher resolution maps of CNVs estimated that 4.8–9.5% of the genome is involved
in gain and losses which range in size from 300 to 3000 bp [1]. The spectrum phenotype of CNVs varies
from normal to pathogenic conditions. It is now well-established that CNVs account for about 15–20%
of patients affected with developmental delay (DD), intellectual disability (ID), multiple congenital
anomalies (MCA), and autism spectrum disorder (ASD) [2]. These structural variants cannot be
resolved by standard karyotype analysis because of its resolution limited to chromosomal aberrations
greater than 3 Mb in size. In contrast to karyotype analysis, fluorescence in situ hybridization (FISH)
and multiple ligation-dependent probe amplification (MLPA) are not genome-wide approaches as
they have been developed to access copy number (CN) state of specific focused loci. The advent
of microarrays has enhanced the capability to detect CNVs, discover new genomic syndromes and
characterize breakpoints in phenotypically known disorders. The American College of Medical
Genetics and Genomics (ACMG) [3], the International Collaboration for Clinical Genomics (ICCG) [4],
and the American Academy of Neurology (AAN) [5] recommended chromosomal microarray
analysis (CMA) as the first-line test in patients with unexplained DD/ID/MCA/ASD. There are
currently different CMA platforms used in clinical practice which differ in technology, resolution
and detection. Over the past 3–5 years, high-resolution CMA platforms that combine classic copy

High-Throughput 2018, 7, 28; doi:10.3390/ht7030028 www.mdpi.com/journal/highthroughput

http://www.mdpi.com/journal/highthroughput
http://www.mdpi.com
https://orcid.org/0000-0003-1223-7358
http://www.mdpi.com/2571-5135/7/3/28?type=check_update&version=1
http://dx.doi.org/10.3390/ht7030028
http://www.mdpi.com/journal/highthroughput


High-Throughput 2018, 7, 28 2 of 12

number analysis with single-nucleotide polymorphism (SNP) genotyping have identified many
small CNVs that underlie neurodevelopmental disorders leading to increases in diagnostic yield
for some of these patients [6]. Additionally, there may be differences in the clinical interpretation
of CNV among laboratories. Most of CNVs are de novo or inherited rearrangements with clinical
relevance, but there are also rare inherited imbalances with unknown significance that make difficult
the clinical management and genetic counselling. In this review we discuss the application of
Cytoscan high-density (HD) SNP-array in diagnostics providing an overview of its methodology
and highlighting important guidelines to establish pathogenicity of CNV.

2. Chromosomal Microarray Platforms

DNA microarrays are collections of probes, complementary DNA (cDNA) fragments or
oligonucleotides, spotted or directly synthesized in a high-density pattern onto a solid surface and
developed to hybridize complementary target nucleic acids (genomic DNA or cDNA). This technology
has been widely used to analyze the simultaneous expression profile of hundreds to thousands of
genes, often in cancer samples [7]. More recent uses of DNA microarrays include the detection of
methylation patterns [8], the molecular probe inversion genotyping of SNPs [9] and the detection of
gene CN [10].

In particular, CMA platforms can be divided into two types: array-based comparative
hybridization (array-CGH or a-CGH) and SNP-array; a-CGH is designed for the detection of CNVs
using either bacterial artificial chromosome (BAC) or oligonucleotide probes. Bacterial artificial
chromosome probes are approximately 150 kb in size and are less sensitive and provide less coverage
respect to oligonucleotide probes (60–70 mer in size); a-CGH platforms use a two-color system in
which the DNA test and DNA reference are labelled using different fluorophores (typically Cyanine 3
and Cyanine 5) and are hybridized to the same microarray. Copy number state of DNA test respect to
DNA reference is calculated measuring the fluorescence ratio of each probe. Otherwise, SNP-array
technology uses two types of probes (~25 bp): non-polymorphic probes for the detection of CNVs
and polymorphic probes for allele genotype. While CN probes are designed to provide overall
coverage of the genome, SNP probes are limited to specific genomic locations. Additionally, SNP
genotyping allows an independent confirmation of CN finding. Short oligonucleotides (25-mer)
provide a lower signal-to-noise ratio of hybridization than 60-mer probes and the analyses need to
average several consecutive markers thus diminishing the overall resolution. In contrast, 25-mer
probes are more specific allowing the discrimination of SNP under optimal conditions but with
reduced sensitivity [11,12]. For SNP-arrays, a single sample is labelled and hybridized to the array
and changes in CN are determined in silico, comparing the signal intensity of the sample with a set
of analog experiments performed on hundreds of reference DNAs. a-CGH platforms may also be
supplemented with SNP probes (Table 1). Although, SNP density on these arrays is typically lower
than on the traditional SNP-arrays, a-CGH platforms with mid SNP density have shown similar
performance [13]. However, in a clinical laboratory setting, some considerations need to be made
when choosing a CMA platform. The ability of a platform to detect chromosomal imbalances is
dependent on the resolution of a microarray that is directly correlated to the number, spacing and
length of probes. An SNP-array has a higher resolution and better breakpoint determination with
respect to other platforms due to greater probe number, smaller probe length and smaller probe
spacings. This allows the identification of small and rare CNVs, but at the same time the assessment of
the pathogenicity of these rearrangements requires more stringent parameters in order to avoid false
positives [14]. Platforms which combine CN and SNP probes have the advantage of detecting long
contiguous stretches of homozygosity (LCSH), defined as absence of heterozygosity (AOH), which
might represent uniparental disomy (UPD), if confining to a single chromosome, or identity by descent
consistent with parental consanguinity, if involving multiple chromosomes. In UPD both or parts of
two homologous are transmitted by only one parent. In isodisomy two identical segments from one
parental homologue are present, while in heterodisomy segments from both homologues are inherited
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from the same parent. The main mechanisms by which UPD occurs include meiotic non-disjunction
with trisomy or monosomy rescue, gamete complementation and somatic recombination. Uniparental
disomy may have clinical relevance if the LCSH segment contains imprinted genes, resulting in
imprinting disorders such as Prader–Willi syndrome and Angelman syndrome [15]. Moreover, in
isodisomy the two identical segments may have an autosomal recessive mutation, inherited from a
carrier parent, resulting in a recessive genetic disease in the proband. It is estimated that a normal
individual might have between 20 and 150 Mb of homozygosity involving between 1 and 5 Mb of
DNA in any stretch [16]. Long contiguous stretches of homozygosity suggest UPD when greater than
8 Mb if telomeric and greater than 15 Mb if interstitial [16]. It is important to consider that using
SNP information, CMA platforms can identify only isodisomy or combinations of isodisomy and
heterodisomy while fails to detect complete heterodisomy [17]. Isodisomy is easily detectable due
to the complete absence of heterozygosity along the entire length of a chromosome. Heterodisomy
does not contain LSCH and cannot be distinguished from regions with normal biparental inheritance
without trio analysis. However, in many cases of UPD, there is a detectable mixture of regions of iso-
and heterodisomy generated by meiotic recombination.

In consanguinity, chromosomal segments result identical by descent (IBD) and the number and
size of AOH segments correlate with the degree of relatedness. The percentage of IBD is calculated
by dividing the total length of LCSH in autosomes (X and Y chromosomes are excluded because
males are hemizygous), with a size greater than 3 Mb, and the total length of autosomes (2,867,733
kb for hg18) [18]. Typically, in clinical laboratories, LSCH with a size below 3 Mb are not considered
significant [19]. A percentage of IBD greater than 10% correlates with first- or second-degree parental
relationship inducing suspicion of abuse in proband’s mother, especially when she is affected by ID or
is a minor. Also, the analysis of homozygous regions could be extremely useful for the identification
of candidate genes when there is the suspect of autosomal recessive disorders. Therefore, AOH
information, in addition to that provided from CN in the same platform, maximizes the diagnostic
yield from an array testing [20]. Mosaicism can be detected using a-CGH platforms with a minimal
detection of 10–20% [21]. However, mosaicism at levels as low as 5% has been reported using platforms
which combine CN and SNP probes [22]. One of the major limitations of array-based technologies is
the inability to detect balanced translocations such as Robertsonian or other reciprocal translocations,
insertions or balanced inversions. However, about 30–40% of cytogenetic events which appear balanced
on the microscopic level, have a submicroscopic imbalance when tested with high-resolution array
technology, above all SNP-array [23,24].

Table 1. Chromosomal microarray analysis (CMA) platform comparison.

SNP-array a-CGH a-CGH CN + SNP

Oligonucleotide probe length: ~25 bp Oligonucleotide probe length: 60–70 bp Oligonucleotide probe length: 60–70 bp
Copy number probe + SNP probe
(high density) Copy number probe only Copy number probe + SNP probe (low

or mid density)

Hybridization of DNA test only Hybridization of DNA test and
DNA reference

Hybridization of DNA test and
DNA reference

Detection of UPD and consanguinity No detection of UPD and consanguinity Detection of UPD and consanguinity

SNP: single nucleotide polymorphism, a-CGH: array-based comparative genomic hybridization, CN: copy number,
UPD: uniparental disomy.

3. Cytoscan HD Platform: An Overview

The CytoScan HD array was launched by Affymetrix (Affymetrix, Santa Clara, CA, USA), now
part of Thermo Fisher Scientific (Thermo Fisher Scientific, Inc.; Waltham, MA, USA) for CN analysis.
This technology includes 1.9 million CN markers and 750,000 genotype-able SNPs. The average marker
spacing in intragenic regions is 880 bp, covering 100% of Online Mendelian Inheritance in Man (OMIM)
genes, 98% of RefSeq genes and 100% of Sanger cancer genes, while in intergenic regions is about
1737 bp.
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In Figure 1, we have depicted a schematic laboratory workflow of Cytoscan HD assay. Genomic
DNA (250 ng) is digested by NspI and amplified using a ligation-mediated PCR with adapters
covalently linked to the restriction fragments. In the next step PCR products are purified using
magnetic beads, fragmented using DNase I, labeling with biotin and hybridized overnight (16–18 h)
to a 49-format array. After incubation samples are washed and stained with streptavidin using a
GeneChip Fluidics Station 450. Finally, arrays are scanned by GeneChip Scanner 3000, using the
GeneChip Command Console Software (Thermo Fisher Scientific), to generate the CEL files that
includes the intensity probe signals.

Figure 1. Workflow of Cytoscan High-density (HD) analysis.

CEL files are analyzed using the Chromosome Analysis Suite (ChAS) software (Thermo Fisher
Scientific, Inc) and converted to CYCHP files containing information on copy number, loss of
heterozygosity (LOH), mosaicism, and genotype calls. Copy number state and SNP genotypes are
called using the Hidden Markov Model (HMM) algorithm and the Bayesian Robust Linear Model with
the Mahalanobis distance classifier (BRLMM) algorithm, respectively. The intensity ratio of each SNP
and CN probe in the DNA test provide a relative copy number (log2 ratio: log2sample − log2reference)
which is normalized respect to a reference. The Reference Model File contains 380 samples, 284 from
HapMap and 96 from BioServe Biotechnologies (BioServe Biotechnologies, Ldt; Beltsville, MD, USA).
Determination of log2 ratio will indicate if there is a gain or loss of genetic material. The alleles
corresponding to the nucleotide base change are given the designation of allele A and allele B; SNP
genotypes are visualized using both the allele difference plot and the B-allele frequency plot (BAF).
The allele difference is calculated as the difference between the number of the two alleles using the
formula [A] − [B]. Each allele has a value of 0.5. B-allele frequency is the number of the B alleles
divided by the total number of alleles of a SNP (AA, BB or AB) and is calculated with the formula:
[B]/[A] + [B]. Genotype value calculations for both type of plots are shown in Figure 2.

Figure 2. Genotype values in Allele difference plot (a) and B-allele frequency plot (b).

In a sample with a diploid genome, the CN state is equal to two, the log2 ratio is equal to zero
[Log2(2/2) = 0] and allele difference plot and BAF plot showing the AA, AB and BB allele tracts for
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the three normal genotypes according to the genotype values reported in Figure 2. In contrast, when
there is a deletion region, all the probes in the log2 ratio are centered on the −0.45 line, while at the
same time the allele difference plot and BAF plot show two tracts (A, B) instead of three, indicating
a presence of a single allele (Figure 3c). In a sample with a duplication, all of the probes in the log2
ratio are centered on 0.3 line and the allele difference and the BAF plots show four tracts (AAA, AAB,
BBA, and BBB) instead of three (Figure 3d). The log2 ratio values of −0.45 and 0.3 differ from the
theoretical values of −0.1 [=log2(1/2)] and 0.58 [=log2(3/2)] calculated for deletion and duplication,
respectively. These values were established by Affymetrix analyzing a dataset of 1400 samples with
well-characterized CN changes across 75% of the genome.

Two other probe array data displayed by ChAS are the Weighed Log2 ratio and the Smoothed
Signal. The Weighed Log2 is a measure of the log2 ratios processed through a Bayes wavelet shrinkage
estimator. These processed values are input to the CNState algorithm HMM. The Smoothed Signal
is used to estimate CN by Gaussian smoothing and allele peaks are inferred using a nonparametric
estimation of filtered and smoothed values of individual probe. The LOH, which results in a tract with
runs of homozygosity (ROH), is detected examining allele patterns across all chromosomes. Loss of
heterozygosity is visualized when there is a DNA segment of homozygous genotypes of about 1 Mb
stretch or greater. In UPD/LOH/mosaicism the AA, AB, and BB signals shift away from the integer
state corresponding to a non-mosaic CN state.

Figure 3. Copy number variations analysis using ChAS 3.3 software displaying a hemizygous deletion
in (a) and a hemizygous duplication in (b). Each dot represents a single SNP in the array. Deletion is
associated with loss of signal intensity consistent with a decrease in Log2 ratio, Weighted Log2 ratio,
CN state and smooth signal. In contrast, duplication region shows increased values. Allele difference
plot and B-allele frequency (BAF) plot of copy number variations (CNVs) regions are designated within
the highlighted boxes. In the deletion both plots show two tracts (A and B) instead of three indicating a
presence of a single allele (c). These two tracts are at 0.5 and −0.5 in allele difference plot while in BAF
plot are at 0 and 1. In duplication, the allele difference and the BAF plots show four tracts (AAA, AAB,
BBA, and BBB) instead of three (d). These four tracts are at 1.5, 0.5, −0.5, −1.5 in allele difference plot,
while in BAF plot are at 0, 0.33, 0.67, 1.
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4. Clinical Applications of Cytoscan HD Array in Neurodevelopmental Disorders

Although Cytoscan HD array has been extensively used in prenatal diagnosis of chromosomal
abnormalities and neoplastic samples [25,26], we focused on neurodevelopmental disorders, looking
in particular to large-scale studies that have employed this platform both as unique tool and in
combination with other platforms (Table 2). Pereira et al. [27] used Cytoscan HD to perform a study
on 15 ID patients with normal karyotype analysis and negative X-fragile test. The rate of pathogenic
CNV was 26.7%. Recently, a similar percentage (25%) was reported by Wang et al. [28] in a group
of 489 ID patients analyzed with the same platform. These diagnostic yields are higher if compared
with studies that have employed previous platforms [29,30], demonstrating the increased resolution
provided by Cytoscan HD. Zarrei et al. [31] using Cytoscan HD found nine de novo CNV in 7/97
(7.2%) individuals affected by hemiplegic cerebral palsy involving important developmental genes
(GRIK2, LAMA1, DMD, PTPRM, and DIP2C). Al-Qattan et al. [32] analyzed a cohort of 183 DD/ID
patients in consanguineous population of Saudi Arabia using three SNP-array platforms (Cytoscan HD,
Affymetrix SNP6.0 and Cyto-V2). The authors identified 40 pathogenic CNVs in 38 patients with an
overall relatively high yield (21%). Asadollhai et al. [33] investigated the clinical significance of small
CNV (<500 bp) in 714 patients with neurodevelopmental disorders using three different platforms
(CytoScan HD, 212 patients; Affymetrix Genome-Wide Human SNP Array 6.0, 79 patients; Affymetrix
Cytogenetics 2.7, 423 patients). The diagnostic yield was similar between Cytoscan HD (3.3%) and
Cytogenetics 2.7 (3.5%), while it was higher for SNP 6.0 (5.1%). In overall, they found pathogenic or
likely pathogenic CNVs in 2.2% of cases. This percentage is slightly lower than the ~3% observed
by Hollenbeck et al. [34] in a cohort of 4417 patients referred to CMA. Additionally, Fan et al. [35]
reported three partial deletions of AUTS2 gene in three patients with unexplained DD/ID. This gene is
known to be associated with ID, DD, ASD, neurological abnormalities, short stature, microcephaly
and facial dysmorphism. They found two de novo heterozygous deletions involving exon 6 (98.4 kb
and 262 kb) and one spanning 12–19 exons (2147 kb) at the C-terminal of AUTS2, and few other genes
near to the William–Beuren syndrome critical region. They demonstrated the high-resolution provided
by Cytoscan HD and the ability to detect small intragenic deletions.
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Table 2. Studies reporting the use of Cytoscan HD array alone or in combination with other SNP-array platforms.

Reference Patients (n) Disorder CMA Platform
CNV Size

(kb)

Origin CNV Interpretation

De Novo n
(%)

Inherited n
(%)

Pathogenic n
(%)

Lakely
Pathogenic

n (%)

VOUS
n (%)

Pereira et al. [27] 15 ID Cytoscan HD ≥100 9 (50) 9 (50) 4 (22) 4 (22) 10 (56)
Wang et al. [28] 489 ID Cytoscan HD ≥100 141 (70%) 60 (30%) 122 (61%) 4 (2) 75 (37)
Zarrei et al. [31] 97 CP Cytoscan HD ≥10 9 (30) 21 (70) 4 (13.3) 1 (3.3) 25 (83.4)

Al-Qattan et al. [32] 183 DD/ID
Cytoscan HD

≥200 40 (90) * 4 (10) * 40 (81.6) 5 (10.2) 4 (8.2)Affymetrix SNP Array 6.0
Cyto-V2

Asadollhai et al. [33] 714 NDD
Cytoscan HD

<500 12 (46.1) 14 (53.4) 12 (46.1%) 4 (15.4) 10 (38.5)Affymetrix SNP Array 6.0
Affymetrix Cytogenetics 2.7

* Five cases were of unknown inheritance. ID: intellectual disability, DD: developmental delay, CP: cerebral palsy, NDD: neurodevelopmental disorder, VOUS: variant of
uncertain significance.
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5. Clinical Interpretation of Copy Number Variations

In 2011 the ACMG published a document including standard and guidelines for interpretation of
postnatal constitutional CNVs [36]. Table 3 reports the current clinical classification of CNVs and their
description according to ACMG.

Table 3. CNV classification according to American College of Medical Genetics and Genomics (ACMG).

CNV Classification Description

Pathogenic
The CNV is documented as clinically significant in multiple peer-reviewed
publications, even if penetrance and expressivity of the CNV are known to
be variable

Benign

The CNV has been reported in multiple peer-reviewed publications or curated
databases as a benign variant, particularly if the nature of the copy number
variation has been well characterized and/or the CNV represents a
common polymorphism

Uncertain clinical significance CNV
(Likely pathogenic)

The CNV is described in a single case report but with well-defined breakpoints
and phenotype, both specific and relevant to the patient findings.
A gene within the CNV interval has a very compelling gene function that is
relevant and specific to the reason for patient referral

Uncertain clinical significance CNV
(Likely benign)

The CNV has no genes in interval but exceeds a size criterion that may be
established by the laboratory.
The CNV is described in a small number of cases in databases of variation in the
general population but does not represent a common polymorphism

Uncertain clinical significance CNV
(No subclassification)

The CNV contains genes, but it is not known whether the genes in the interval are
dosage sensitive.
The CNV is described in multiple contradictory publications and/or databases,
and firm conclusions regarding clinical significance are not yet established

The process of classifying a CNV as either pathogenic or benign is not simple and straightforward
as it requires the evaluation and integration of several data (Figure 4). The major criteria used for the
interpretation of CNV are discussed below.

• Copy number variations size. Although there is a positive correlation between the increase of CNV
size and its clinical relevance, this is not to be taken as a general rule. Large CNVs have been
described as polymorphisms as otherwise small CNVs involving a single gene can be pathogenic.

• Gene content. The gene content of a CNV should be carefully evaluated for clinical association
with the phenotype of proband. One should be verified if a gene or a group of genes, included in
a duplication or deletion, are dosage-sensitive and associated with diseases. In this process, some
considerations are important. First, if a gene is reported to be associated with a clinical phenotype
when deleted or mutated, the duplication of the same gene may have no clinical relevance.
Also, intragenic duplications may be pathogenic altering coding sequence, in contrast intronic
deletions may have no clinical effect. If no mutation is reported in clinical literature for a gene, then
it is recommended to avoid any conclusion of pathogenicity only on the basis of in silico analysis
or in vitro and/or animal studies. A deletion of a gene associated with an autosomal recessive
disorder may suggest the presence of a mutation on the second allele. Moreover, a CNV without
genes in its interval generally is not reported in clinical laboratories. Another consideration is on
CNV confirmation. Small deletions and duplications can be confirmed using quantitative-PCR
(qPCR) and MLPA, while large CN (deletions >150 kb and duplications >400 kb) can be validated
by other technique such as FISH and microarray. Despite the majority of duplications are in
tandem, in a subset of cases the duplicated material resides on a different chromosome or in an
atypical location on the chromosome of origin due to an unbalanced translocation or an inversion.
In this context, FISH analysis is useful for a better characterization of the underline mechanism
and for appropriate recurrence risk calculation.

• Databases. The are many public catalogs available for CNV interpretation. Among these the
most used are the Database of Genomic Variants (DGV; http://dgv.tcag.ca/dvg/app/home),

http://dgv.tcag.ca/dvg/app/home


High-Throughput 2018, 7, 28 9 of 12

the Database of Chromosomal Imbalance and Phenotype in Human using Ensembl Resource
(DECIPHER; https://decipher.sanger.ac.uk) and the Clinical Genome Resource (ClinGen; https:
//www.clinicalgenome.org). The DGV include human genomic structural variations found in
healthy individuals and collected from worldwide studies. Although not present in ACMG
recommendations, some authors suggest considering a CNV benign if present in at least three
control individuals with the same orientation (deletion/duplication) [37]. The DECIPHER
contains data from patients including both clinical phenotypes and genomic rearrangements.
The ClinGen is a National Institutes of Health (NHI)-funded resource of clinically annotated genes
and variants for use in precision medicine and research. ClinGen has a curated genome-wide
dosage sensitivity map which can be used for the clinical interpretation of CNV. This resource
provides evidence-based correlations between haploinsufficiency (loss) or triplosensitivity (gain)
of a gene or genomic regions and clinical phenotypes. In addition, ClinGen provides CNV
data from contributing laboratories and their classification, displayed in the NCBI ClinVar
database. Finally, in-house or national reference database could be useful to construct a CNV map
characterizing regional populations.

• Parental analysis. The inheritance of a CNV by an affected parent may support its pathogenicity.
However, this event may be coincidental. When available, the evaluation of additional familial
members may be useful to verify if the CNV continues to segregate with the phenotype.
The inheritance of a CNV by an unaffected parent may not exclude its pathogenicity due to
incomplete penetrance, variable expression, parent of origin imprinting effects or mosaic CNV
in parent. Also, as reported above, the occurrence of an autosomal recessive disorder should be
taken into consideration.

Figure 4. Flowchart of CNV interpretation process. MCA: multiple congenital abnormalities, ASD:
autism spectrum disorder, MLPA: multiple ligation-dependent probe amplification, FISH: fluorescence
in situ hybridization, qPCR: quantitative PCR.

6. Conclusions

High-resolution CMA such as CytoScan HD have improved the ability to identify CNVs
undetectable by other technologies such as karyotyping, FISH, and targeted or lower-resolution
array platforms due to lower resolution and/or coverage. Additionally, the diagnostic yield of this

https://decipher.sanger.ac.uk
https://www.clinicalgenome.org
https://www.clinicalgenome.org
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platform is enhanced by the detection of LCSH, which are accessed genotyping of thousands of SNPs,
and are suggestive of either UPD or increased risk of recessive conditions. The performance of this
technology to identify gains and losses in patients with DD/ID/MCA/ASD has been well documented,
but its applicability has been also reported in neoplastic samples and prenatal specimens. However,
the increased yield in detecting potential clinically relevant small and rare CNVs (<500 kb), affecting
single or few genes, raises the problem regarding how to interpret these variants and the need to their
validation in order to avoid false positive results. The pathogenicity of a CNV remains challenging
and consequently requires the integration of several data for an accurate interpretation which include
inheritance, biological function of gene content, and comparison with public databases. In particular,
the availability of larger submitted and shared genomic and clinical data could improve this process.
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