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Heme oxygenase (HO)-1 is an inducible enzyme that cata-
lyzes the first and rate-limiting step in the oxidative degrada-
tion of free heme into ferrous iron, carbon monoxide (CO), 
and biliverdin (BV), the latter being subsequently converted 
into bilirubin (BR). HO-1, once expressed during inflam-
mation, forms high concentrations of its enzymatic by-prod-
ucts that can influence various biological events, and this ex-
pression is proven to be associated with the resolution of 
inflammation. The degradation of heme by HO-1 itself, the 
signaling actions of CO, the antioxidant properties of 
BV/BR, and the sequestration of ferrous iron by ferritin all 
concertedly contribute to the anti-inflammatory effects of 
HO-1. This review focuses on the anti-inflammatory mecha-
nisms of HO-1 actions and its roles in inflammatory diseases. 
[Immune Network 2009;9(1):12-19]

INTRODUCTION

Heme is inherently dangerous when, in excessive amounts, 

released from intracellular heme-containing proteins (1). The 

released heme, or free heme, may cause oxidative and in-

flammatory injury associated with the pathology of diverse 

conditions (2). Thus, it is of most importance to remove ex-

cess of free heme at sites of injury. The microsomal enzyme 

heme oxygenase (HO) catalyzes the first and rate-limiting step 

in the oxidative degradation of free heme to produce carbon 

monoxide (CO), ferrous iron (Fe
2+

), and biliverdin (BV) (3). 

BV formed in this reaction is subsequently converted into bi-

lirubin (BR) by a BV reductase, and the ferrous iron is rapidly 

sequestered by ferritin and recycled for heme synthesis (4). 

To date, two genetically distinct isozymes of HO have been 

characterized: an inducible form, heme oxygenase-1 (HO-1), 

and a constitutively expressed form, heme oxygenase-2 (HO-2) 

(5). Although both HO-1 and HO-2 catalyze the identical bio-

chemical reaction, there are some fundamental differences 

between the two in genetic origin, primary structure, and mo-

lecular weight (4). HO-1, once expressed under various 

pathological conditions, has an ability to metabolize high 

amounts of free heme to produce high concentrations of its 

enzymatic by-products that, as such a consequence, can influ-

ence various biological events, and has recently been the fo-

cus of considerable medical interest (6). HO-1 can be ex-

pressed not only by its substrate, free heme, but also by a 

wide variety of pro-inflammatory stimuli, suggesting that 

HO-1, besides its fundamental role in heme degradation, 

plays other important roles in resolution of inflammation (7). 

In this regard, this review has focused on the anti-in-

flammatory mechanisms of HO-1 actions and its roles in in-

flammatory diseases. This information is important for the de-

velopment of potential drugs that may alleviate the numerous 

inflammatory diseases through activation of HO-1 expression.

REGULATION OF HO-1 EXPRESSION

There may be the potential interplay between intracellular 

and nuclear signaling events that lead to transcriptional acti-

vation of the ho-1 gene by various stimuli. Various tran-

scription factors, including the nuclear factor E2-related factor 

2 (Nrf2), interact with their cognate DNA binding domains 

in the HO-1 promoter to up-regulate ho-1 gene transcription, 

and a number of intracellular signaling molecules, including 

the mitogen-activated protein kinase (MAPK), involve the acti-
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Figure 1. Induction of HO-1 and subsequent production of heme 
degradation products exert potent anti-oxidative, anti-inflammatory 
and anti-apoptotic functions for the tissue homeostasis. HO-1 can be 
expressed by a number of stimuli mainly via MAPK-dependent Nrf2 
activation. These inducers of HO-1 include free heme, inflammatory 
mediators, oxidative stress, IL-10, and some inflammatory drugs. 
HO-1, once expressed under pathological conditions, can degrade free
heme into BV, CO, and Fe2+. BV is converted into BR by BV reduc-
tase. The iron is rapidly sequestered by ferritin. Heme degradation 
products have been shown to modulate inflammatory response, 
perhaps by reducing oxidative stress, blocking MAPK pathways, and 
suppressing NF-κB activity.

vation of these transcription factors (8,9). The MAPK family 

comprises three primary signaling cascades: the extracellular 

signal regulated kinase (ERK), the c-Jun NH2-terminal kinase 

(JNK), and the p38 MAPK. Depending on the specific stim-

ulus and the cell type involved, one or more of MAPK path-

ways may involve HO-1 expression (10). The involvement of 

Nrf2 in HO-1 expression has been highlighted by the finding 

that HO-1 is less inducible in Nrf2-deficient mice (11). It 

should be noted that Nrf2 activation in response to the specif-

ic stimulus generally requires MAPK activation. For examples, 

Kim and co-workers (12) demonstrated that 15-Deoxy-∆12,14
- 

prostaglandin J2 induced HO-1 expression through activation 

of ERK and other kinase pathways that leads to Nrf2 

activation. The antioxidant quercetin protected human hep-

atocytes from ethanol-induced oxidative stress via Nrf2- de-

pendent HO-1 expression, and p38 MAPK and ERK mediated 

quercetin-induced Nrf2 activation (13). 

REACTION PRODUCTS OF HO-1 AND THEIR 
ANTI-INFLAMMATORY ROLES

HO-1 expression is up-regulated in response to various forms 

of inflammatory stimuli, and this is associated with reduced 

inflammation (14). However, the mechanism(s) of anti-in-

flammatory actions of HO-1 has not been completely 

elucidated. It is most likely that the anti-inflammatory effects 

afforded by HO-1 may be attributed not only to its own action 

but also to other actions of three by-products of HO-1 activity 

(6). On other words, the degradation of the pro-oxidant heme 

by HO-1 itself, the signaling actions of CO, the antioxidant 

properties of BV/BR, and the sequestration of free iron by 

ferritin could all concertedly contribute to the anti-in-

flammatory effects observed with HO-1 (Fig. 1). The follow-

ings briefly describe the mechanisms that may explain the an-

ti-inflammatory actions of HO-1.

CO
The gaseous molecule CO seems to be responsible for most 

of the anti-inflammatory actions of HO-1 (15). In macro-

phages, CO inhibited the production of pro-inflammatory cy-

tokines, such as tumor necrosis factor-α (TNF-α), inter-

leukin-1β (IL-1β), and macrophage inflammatory protein-1, 

through modulation of p38 MAPK activation (16). In human 

T cells, CO suppressed IL-2 secretion and clonal expansion 

via inhibition of ERK pathway (17). CO also suppressed the 

expression of pro-inflammatory enzymes, such as inducible 

nitric oxide synthase and cyclo-oxygenase-2, in macrophages 

by virtue of its ability to regulate the C/EBP and nuclear fac-

tor-κB (NF-κB) activation (18). In human colonic epithelial 

cells, the inhibitory effects of CO on iNOS expression and IL-6 

secretion were dependent on the modulation of NF-κB, acti-

vator protein-1 (AP-1), C/EBP activation, and MAPK pathway 

(19). 

BV/BR
The natural antioxidant BV/BR appears to substitute for some 

anti-inflammatory effects of HO-1 (20). The anti-inflammatory 

effects of BV on organ transplantation are manifested by de-

creased leukocyte infiltration, less T cell proliferation, and ex-

tended survival of allogeneic heart transplants (21). In the rat 

model of endotoxin-induced shock, BV reduced serum levels 

of the pro-inflammatory cytokines, but enhanced the pro-

duction of the anti-inflammatory cytokines (22). BR inhibited 

endothelial cell activation by suppressing E-selectin and vas-

cular cell adhesion molecule-1 expression (23). A possible 

mechanism by which these effects of BV/BR occur may involve 

the inactivation of NF-κB, a transcription factor strictly required 

for the transcription of the pro-inflammatory genes (22,23). 
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Ferritin expression
The expression of ferritin is markedly enhanced in conjunc-

tion with HO-1 expression (24). Although whether the ferritin 

could substitute for anti-inflammatory actions of HO-1 is not 

completely elucidated, it has been proven to be a potent anti-

oxidant enzyme (25). Ferrous iron, an extremely pro-oxida-

tive molecule that may cause inflammation, is released during 

the breakdown of free heme by HO-1 (24). In that case, the 

ferritin effectively sequesters the ferrous iron and, hence, lim-

its its pro-oxidant/pro-inflammatory capacity (24). Based on 

the data presented by Schaer and co-workers (26), the in-

duction of HO-1 was directly involved in the down-regulation 

of inflammation, and this effect was due to ferritin synthesis 

as a result of HO-1 induction.

LESSONS FROM HO-1-DEFICIENT MICE

HO-1 plays important roles at least in the resolution of in-

flammation, and this concept is represented by the two genet-

ic findings: 1) the mice with HO-1 deficiency have a distinct 

phenotype of an increased inflammatory state (27,28) and 2) 

an inflammatory syndrome that developed in a HO-1-deficient 

human patient was one of the reasons of death (29,30). 

Kapturczak and co-workers (27) examined the differences in 

immune phenotype between HO-1 knockout (HO-1
-/-

) and 

wild-type (HO-1+/+) mice. The first finding is that a deficiency 

of HO-1 may predispose to generally exaggerated in-

flammatory responses, suggesting that its activity is necessary 

for timely resolution of early inflammation. The other is that 

HO-1
-/-

 splenocytes secreted disproportionately higher levels 

of pro-inflammatory cytokines as compared to those from 

HO-1+/+ mice, suggesting that HO-1 activity is also important 

in more downstream stages of the immune response. These 

two findings raise an important question as to how HO-1 can 

modulate the immune response. 

  CD4
+
CD25

+
 regulatory T (Treg) cells maintain immuno-

logical self-tolerance and limit the deleterious effects asso-

ciated with inflammatory reactions (31). Interestingly, there 

are the similarities in the anti-inflammatory functions attrib-

uted to Treg cells and to HO-1 activity, raising a possibility 

that HO-1 would be a key mediator of activities of Treg cells. 

Two studies have tested this hypothesis through the use of 

HO-1
-/-

 mice. Zelenay and co-workers (31) have demon-

strated that HO-1 is not essential for mouse Treg develop-

ment, maintenance and function. On the contrary, George 

and co-workers (32) have demonstrated that a lack of HO-1 

in antigen-presenting cells (APCs) significantly impairs the 

suppressive function of Treg cells under conditions of APC 

excess. The later would provide an explanation for the im-

munoregulatory defects observed in HO-1
-/-

 mice. 

ROLES OF HO-1 IN INFLAMMATORY DISEASES

In addition to valuable lessons from HO-1-deficient mice, the 

aforementioned properties of HO-1 and its by-products pro-

voked researchers’ interest in investigating the impact of HO-1 

on the development of inflammatory diseases in animal 

models. Indeed, the cytoprotective effects of HO-1 have been 

well confirmed in a number of experimental models, includ-

ing sepsis, transplantation, autoimmunity, and allergy. 

Sepsis
Sepsis is a systemic inflammation against severe infection, 

which contributes to the cascade of events that ends not only 

in shock but also in multiple organ dysfunction and death. 

Despite improved therapy and better understanding of the 

mechanisms underlying its pathogenesis, sepsis remains to be 

a leading cause of morbidity and mortality in the intensive 

care unit. 

  Symptoms of Gram-negative bacterial sepsis can be repro-

duced experimentally by administration of animals with lip-

opolysaccharide (LPS), a major component of the outer mem-

brane of Gram-negative bacteria. In such a sepsis model, 

macrophages are one of the cells that are most sensitive to 

LPS stimulation. Once activated in response to LPS, macro-

phages release endogenous mediators and defense molecules, 

including pro-inflammatory cytokines such as TNF-α. The 

pro-inflammatory cytokines could protect the host against 

bacterial infection, but an exaggerated stimulation of the im-

mune system with a marked release of cytokines can lead 

to hypotension, collapse of circulatory system, multiple organ 

dysfunction, and death. The extent of cellular damage in the 

sepsis may be determined not only by the pro-inflammatory 

cytokines and enzymes but also by the anti-inflammatory cy-

tokines and enzymes. Among the anti-inflammatory enzymes, 

HO-1 has been shown to mediate protective effects in LPS-in-

duced sepsis model: there is accumulating evidence empha-

sizing the importance of HO-1 in the development of sepsis 

(33-41). It has been suggested that administration of mice 

with LPS was associated with a marked increase HO-1 gene 

expression in a site specific organ manner (42). Interestingly, 

HO-1 expression in monocytes from patients with severe sep-
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sis significantly increased, as compared with that in mono-

cytes from healthy volunteers (43). The possible roles of 

HO-1 in LPS-induced sepsis have been well characterized us-

ing HO-1-deficient mice. HO-1-deficient mice develop in-

creased end-organ damage and have increased mortality after 

LPS administration (41). In contrast, administration of CO to 

HO-1-deficient animals attenuates LPS-induced inflammation 

and end-organ injury (44). These studies support the benefi-

cial effects of HO-1 and its by-products such as CO during 

sepsis. 

Graft rejection
Organ transplantation has become an ultimate therapeutic op-

tion for irreversible organ failure. Early graft survival has sig-

nificantly improved; however, the long-term outcome remains 

unsatisfactory. Long-term graft function and graft survival are 

affected by both non-immunologic and immunologic factors. 

Ischemia reperfusion (IR) injury represents the major non-im-

munologic factor implicated in the pathogenesis of graft dys-

function and activation of alloreactive T cells, mainly due to 

failure of transplantation tolerance, is served as the major im-

munologic factor. 

  There is accumulating evidence to support the notion that 

HO-1 expression in a graft and in the recipient can prevent 

graft rejection and promote immune tolerance (45-57). Under 

a given immunosuppressive regimen, the survival of a mouse 

heart transplanted into a rat was related to high levels of 

HO-1 expression in the graft vasculature (58). Hearts from 

HO-1-deficient mice failed to survive when transplanted un-

der the same immunosuppressive regimen (51), suggesting 

that HO-1 expression in transplants from wild-type mice con-

tributes in a critical manner to sustain their survival. This no-

tion has now been expanded by showing that HO-1 ex-

pression can inhibit different processes involved in IR injury 

as well as in the acute and chronic rejection of transplanted 

organs (59). IR injury triggers a pro-inflammatory response 

in the graft, which in turn augments graft immunogenicity and 

as such results causes graft dysfunction. Endogenous HO-1 

expression inhibited IR injury during organ transplantation 

(60), and this is the first explanation regarding how HO-1 can 

promote graft survival. The protective effects of HO-1 may 

be mediated via several pathways: removal of free heme gen-

erated during IR injury, antioxidant properties of BV/BR, and 

vasoregulatory effects as well as anti-inflammatory, anti-apop-

totic, and antiproliferative properties of CO. The second ex-

planation is that HO-1 was also involved in transplantation 

tolerance (61). The tolerogenic effect of HO-1 was found de-

pendent on the activation of CD4
+
CD25

+
 Treg cells (51).

Autoimmune disease
Autoimmunity occurs when the immune system recognizes 

and attacks host tissue. In addition to genetic factors, environ-

mental triggers are thought to play a major role in the devel-

opment of autoimmune diseases. Autoimmune diseases fall 

into two general types: those that damage many organs 

(systemic autoimmune diseases) and those where only a sin-

gle organ or tissue is directly damaged by the autoimmune 

process (localized). Examples of autoimmune diseases in-

clude type I diabetes, multiple sclerosis, rheumatoid arthritis 

(RA), and lupus. 

  HO-1 is considered as an endogenous factor responsible 

for the resolution of inflammation and might thus be a novel 

target for the modulation of the inflammatory autoimmune 

response. Recently, several investigators have presented evi-

dence to support an immunosuppressive function of HO-1 

during the course of autoimmune diseases (62-69). Hu and 

co-workers (64) evaluated the effect of HO-1 on autoimmune 

diabetes. Using NOD mice which spontaneously develop type 

I diabetes, they showed that intravenous HO-1 transduction 

reduced destructive insulitis and the incidence of overt dia-

betes by down-regulating the phenotypic maturity of dendritic 

cells and Th1 effector function. A similar protective effect 

against diabetes was also observed in NOD mice subjected 

to CO (70). Chora and co-workers (66) reported that HO-1 

expression dictated the pathologic outcome of experimental 

autoimmune encephalomyelitis (EAE), a model of multiple 

sclerosis, and pharmacological induction of HO-1 suppressed 

the pathologic outcome of autoimmune neuro-inflammation 

associated with the development of EAE, presumably by in-

hibiting the expression of MHC class II on APCs and the re-

activation of pathogenic CD4+ T cells within the central nerve 

system. Kobayashi and co-workers (67) examined the ex-

pression and pathogenetic roles of HO-1 in RA, and found 

that HO-1 expressed in RA synovial tissues protected against 

the onset of RA. 

Allergic disease
Allergic reactions differ from protective immune reactions 

(immunity) only in that they are exaggerated or inappropriate 

and damaging to the host (hypersensitivity). The cellular and 

molecular mechanisms of the two types of reaction are vir-

tually identical. The sequence of events involved in the devel-
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opment of allergic reaction can be divided into three phases: 

the sensitization phase, during which immunoglobulin E (IgE) 

is produced in response to allergenic stimulus and binds to 

specific receptors on mast cells and basophils; the activation 

phase, during which re-exposure to allergen triggers the mast 

cells and basophils to release of the contents of their gran-

ules; and the effector phase, during which an anaphylactic 

response occurs as a result of release of pharmacologically 

active agents. After subsidence of acute reaction, localized in-

flammation is elicited by the mediators released during the 

course of immediate reaction as late-phase reaction. 

  HO-1 expression is up-regulated in allergic triad (asthma, 

allergic rhinitis, and atopic dermatitis), and HO-1 has been 

proven to be anti-allergic (71). Almolki and co-workers (72) 

reported the anti-allergic role of HO-1 in allergic airway 

inflammation. The guinea pigs were sensitized with ovalbu-

min (OVA) to develop characteristic features of asthma, and 

treated with the HO-1 inducer hemin during sensitization or 

after developing impaired airways features. Oxidative stress 

in OVA-challenged animals and the number of neutrophils, 

eosinophils, and lymphocytes in their airways were markedly 

reduced when HO-1 expression was induced by hemin, sug-

gesting a protective role of HO-1 against airway inflammation. 

Kirino and co-worker (73) have demonstrated that serum 

HO-1 levels are increased in patients with atopic dermatitis 

(AD) and that the levels correlate with the severity of clinical 

manifestations and conventional disease markers. In an AD 

mouse model, HO-1 was abundantly expressed in resident 

macrophages and DCs in the AD-like skin lesions. Interesting-

ly, pharmacologic induction of HO-1 suppressed the develop-

ment of these AD-like skin lesions, suggesting a protective 

role of HO-1 against skin inflammation. At present, the exact 

mechanisms by which HO-1 could exert anti-allergic effects 

have not been completely elucidated. In addition to the anti-

oxidant/anti-inflammatory properties of HO-1 and its by-prod-

ucts, blockage of mast cell activation (74), inhibition of IgE 

production (75), and modulation of immunological functions 

of T cells and DCs (76) might mediate anti-allergic effects of 

HO-1.

CONCLUSION

During the last decade, the beneficial roles that HO-1 could 

play in a number of disease states have been elucidated, and 

the protective/anti-inflammatory role of HO-1 has been 

highlighted. In the present review, we have briefly summar-

ized the current data confirming the beneficial effects of HO-1 

on inflammatory diseases. It is now commonly accepted that 

HO-1 plays a crucial role in the resolution of inflammation 

(71,77). For examples, mice lacking HO-1 were more suscep-

tible to inflammatory injury (27,28), whereas the use of phar-

macological agents and genetic probes for up-regulating HO-1 

expression rendered experimental animals less susceptible to 

inflammation (33-43). Although the exact mechanism(s) by 

which HO-1 can exert anti-inflammatory effects has not yet 

been elucidated, its metabolic products have been shown to 

mimic anti-inflammatory actions of HO-1. The use of CO and 

BV/BR as therapeutic agents has been successful in some in-

flammatory models. Based on the current researches focusing 

on the anti-inflammatory roles of HO-1 or its metabolic prod-

ucts, we suggest that the strategies to target HO-1 or its meta-

bolic products may offer promising therapeutic approaches 

for the effective management of a number of inflammatory 

diseases. 
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