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Abstract: With the collection of water-intake data, the National Health and Nutrition Examination
Survey (NHANES) is becoming an increasingly popular resource for large-scale inquiry into human
hydration. However, are we leveraging this resource properly? We sought to identify the opportunities
and limitations inherent in hydration-related inquiry within a commonly studied database of hydration
and nutrition. We also sought to critically review models published from this dataset. We reproduced
two models published from the NHANES dataset, assessing the goodness of fit through conventional
means (proportion of variance, R2). We also assessed model sensitivity to parameter configuration.
Models published from the NHANES dataset typically yielded a very low goodness of fit R2 < 0.15.
A reconfiguration of variables did not substantially improve model fit, and the goodness of fit of
models published from the NHANES dataset may be low. Database-driven inquiry into human
hydration requires the complete reporting of model diagnostics in order to fully contextualize findings.
There are several emergent opportunities to potentially increase the proportion of explained variance
in the NHANES dataset, including novel biomarkers, capturing situational variables (meteorology,
for example), and consensus practices for adjustment of co-variates.
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1. Introduction

Water intake and hydration status are evolving as increasingly important points of focus in
far-reaching corners of medicine and public health. Investigators in search of phenotypic risk factors
and as a possible strategy for mitigating disease burden and progression have targeted total water intake
practices in myriad diseases including hyperglycemia [1,2], obesity [3–8], diabetes mellitus [5,6,9–12],
metabolic syndrome [6,13], cardiovascular diseases [14–18], chronic kidney disease [5,19–23], cystic
renal disease [24–26], and bladder cancer [27–29]. Given the extensive foundational research linking
total water intake to other high-relevance morbidities, it is exciting that the National Center for Health
Statistics collects water intake data. However, are we leveraging this resource optimally?

In this article, we explore model design in database-supported hydration inquiry. We contrast
model diagnostics and explore optimization scenarios by reproducing two recently published regression
models related to hydration. In particular, we look into regression models in hydration, published by
others, by way of the model goodness of fit parameter, the R2. The coefficient of determination (0 ≤ R2

≤ 1) is a standard measure for how well scatter data fit to their model regressor; it is the proportion
of explained variation relative to total variation. A low R2 value indicates a large proportion of
unexplained variance; a high R2 indicates that much of the variance observed in the data are explained
by effects described in the model.

Our interest was to replicate two recently-published models in order to ascertain their goodness of
fit. We also wanted to extend these published works by assessing the sensitivity of the model goodness
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to parameter selection. The models studied here are mutually similar but distinct, making use of
different variables in both prediction and response, but both had a similar design in that regression
models were designed to test specific hypotheses within a large, publicly available dataset. Our objective
was to critically review the state of the art—and identify opportunities to enhance—database-driven
inquiry into human hydration.

2. Methods and Results

2.1. Study Selection

We took as exemplars two recently published papers: Rosinger et al. [3] and Chang et al. [4].
Both groups leveraged the same dataset (National Health and Nutrition Examination Survey (NHANES)
2009–2012), tested for associations between hydration and body composition, were posed as population
studies (i.e., weighted analyses), and utilized a parallel design, i.e., tandem linear and logistic regression.
Naturally, these papers differ in terms of co-variate selection, dataset filtering, the selection of predictor
versus response variable, and the age-adjustment of hydration status. Full methodologies are described
in the original manuscripts, but in short summary: The Rosinger et al. study (n = 9528) utilized
urine osmolality (URXOAV) as the response variable, with the following predictor variables: Age
(RIDAGEYR) stratified 20–39, 40–59, and ≥60 years; gender (RIAGENDR); race–ethnicity (RIDRETH1)
re-coded into three groups (Non-Hispanic White, Non-Hispanic Black, and Hispanic); fasting session
index (PHDSESN); physical activity (MINMODVIG) as low versus high-activity at 150 min of moderate
or vigorous activity per week; caffeine intake (DR1TCAFF), stratified as low versus high-intake at
400 mg; alcohol consumed (DR1TALCO), total calories consumed (DR1TKCAL); diabetes status
(DIQ010); and moisture-intake (DR1TMOIS) stratified at males <3700 g, females <2700 g, or lactating
females <3800 g. The Chang et al. study (n = 9601) utilized BMI (BMXBMI) as a response variable,
with urine osmolality, gender, race–ethnicity, the ratio of family income to poverty level (INDFMPIR),
and age as continuous variables. Data were obtained de novo from the NHANES repository at
CDC.gov. These studies were selected because they provided the right balance between comparability
and mutual novelty, both had already been cited multiple times in their short history in print, and both
papers were written in a way that facilitated replication.

2.2. Model Diagnostics

A detail not reported in either study was a model goodness of fit. We extracted the model fit
as R2 values, defined as 1 minus the ratio of residual deviance to null deviance. Our motivation for
reporting R2 is that this is an exquisitely important parameter used to contextualize analytical models.
Both papers (Chang et al. and Rosinger et al.) presented significance values (p-values) for individual
parameters, and these values are informative as to the existence of a relationship between two variables.
However, neither paper reported a goodness of fit (R2), so there was no way to draw an inference
as to which group presented a more compelling model, or whether either model was tenable at all.
A further review of models in this area of study revealed that it is the rare exception that a model
goodness is published alongside the model results. Thus, there is an opportunity to provide valuable
supporting information regarding our analytical approaches in the analysis of hydration datasets.

In total, eight models were considered: Two from Chang et al. and six from Rosinger et al. R2 was
low, ranging from 0.03 to 0.11. The models shown here reflect an extension of the original published
analyses, starting with a reproduction of the models as originally published, using identical datasets
and identical assumptions. We considered our replication successful when we were able to reproduce
all linear regression coefficients described in Chang et al. to within 1% of their printed value, and we
were able to reproduce all linear regression coefficients in the normal-weight dataset described in
Rosinger et al., also to within 1%. Once we were able to confidently replicate these published findings
by others, thus confirming their models as described, we felt comfortable extending their models. As an
illustration, consider the univariate regressions shown in Figure 1. Both models yield a statistically
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significant relationship between predictor and response variables (both p-values were incalculably
small, below the precision of the computer), but neither had an R2 above 2.5%.

Figure 1. Univariate regressions from the National Health and Nutrition Examination Survey
(NHANES) 2009–2010 and 2011–2012 datasets, based on Chang et al. (Left) and Rosinger et al.
(Right). Both regressions have highly significant p-values but negligible R2.

We note that the relationships demonstrated in these plots depart somewhat from those reported
in the prior studies due to their use of multi-variate models and weighted regressions. We have shown
unweighted univariate models for the sake of clarity in visualization. Nevertheless, these figures are
useful as visual aids in demonstrating the low goodness of fit in these studies. Could the weakness of
these models be explained by variable configuration? We tested this in three different variables.

2.3. Urine Osmolality and BMI

Rosinger et al. posed hydration (via urine osmolality) as a response variable adjusted for age
via the linear transformation 831 mOsm/kg − 3.4 × (age – 20 years), per published guidance [30,31],
and BMI as a trichotomous predictor: Normal, overweight, and obese (BMI <25, 25–30, and ≥30).
Chang et al. posed hydration as a predictor variable without adjusting for age, and they treated body
composition as a dichotomous quantity: Normal versus obese stratified at BMI ≥ 30.

In order to test model sensitivity to variable configuration, we assessed the goodness of fit on
the published regression models with four different settings: Hydration status with and without age
adjustment and BMI as a continuous versus categorical variable. For these four models, the threshold
for adequate hydration was systematically altered over a range of urine osmolality values from 200 to
1100 mOsm/kg. Thus, eight models were tested in total: Four variants from Chang et al. and four from
Rosinger et al.; the BMI as a continuous versus factor variable and hydration as an adjusted versus
unadjusted variable.

We found that there were substantial differences in model fit depending on the defined threshold
for adequate hydration status and that this relationship was opposite between the papers (R2 maximized
at extreme thresholds in models derived from Rosinger et al. versus optimization in mid-range values
in models derived from Chang et al.). We also noted that age adjustment seemed to have had a profound
impact on the Rosinger models but not on Chang’s models—vice-versa for BMI as a continuous versus
categorical measure (Figure 2). While not rigorously assessed, we suspect that this is most likely due
to their respective positioning as outcome measures, as opposed to differences in datasets or inclusion
of other co-variates.

A few remarks bear discussion regarding our methodology and interpretation. Firstly, Rosinger
implemented separate models for each category. Here, we merged all data together and included
BMI as a co-variate. While this changes the nature of the model, perturbing a single model facilitates
interpretation versus three separate models, it allows for a direct contrast against Chang’s results.
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We specifically decided not to alter the stratification of BMI (Chang: Two-level; Rosinger: Three-level),
as we felt it was valuable to retain this semblance of the published model. Additionally, we note
that we intentionally tested urine osmolality ranges that were physiologically unrealistic: Stratifying
at 200 mOsm/kg and 1100 mOsm/kg is unknown in the literature. While we were interested in
a narrower range of strata (threshold 500–800 mOsm/kg), we felt it appropriate to test for model
behavior beyond those benchmarks in order to fully describe the relationship between the model and
its parameter configuration.

Figure 2. Model goodness (R2) versus hydration threshold (via urine osmolality) in sensitivity analysis
of two database studies on hydration in relation to body composition.

While it is certainly more common to consider hydration to be adequate at more moderate ranges
of urine osmolality, we note that there are some respondents with values as or more extreme than
this range (approximately 6% of respondents were below 200 mOsm/kg, and approximately 2% of
respondents were above 1100 mOsm/kg), so while such extreme boundaries are unlikely to be useful
in stratifying the general population, they are physiologically meaningful and might conceivably be of
interest to those making inquiries about extreme hydration status levels. Our interest in such extreme
thresholds was to explore the edge effects of the relationship between dichotomized hydration status
and model goodness in order to verify that model performance is spectral and to provide perspective
as to the impact of threshold selection outside of the historical range.

Lastly, we observed that the model fits were generally very weak: R2
≤ 0.10 in all models in the

interval between 500 and 800 mOsm/kg of urine osmolality. Separately, we assessed whether model fit
would improve with urine osmolality as a continuous variable, and we found that the results were
similar: 0.10 ≤ R2

≤ 0.12 in all simulations of Rosinger’s models and 0.05 ≤ R2
≤ 0.08 in Chang’s models

(Figure 3).

Figure 3. Model goodness (R2) comparison, incorporating hydration as a continuous variable versus
categorical variable R2 < 0.12 in all models.
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2.4. Water Intake

Rosinger’s work categorizes respondents according to their water intake, with a two-level
stratification, also accounting for sex (and within females: Lactation status). We tested other stratification
approaches in order to test the sensitivity of the model to this parameter (Table 1).

Table 1. Goodness of fit of Rosinger et al. with various water intake stratifications used in previous
publications. Cells contain R2 values obtained from regression models built from the published model.
Top row is the replicated model from Rosinger et al.; all other rows use same dataset and same model as
Rosinger et al., but with the altered stratification of a single variable (water intake). Some stratifications
showed an improved goodness of fit (R2 greater than Rosinger et al.); some stratifications showed a
degraded goodness of fit (R2 less than Rosinger et al.). All models showed a generally weak model fit
(R2 < 0.15).

Norm. OWt Obese All Strata (Water Intake (mL/day))

Rosinger, 2016 [3] 0.111 0.110 0.107 0.095 <2700 (F), <3700 (M), <3800 (Lactating F)
Armstrong, 2012 [32] 0.132 0.109 0.114 0.101 {0, 1507, 1745, 2109, 2507, 2945, 3407,∞}
Armstrong, 2010 [33] 0.132 0.110 0.113 0.100 {0, 1382, 2008, 2048, 2453, 2614, 3261,∞}
Johnson, 2015 [34] 0.127 0.108 0.107 0.099 {0, 1620, 3210,∞}
Muñoz, 2015 [35] 0.126 0.106 0.111 0.099 {0, 1500, 2250, 3130,∞}
Sontrop, 2013 [19] 0.114 0.109 0.112 0.097 {0, 2000, 4300}
Pross, 2014 [36] 0.101 0.095 0.093 0.084 {0, 1200, 2000,∞}
Perrier, 2013 [37,38] 0.107 0.099 0.103 0.080 {0, 1200; 2000, 4000} 1

Roussel, 2011 [1] 0.080 0.086 0.094 0.077 {0, 500, 1000,∞}

Norm = Normal Weight; OWt = Overweight. Strata defined or inspired by recent studies in hydration inquiry.
1 Middle hydration group (1200–2000 mL/d) and extremely hydrated (>4000 mL/d) censored.

Results were mixed: Some stratification designs yielded improved fits in the linear regressions
based on Rosinger’s model, while some designs yielded a weaker fit. We note that even the best model
among the 32 created yielded R2 < 0.14.

3. Discussion

3.1. Modeling

The papers analyzed here are not atypical in not having reported their R2: We are unaware of
any prior database studies in hydration where model fit is reported. However, they highlight the
problematic emphasis of a significance test over a heuristic and more reflective of model goodness of
fit [39]. The p-value does not provide information about whether the data are especially adherent to the
regressor. The p-value indicates the relationship’s existence, and R2 indicates the relationship’s precision.

Moreover, each point of inquiry will require its own assumptions and its own selection of response
variables or outcome measures, co-variates, and data conditioning steps. It is not possible for this
manuscript to serve as guidance for model design, and it is beyond the scope of this paper to critically
review the designs adopted by others. Rather, we recognize the inherent variation in analytical
approaches that have been published to date and that there is further variety to come. We do strongly
encourage thoroughness in explaining variable selection, assumption declarations, and in reporting
model goodness.

Regression models in the study of hydration face a substantial design challenge: Complex
co-variate interdependencies. Total body water balance is a function of water gains (via beverages,
foods and metabolic water) and losses (via sweat, urine, feces and respiratory losses). Those who expect
these factors to be highly co-dependent will argue that a model containing multiple factors among this
set to be poorly-posed for its inclusion of collinearities [40–42]. At the other extreme, those who view
these factors to be acceptably independent will argue that database studies are unviable for their lack
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of collection of the many meaningful determinants of body water balance and that those few that are
present will be inadequately supported and “over-interpreted” [43–46].

3.2. Asynchrony

The NHANES survey incorporates a variety of reporting windows. Dietary recall estimates
consumption during the 24-h period prior to the examination center visit (midnight to midnight);
physical activity reports incorporate the past seven days, past 30 days, and “in a typical week,”
which may synchronize poorly with the timing of dietary information; and urine samples are collected
on the day of the examination center visit, where participants are randomly assigned to appointments
in the morning, afternoon, or evening, which vary somewhat versus protocols for optimal hydration
assessment [38] and canonical renal function testing [47]. Investigators may or may not find this
sequence (survey, delay, then measure) serviceable; others may not recognize that these are not
contemporaneous measurements and may mis-interpret the models altogether.

3.3. Biomarkers

Tools used to indicate hydration process and status have been disputed, and no gold standard
currently exists for an appropriate assessment across all scenarios [31,48,49]. While elevated urine
osmolality has much perceived utility as a hydration biomarker [34,37,50,51], some question its validity
with single (spot) samples [52,53]. Urine osmolality has noteworthy interindividual variation [38,53]
and is an ephemeral data point which measures hydration status in an instantaneous way. However,
diet, physical activity, and phenotype are more enduring. Thus, there is great need for novel biomarkers
to capture this hysteresis. One emergent marker, an arginine vasopressin (AVP) surrogate, copeptin,
has shown preliminary promise as a water-balance indicator with robustness to various levels of
hydration status and attenuation following an increased water intake intervention [54]. Copeptin
has high molecular stability compared to AVP that aids in more accurate and less complicated
measurement [55], and AVP and copeptin can distinguish acute and chronic water consumption
variations [37,56], rendering this circulating protein a potentially attractive option to better characterize
participants’ water intake practices. While it is likely that there is no single substance or indicator
with optimal responsiveness to daily hydration status [32], there is reason to continue searching for
biomarkers with increasing fidelity to hydration status, as there is currently an unknown proportion of
unexplained variance attributable to the biomarkers available currently.

3.4. Weather

NHANES currently does not collect information related to weather conditions at the time of data
collection [57–60]. Seasonality corrections are common [32,61–64], although they are not universally
justified [65,66], perhaps because of the complexity in adjusting for such a diffuse variable [67]. It would
be feasible to document local weather conditions at or near to the time of survey response; this could
be designed to capture weather in locales where the respondent habited in the preceding 24 h or to
capture specific exposures, e.g., “Did you spend most of your time in a climate-controlled building
or outdoors?” We observe that accounting for weather is not necessarily the sole province of future
NHANES iterations: It is strictly possible to obtain zip-level geographic identifiers and date-of-survey
information from restricted data (research data center) which could be cross-referenced against a
historical weather database, although this requires some assumptions about a lack of travel.

3.5. Analytic Approach

Clearly, relationships between variables are labile to the way each variable is posed, and there
are unlimited ways to create an analytical model. Should water intake be adjusted according to
body composition, daily max ambient temperature, Mean temperature, or a composite measure
accounting for time spent outdoors, total amount of direct sunlight, temperature and wind speed?
Wearable sensors capable of recording climatic parameters are becoming increasingly prevalent [68–71],
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and perhaps large population investigations will soon have access to more accurate estimations of
internal body temperature [72,73], sweat rate [74], and physical activity due to an increasingly robust
infrastructure to support analysis of pedometers [75]. Furthermore, we recommend reporting the
model goodness of fit as is conventional in modeling [76–78]. There are, as of yet, no published R2

values for hydration models in public datasets; without knowing where our benchmarks lie, it is
impossible to know whether our models are keeping pace with the field in terms of explained variance.
Where these actions are practicable, investigators should make efforts to incorporate them; where these
actions are inappropriate, researchers should justify their approach.

4. Conclusions

With continued investigation into hydration practices and health outcomes, optimal model design,
statistical reporting, and database extensions are warranted. By manipulating two recently-published
hydration models, we were able to show (1) a substantial variation in the model fit depending on
parameter configurations and (2) a consistently weak model fit, i.e., R2 < 0.14. We propose the inclusion
of variables contributing to body water balance, which might increase the proportion of explained
variance in a hydration study and mitigate artificial associations. In addition, consensus variable
selection and stratification will increase comparability between studies. We make the following
additional suggestions regarding targets for the advancement of the science and communication
of results within the study of hydration: (1) The aggressive pursuit of promising biomarkers such
as copeptin; (2) the creative utilization of assistive resources like meteorological databases; (3) the
integration of advanced biostatistical techniques such as principal components analysis, survival
analysis, time-series and longitudinal analysis; and (4) the detailed reporting of model goodness in
any paper where modeling is employed. In particular, we recommend R2 and not merely a model’s
p-value, as statistical significance is not nearly as informative as proportion of variance explained.
Through the establishment of best practices and identification of new opportunities in hydration
study, we anticipate that the maximum value can be obtained from database-driven inquiry, both past
and future.
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