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Abstract: The popularity of hydrogels as biomaterials lies in their tunable physical properties, ability
to encapsulate small molecules and macromolecular drugs, water holding capacity, flexibility, and
controllable degradability. Functionalization strategies to overcome the deficiencies of conventional
hydrogels and expand the role of advanced hydrogels such as DNA hydrogels are extensively
discussed in this review. Different types of cross-linking techniques, materials utilized, procedures,
advantages, and disadvantages covering hydrogels are tabulated. The application of hydrogels,
particularly in buccal, oral, vaginal, and transdermal drug delivery systems, are described. The review
also focuses on composite hydrogels with enhanced properties that are being developed to meet the
diverse demand of wound dressing materials. The unique advantages of hydrogel nanoparticles in
targeted and intracellular delivery of various therapeutic agents are explained. Furthermore, different
types of hydrogel-based materials utilized for tissue engineering applications and fabrication of
contact lens are discussed. The article also provides an overview of selected examples of commercial
products launched particularly in the area of oral and ocular drug delivery systems and wound
dressing materials. Hydrogels can be prepared with a wide variety of properties, achieving biostable,
bioresorbable, and biodegradable polymer matrices, whose mechanical properties and degree of
swelling are tailored with a specific application. These unique features give them a promising future
in the fields of drug delivery systems and applied biomedicine.

Keywords: hydrogel; stimuli responsive; polymeric hydrogel nanoparticles; drug delivery systems;
wound dressing materials; tissue engineering scaffolds; modified contact lens

1. Introduction

Hydrogels are hydrophilic polymers composed of three-dimensional viscoelastic
networks that retain water many times their dry weight and swell in physiological environ-
ments. The physical interactions and chemical cross-linking of hydrogels can contribute
towards both structural and physical integrity [1]. The applicability of hydrogels as bio-
materials lies in the uniqueness of their properties such as water content, soft and elastic
consistency, and low adhesive force with water or biological fluids [2]. Due to distinct
physical characteristics, hydrogels can provide controlled dissolution, protect the labile
drug from degradation and control the release of various actives, including small-molecule
drugs, macromolecules, and cells. Thus, hydrogels have the unique ability to solve many
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formulation- and drug-related issues, thereby making them suitable for utilization in
various drug delivery systems, wound dressings, hygiene products, and regenerative
medicine. Apart from other published literature, the present article provides a compre-
hensive overview on the recent advances of hydrogels in diverse drug delivery systems.
Furthermore, the applicability of hydrogels in wound management and tissue engineering
are extensively covered.

Hydrogels can be broadly classified based on the characteristics of side groups (ionic or
non-ionic), structural aspects (homo or copolymer), physical nature (crystalline, amorphous,
supramolecular), and responsiveness to various external stimuli such as temperature, pH,
light, ionic strength, ultrasound, electromagnetic radiation, glucose, and proteins. In order
to impart adequate mechanical strength to hydrogels besides biodegradability, various
types of physical and chemical cross-linking methods are currently being employed. A
comprehensive overview on the synthesis of hydrogels by physical cross-linking and
chemical cross-linking techniques, materials, procedures, advantages, and disadvantages
are depicted in Table 1. The next section discusses the classification of hydrogels based
on their responsiveness to various external stimuli. Different types of stimuli-responsive
hydrogels are summarized in Table 2.

Table 1. Different techniques, materials, procedures, advantages, and disadvantages of hydrogels.

Techniques Types of Materials Used Procedure Advantages Disadvantages Reference

Hydrophobic
interaction

Hydrophilic monomers
and hydrophobic

comonomers

Free radical
copolymerization of a

hydrophilic monomer with a
hydrophobic co-monomer

Absence of cross-linking
agents and relative ease of

production

Poor mechanical
characteristics [3]

Ionic interaction
Polyelectrolyte solution
and multivalent ions of

opposite charge

Ionic interaction through
simple ion exchange

mechanisms and complex
formation

Cross-linking takes place
at room temperature and

physiological pH
Properties can be

fine-tuned by cationic and
anionic constituents

Limited to ionic polymers
and sensitive to impurities [4]

Hydrogen bond

Polymeric functional
groups of high electron

density with
electron-deficient
hydrogen atom

Self-assemble through
secondary molecular

interactions

Increase in polymer
concentration can increase

the stability of gel.

Influx of water can
disperse/dissolve the gel

within short duration.
[5]

Bulk
polymerization

Monomers and
monomer-soluble

initiators

The polymerization reaction
is initiated with radiation,

ultraviolet, or chemical
catalysts at low rate of

conversions

A simple and versatile
technique to prepare

hydrogels with desired
physical properties and

forms

Increase in viscosity during
high rate of polymerization
reaction can generate heat
Weak polymer structure

[6]

Solution
polymerization/

Ionic or neutral monomers
with the multifunctional

cross-linking agent

Reaction initiated thermally
with UV irradiation or by

redox initiator system

Control of temperature
Performed in non-toxic

aqueous medium at room
temperature

High polymerization rate

To be washed to eliminate
reactants, the polymers, and

other impurities
[7]

Suspension
polymerization

Hydrophilic monomers,
initiators, cross-linkers,
and suspending agent

The monomers and initiator
are dispersed in the organic

phase as a homogenous
mixture

Directly usable as
powders, beads, or

microspheres

Restricted to water insoluble
polymer

Cooling jacket required to
dissipate heat

Requirement of agitators
and dispersant

[2]

Grafting Viny polymers, initiators
and cross-linking agents

Covalent bonding of
monomers on free radicals

generated on stronger
support structures

Improve functional
properties of the polymer

Difficulty of characterizing
side chains [8]

Irradiation
High energy gamma

beams and electron beams
as initiators

Irradiation of aqueous
polymer solution results in

the formation of radicals and
macroradicals on the

polymer chains

Pure, sterile, residue-free
hydrogel

Does not require catalyst
and other additives
Irradiation dose can

control swelling capacity

Irradiation can cause
polymer degradation via

chain scission and
cross-linking events

[9]

Step growth
polymerization

Bi or multifunctional
monomers and each with

attest two sites for
bonding

Multifunctional monomers
react to form oligomers
resulting in long chain

polymers

No initiator is required to
start the polymerization

and termination reactions

Prolonged reaction times
required to achieve a high
degree of conversion and
high molecular weights

[10]
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Table 2. Different kinds of stimuli responsive hydrogels.

Types Description Examples References

Temperature responsive

Change in temperature disturbs the
equilibrium exists between hydrophilic and
hydrophobic segments of the polymer chain

and induce the sol-gel transformation

Pluronic, poloxamer, poly(acrylic acid),
poly(N-isopropylacrylamide), and tetronic [11]

pH responsive
Change in pH results in swelling/deswelling

behavior due to the changes in hydrophobicity
of the polymer chain

Chitosan, guar gum succinate, kappa-carrageenan,
poly (ethylene imine), poly(acrylamide), poly(acrylic

acid), poly(diethylaminoethyl methacrylate),
poly(dimethylaminoethyl methacrylate),

poly(ethylacrylic acid), poly(hydroxyethyl
methacrylate), poly(methacrylic acid),

poly(propylacrylic acid), and poly(vinyl alcohol)

[12]

Photoresponsive External stimulus of either visible or UV light
initiates sol-gel transformation

Azo benzene-poly(2-hydroxyethyl methacrylate),
azo benzene-bovine albumin, triphenylmethane
leuco derivatives, and trisodium salt of copper

chlorophyllin-poly(N-isopropylacrylamide)

[13]

Electroresponsive

Upon the application of an electric field,
deswelling or bending takes place, based on the

shape and position of the gel relative to
the electrodes

Agarose, calcium alginate, carbomer, chondroitin
sulphate, hyaluronic acid, partially hydrolyzed

polyacrylamide, polydimethylaminopropyl
acrylamide, and xanthan gum

[14]

Ultrasonically responsive
External application of ultrasonic waves

modulates the drug release from the
hydrogel matrix

Ethylene vinyl acetate, poly
(2-hydroxyethyl methacrylate),

poly(bis(p-carboxyphenoxy)alkane-anhydrides,
poly(lactide-co-glycolide, polyglycolide

and polylactide

[15]

Magneto responsive

Application of heating, mechanical
deformation, or external magnetic field to

magnetic nanoparticles, such as nanoparticles
of magnetite, maghemite, and ferrite

Alginate-xanthan cross-linked with Ca2+ magnetic
nanoparticles, hemicellulose hydrogels with
magnetic iron oxide (Fe3O4), methacrylated

chondroitin sulfate with magnetic nanoparticles,
poly(N-isopropylacrylamide), and xanthan-bovine

serum albumin-magnetic nanoparticles

[16]

Glucose responsive
Hydrogel as a self-regulated, insulin-delivery

system discretely switching release
at normoglycemia

Catalase, insulin, phenylborate derivative
{4-(1,6-dioxo-2,5-diaza-7-oxamyl) phenylboronic

acid in combination with poly(N-
isopropylmethacrylamide), and

poly(2-hydroxyethyl
methacrylate-co-N,N-dimethylaminoethyl

methacrylate) in combination with glucose oxidase

[17]

Ionic strength
Varying ionic strength and pH can expand the

polyelectrolytes resulting in dissociation of
ionizable groups and subsequent drug release

Alginic acid, carboxymethyl cellulose,
carboxymethyl starch, carrageenan, cellulose sulfate,

chitosan, dextran sulfate, eudragit E, RL, RS, and
hyaluronic acid

[18]

Inflammation responsive

pH changes at the inflammatory site resulted in
drug release or pH-responsive hydrogel with

inflammatory responsive characteristics and the
capability to passively targeting macrophages

Aliphatic polyketals and pH-responsive polymers [19]

2. Stimuli-Sensitive Hydrogels
2.1. Thermoresponsive

Due to their ability to undergo large phase transitions triggered by temperature,
thermoresponsive hydrogels can incorporate drugs that can be slowly released from
the interior of the gel. A synthetic temperature-sensitive graft copolymer based on N-
isopropylacrylamide (NIPAAm) demonstrated excellent chemical stability, hydrophilicity,
adequate swelling, and minimum lower critical solution temperature suitable for drug
delivery systems [20]. The sol-gel transition temperature of thermosensitive hydrogel
shifts to a higher temperature by increasing the butyl methacrylate content [21]. They
are favorably exploited for the delivery of macromolecular drugs. Various biomedical
applications of thermoresponsive hydrogels are described in another review [22].

2.2. pH Sensitive

This class of hydrogels exhibits pH-dependent swelling because of the changes in
the hydrophobic/hydrophilic characteristics of the polymer chain and non-covalent inter-
actions. The extent of swelling is influenced by pH, dissociation constant, and degree of
dissociation of charged groups, polymer level, and pH of the external medium. Unlike
temperature changes, variation in pH exists in the different regions of the body and in
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certain disease conditions such as chronic wounds and tumors; this property can therefore
be utilized for targeted drug delivery to cellular compartment or particular tissues [23].

Amphiphilic pH-sensitive hydrogels prepared in different molar ratios of hydrophilic
poly(methacrylic acid–grafted–ethylene glycol) conjugated with hydrophobic poly (methyl
methacrylate) (PMMA) nanoparticles have been reported [24]. The oral administration of a
polymeric carrier subsequently resulted in the release of entrapped drugs to the intestine
triggered by a shift in pH. The study indicated that a combination of pH-responsive
nanoparticles with biocompatible hydrogels could deliver the drugs to the various sites
of the gastrointestinal tract. The pH-sensitive hydrogels have a significant role in the
fabrication of biosensor, biomedical, and drug delivery applications [25].

Smart hydrogels such as dual sensitive pentablock copolymers were synthesized
through chemical conjugation between thermosensitive segment, poly(ε-caprolactone)-
b-poly (ethylene glycol)-b-poly(ε-caprolactone) (PCL-b-PEG-bPCL), and pH-responsive
polyamide [26]. The pentablock copolymers showed gelation at biological environment
(pH 7.4, 37 ◦C), a controlled degradation rate and hence controlled release of the entrapped
compound. Chitosan nanoparticles loaded with insulin were included and 15wt%–35wt%
pentablock copolymer-controlled release of the agent was noticed without any initial
burst [27].

2.3. Photoresponsive

Photoresponsive hydrogels generally consist of a photoreactive chromophore as the
functional part of the polymer chain. A photoresponsive supramolecular hydrogel con-
stituted of cyclodextrin or azobenzene modified dextran was investigated as a controlled
release delivery system of proteins [28]. Light-responsive hydrogel could be a potential
delivery platform in different areas such as gene delivery and tissue engineering [29]. A
novel infrared-responsive poly (N-isopropylacrylamide) (PNIPAAm) hydrogel nanocom-
posite incorporating glycidyl methacrylate functionalized graphene oxide (GO–GMA)
demonstrated large water uptake and thus has the potential to be employed in microfluidic
devices [30].

2.4. Electroresponsive

Polyelectrolytes under an applied electric field may either swell, contract, or bend and
this property has facilitated its utilization in the drug delivery field, tissue engineering, or
biomimetic systems. An electroresponsive hybrid hydrogel prepared from multi-layered
carbon nanotube/poly (methylacrylic acid) has been studied [31]. In vitro and in vivo
studies displayed a pulsatile drug release profile after an applied electric field. Biocompat-
ible electroresponsive hydrogels composed of polyacrylic acid and fibrin were found to
stimulate cell growth and tissue formation [32].

2.5. Ultrasonically Responsive

Ultrasound is widely used in biomedical applications due to its non-invasive nature,
safety, relatively high precision, and capacity to penetrate tissues [33]. Ultrasound polymer
systems can be guided by lasers and MRI systems so as to control drug delivery rates
suitable for specific disease or condition. It has been demonstrated the ultrasonically
controlled release of ciprofloxacin from self-assembled coatings on poly (2-hydroxyethyl)
methacrylate hydrogel significantly reduced the biofilm accumulation.

2.6. Magnetoresponsive

A polymeric network comprises magnetic micro/nanoparticles which can be maneu-
vered under an external magnetic field so that an effective concentration can be maintained
at the target site while minimizing side effects [34]. Magnetically stimulated hydrogels have
been evaluated for diverse drug delivery applications [35]. The drug delivery and porosity
of the magnetic gel can be regulated through switching on/off the external magnetic field.
Magneto-responsive hydrogels have been fabricated to improve the scaffold performance
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such as restoring, maintaining, and improving tissue functions, and to stimulate cellular
responses after an applied external magnetic field [36].

2.7. Enzyme Responsive

Enzyme-responsive polymers can be utilized as indicators for observing various
metabolic changes and act as signals for the targeted drug delivery to various organs. An
ideal self-modulated insulin drug delivery system requires glucose-sensing ability and
an automatic shut-off mechanism. The biocatalytic transformations of glucose oxidase in-
cluded within the pH-responsive DNA containing hydrogels provides a glucose-triggered
matrix for the controlled release of insulin and therefore behaves as an artificial pan-
creas [37]. The cationic natural polymer oligochitosan and Ca2+ were allowed to cross-link
with pectin to form hydrogel microcarriers to deliver the drug slowly in the upper gastroin-
testinal tract and rapid release of drug simulated physiological conditions of the colon [38].
The in situ triggered gel formation and disintegration of polymeric hydrogel provides them
with applicability in different areas such as tissue engineering, injectable hydrogels, and
controlled release delivery systems.

2.8. Ionic Strength Responsive

The responsiveness towards ionic strength is typically observed in polymers with
ionizable groups such as polyelectrolytes. Depending on the magnitude of the electric field,
they may swell, deswell, or erode and provide pulsatile drug release. It was reported that
drugs with oppositely charged interpolyelectrolyte complexes acted as drug reservoirs
and exhibited sustained drug release rates in an aqueous medium followed by increased
drug release in physiological pH, enhanced by ionic exchange [39]. Interpolyelectrolyte
complexes developed as multiparticulate systems loaded with benznidazole displayed
a multi-kinetic in vitro release profile. Preclinical studies in a murine model of Chagas
disease indicated an improved performance compared to conventional treatment [40]. The
self-assembly of polypeptides into biocompatible and biodegradable polymersomes can
also be regulated for biomedical applications with different ionic strengths [41].

2.9. Inflammation Responsive

The inflammatory process is mediated by B and T lymphocytes but is sustained,
amplified, and mediated by polymorphonuclear leukocytes and macrophages. A naringin-
carrying amphipathic carboxymethyl-hexanoyl chitosan glycerol colloidal pH-responsive
hydrogel with inflammation-responsive characteristics was demonstrated in experimen-
tally induced periodontics [42]. The pH changes at the inflammatory site resulted in drug
release from the matrices and subsequent reduction of periodontal bone loss, inflammatory
infiltration, and downregulated toll-like receptor, the receptor for advanced glycation end
products, and tumor necrosis factor.

3. Functionalization Strategies of Hydrogels

The substitution with active cross-linking sites in place of covalent cross-linking points
has been evaluated to decrease the damage caused by non-uniform distribution of covalent
bonds. Further, these novel molecular structures distribute stress more uniformly by
positional adjustment along a threaded polymer network after an applied external force.
An example depicting this method is a slide-ring hydrogel prepared by a one-pot approach
based on thiol-ene click chemistry [43].

Cross-linked polymer structures can be additionally reinforced by secondary inter-
penetrating polymer networks (IPN) (double network hydrogels). In the case of a fully and
semi-interpenetrating polymer network, a second polymer is cross-linked or physically
associated with the already cross-linked polymer. Under an external stress, the first net-
work absorbs energy and a loosely cross-linked secondary polymer maintains the integrity
of these double-network hydrogels. Semi-IPN chitosan-based hydrogels prepared by se-
lective cross-linking with polyelectrolytes caused enhancement in tensile strength but a
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reduction in the swelling capability of the gels. These hydrogel systems were demonstrated
to be responsive to different pH and ionic strength, and hence had potential application
for controlled release of drugs. Many semi-IPN-based hydrogels constituted of alginate
and methacrylate polymers exhibited increased porosity, multiresponsiveness, sustained
release, and electrical sensitivity [44]. Ionic groups present in IPN hydrogels comprised of
alginate/poly (isopropylacrylamide) are stabilized by covalent bonds as well as through
ionic interactions. These polyionic complexes, having improved mechanical property, ionic,
and pH responsiveness, could be used as biomaterials [45].

Nanoparticles can act as a multifunctional cross-linking point in three-dimensional
polymeric structures either by physical or chemical cross-linking. Physical adsorption ex-
ists between the nanoparticles, and molecular networks with high surface areas associated
with nanoparticles can enhance the mechanical strength of these nanocomposite or hybrid
hydrogels [46]. Frequently reported nanomaterials in nanocomposite gels are raw material
particles, polymeric, inorganic/ceramic, metal, or metal oxide nanoparticles [47]. In situ for-
mation of zinc oxide nanoparticles within the nanocomposite carboxymethyl cellulose/zinc
oxide hydrogels have been reported. The novel nanogel displayed pH- and ion-sensitive
behavior with enhanced swelling in aqueous medium compared to plain hydrogel [48]. In
a recent study, photocross-linked methacrylated glycol chitosan-montmorillonite nanohy-
drogels demonstrated tremendous increase in mechanical strength, in vitro mesenchymal
cell growth, multiplication, and differentiation [49].

Presently, research is also progressing in the field of nanocomposite hydrogels, includ-
ing functionalized nanomaterials [50]. The nanomaterial functionalization can promote
cell–scaffold interactions, increase cross-linking between polymer and nanoparticles, and
advance the self-healing capability or drug delivery. The chiral biomolecules such as
proteins have been used to functionalize nanomaterials, which requires more attention
due to the significant effect on cell activities. Utilizing enantiomers of biodegradable
poly-d (l)-lysine (PDL and PLL) to the functionalized external surface of zeolites and peri-
odic mesoporous organosilicas demonstrated higher affinity and migration of cells to the
enantiomorph portion of the Janus nanocomposite hydrogel, preferred by the cells [51].

As a robust nanomaterial having excellent biocompatibility, biodegradability, and
high mechanical strength, nanoscaled cellulose has possible applications in the areas of
pharmaceutical technology and bioengineering. A self-healing cellulose nanocomposite
hydrogel prepared from acylhydrazineterminated polyethylene glycol (PEG) cross-linked
with dialdehyde cellulose nanocrystals showed significant increase in the mechanical
strength, self-healing efficiency, and biocompatibility of the hydrogel [52]. Conductive
hydrogel-based polymers and nanoparticles have unique properties, like regular hydrogels,
with an additional advantage of electrical conductivity. Different synthetic routes such as
single component stable conjugative conductive hydrogel and multicomponent conduc-
tive hydrogel prepared through electrochemical polymerization and chemical oxidation
polymerization have been explored. Many conductive polymers such as polypyrrole, poly-
thiophene, poly (3,4-ethylene dioxythiophene), and polyaniline are extensively employed
in tissue engineering to promote cell growth and proliferation [53].

Injectable hydrogels are distinguished by inherent fluidly and therefore can be admin-
istered through an injection. Depending on the methods employed, injectable hydrogels are
classified into light irradiated (UV or visible) covalent bonded hydrogels and spontaneously
formed self-assembling hydrogels. An injectable hydrogel with tailored porosity, improved
mechanical properties, enhanced water absorbency, and diffusivity was prepared based on
emulsion technique [54]. A novel injectable hydrogel made of poly(N-isopropylacrylamide-
co-dextran-maleic acid-co-3-acrylamidophenylboronic acid) (P(AAPBA-Dex-NIPAM)), with
glucose-responsiveness and thermo-responsiveness for diabetic therapy, has been devel-
oped [55]. The bioinspired hydrogel encapsulated with insulinoma cells demonstrated
real-time glycemic regulation similar to pancreatic islet β cells (Figure 1).
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Figure 1. Schematic representation of the synthesis of poly(N-isopropylacrylamide-co-dextran-maleic
acid-co-3-acrylamidophenylboronic acid) hydrogel, insulin-secreting cell encapsulation, and insulin
release under glucose conditions.

Recently, a number of novel hydrogels such as DNA-enabled [56] and hyaluronate
hydrogels [57] have been developed for diverse biomedical applications. DNA-based
hydrogels as delivery carriers for gold nanoparticles (AuNPs) and the anticancer drug
doxorubicin have been disclosed [58]. The DNA hydrogel degraded after laser excitation
led to distribution of encapsulated gold nanoparticles and subsequent release of drug.
The cytocompatibility of the proposed drug delivery system confirmed the effectiveness
of a combination strategy between photothermal and chemotherapeutic approaches in
cancer treatment.

The concept of the development of hydrogels depends on the potential of the branched
DNAs to cross-link with complementary strands through network formation [59]. Several
approaches have been proposed for the synthesis of hydrogels, particularly using DNA
sequence (Figure 2), e.g., hybridization of DNA with its complementary strands using
linker moieties, wherein DNA primers are allowed to interact with its complementary
strand in order to produce a 3D network of DNA. Similarly, i-motifs, a tetrameric structure
of cytosine-rich DNA sequences, which possess the potential of self-assembly, can form a
four-stranded DNA complex. A second strategy is the enzymatic ligation; this technique
uses enzymatic polymerase amplification reactions to join two strands of DNA. Another
strategy includes entanglement of DNA; this technique utilizes application of combined
rolling circle amplification and multi-primed chain amplification to synthesize long DNA
strands through entanglement [60].
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4. Role of Hydrogels in Drug Delivery Systems, Tissue Engineering, and
Wound Healing

The drug delivery application of porous hydrogels can be improved and tuned by
varying the cross-linking density of the gel matrix utilizing different physical and chemical
cross-linking techniques. Its porosity permits entrapment of actives and the resultant
release rate depends on the diffusion coefficient through the three-dimensional polymer
network of the gel matrix. Surface-specific modification/grafting on polymer structures
can modulate the drug flux by changing the permeability in response to external stimuli
and therefore release kinetics. The biocompatibility of the hydrogel is mainly due to high
water content and the physicochemical/mechanical characteristics similar to the native
extracellular matrix are ideal for wound dressing. In addition, hydrogels are reasonably
deformable and adaptive to the type of surface to which they are applied. The latter
properties in combination with the bio/mucoadhesive nature of hydrogels can be utilized
to confine them at the site of application for various biomedical applications [61]. The
main disadvantages of hydrogels are their low mechanical strength in the swollen state,
non-uniformity of hydrophobic drugs, rapid drug release, poor bacterial barrier, and
semipermeability to gases and water vapor.

Various gelators at different concentrations or time durations can be used to impart
mechanical strength to the injectable hydrogels, and/or to optimize the release rate by
controlling interactions between the hydrogel and entrapped agents. The tensile strength
needed from a drug-loaded hydrogel is usually based on the particular site and utiliza-
tion of the hydrogel in high-stress locations such as cartilage tissue. Incorporation of
hydrophobic binding sites within polymer networks with simple methods such as solid
molecular dispersion would allow more loading of poorly soluble drugs while preventing
drug recrystallization, when exposed to aqueous environments [62]. Vesicular carriers
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such as liposomes, microspheres, nanoparticles, and niosomes incorporated within the
hydrogel matrix have the ability to extend and control the release of drug while eliminating
or minimizing the burst release typically associated with these particle-based drug delivery
systems [63]. Self-nanoemulsifying drug delivery systems constituted with bupivaccine dis-
persed in Carbopol gel for topical treatment of cutaneous leishmaniasis have been reported.
The application of topical nano-enabled gels for a week led to drastic decrease of para-
site accumulation nearly 100% comparable to the that of an intralesionally administered
commercial product in a Leishmaniasis amazonensis BALB/c model [64].

There is an urgent need for the delivery of biological products such as vaccines,
proteins, and hormones, which can be destabilized or change structure by interactions with
hydrogel medium. Pre-entrapment or complexation with biotherapeutics before in situ
hydrogel formation may address this problem to certain extent.

5. Drug Delivery Systems
5.1. Self-Assembled Nanoparticle System

Nanogels, or hydrogel nanoparticles, have gained tremendous interest as one of the
most appealing nanoparticulate drug delivery systems in recent years since they combine
unique hydrogel characteristics with submicron particle size. The drug molecule is either
conjugated to the surface of the nanoparticles or encapsulated and protected inside the core.
The surface charge, hydrophobicity, and particle size can be appropriately adjusted to avoid
clearance to allow for both active and passive targeting. Further, controlled or sustained
release, ability to reach small capillary vessels, penetration to tissue via para-cellular or
transcellular pathway, and feasibility for administration through different routes are the
other advantages of self-assembled nanoparticle systems. The basics of self-assembled
nanoparticle systems are described in a recent review [65].

The polymeric nanoparticles can be efficiently utilized for the intracellular delivery of
various therapeutic agents such as oligonucleotides, small interfering RNA (siRNA), DNA,
and proteins. Nanoparticles are expected to uptake in cells through endocytic pathways
through either specific or non-specific interactions with cell membranes. An effective
delivery of a drug requires the nanoparticulate system to circumvent intracellular physio-
logical barriers such as endosomes and deliver the drug directly within cytosol. Hydrogel
nanoparticles of specific dimensions and constitutions prepared by particle replication
in non-wetting templates have been explored as delivery vectors for transfection with
SiRNA [66]. Amphiphilic block copolymers and peptide oligomers with distinct order can
undergo self-assembly to form nanostructured hydrogels at physiological pH. Introduction
of cross-linkable junctions such as hydrophobic groups, pH-sensitive moieties, and stereo-
complex crystallization domains in the polymer structure can create a variety of sol-gel
transition hydrogels. Functionalized hydrogels prepared through biological molecules
such as heparin, cell adhesive peptides, and hyaluronic acid can furnish sustained release
of therapeutic proteins or facilitate the growth and function of cells. Due to small particle
size, hydrogel nanoparticles (polymeric nanogel or macromolecular micelle) have gained
considerable attention as impressive drug delivery carriers.

Various methods such as ionotropic gelation, reversed phase microemulsion, emulsifi-
cation solvent evaporation, nanoprecipitation, layer-by-layer coating, and self-assembly
have been utilized to prepare chitosan nanoparticles [67]. Spontaneous formation of poly-
electrolyte or a self-assembled polyelectrolyte complex occur when negatively charged
plasmid DNA solution is mixed with cationic charged chitosan dissolved in acetic acid
solution. Chitosan nanoparticles prepared by ionic gelation method using tripolyphos-
phate anions have shown excellent entrapment efficiency of glycyrrhizin [68]. Surface
modification with PEG was found to decrease the positive charge of the particles and
encapsulation efficiency. The release profile demonstrated an initial burst effect followed
by sustained release due to diffusion and polymer matrix degradation. Insulin-loaded mu-
coadhesive alginate/chitosan nanoparticles demonstrated an encapsulation efficiency over
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70% and pH-dependent release under simulated gastrointestinal conditions. Following
oral administration in diabetic rats, a hypoglycemic effect was observed for over 18 h [69].

The primary reason for interest in preparing PEG-functionalized nanoparticles is to
improve the long-term systemic circulation. PEGylated gelatin nanoparticles have been
evaluated as an intracellular delivery vehicle for tetramethylrhodamine-labeled dextran.
Results indicated that a large fraction of the PEGylated nanoparticles concentrated in the
perinuclear region of the BT-20 tumor cells due to endocytosis. The presence of PEG chains
decreased the percent release tetramethylrhodamine-labeled dextran in the presence of
proteolytic enzyme due to steric repulsion [70].

Gelatin has shown its ability to form nanocomplexes with different polymers via
ionic complexation, graft polymerization, or Maillard reaction. Gelatin-polyacrylic acid
core-shell nanoparticles prepared via polymerization of anionic acrylic acid monomers
showed significantly superior anticancer efficacy in hepatic H22 tumor-bearing mice in
comparison with free drug [71]. Gelatin-coated lipid nanoparticles have been evaluated
for bioavailability improvement of amphotericin [72], while magnetic gelatin nanoparti-
cles were investigated for possible targeting of chemotherapeutic agents [73]. Utilization
of gelatin obtained through recombinant DNA technology and use of two step desol-
vation techniques can overcome some of the limitations associated with gelatin such as
immunogenicity and heterogenicity.

Hydrogel-based nanocarriers are used for sustained release of low-molecular-weight
compounds such as adriamycin, camptothecin, cisplatin, curcumin, docetaxel, doxorubicin,
paclitaxel, prednisolone, and saquinavir [74]. A combination of DOX/IL-2/IFN-g included
in a temperature-sensitive polypeptide hydrogel has been developed for the effective
treatment of melanoma [75]. The preparation of PELG7-PEG45-PELG7 copolymer was per-
formed through ring-opening polymerization of g-ethyl-L-glutamate-N-carboxyanhydride
initiated by diamino PEG. The cytocompatibility and cytotoxicity of the synthesized copoly-
mer were determined by methyl thiazolyl tetrazolium against B16F10 cells. A flow cytom-
etry technique was employed to analyze the apoptosis of drug-laden hydrogels against
B16F10 cells. The cell cycle arrest of B16F10 cells on exposure to hydrogels loaded with
drug was measured by Fluorescence-Activated Cell Sorter. The in vivo biodegradability
of PELG7-PEG45-PELG7 was tested in Sprague Dawley rats. The in vivo antitumor per-
formance of drug-loaded hydrogel was evaluated in a BALB/C mice model grafted with
B16F10 cell line. The in vitro tumor inhibition against B16F10 cells with DOX/IL-2/IFN-
g entrapped hydrogel demonstrated increased antitumor efficacy proved via enhanced
ratio of cell apoptosis and G2/S phage cycle arrest. It was disclosed that a combined
approach improved therapeutic efficacy against B16F10 melanoma xenograft probably
due to increased proliferation and tumor cell apoptosis CD3þ/CD4þ T-lymphocytes and
CD3þ/CD8þ T-lymphocytes. Briefly, the technique of site-specific delivery of DOX/IL-
2/IFN-g utilizing the polypeptide hydrogel presented a viable technique for effective
melanoma treatment.

Due to the ability to permeate the lymphatic draining system, nanoparticulate systems
are apt for directing the delivery of antigens to dendritic cells and hence stimulating the
T cell immunity. A glycol chitosan nanogel was functionalized with folate to enhance its
intracellular drug delivery or incorporated for the asialoglycoprotein receptor used for liver
targeting [76] or conjugation of monoclonal antibodies for specific cell surface markers [77].

Incorporating biocompatible nanoparticles tino the hydrogel matrix can significantly
increase cell adhesion and therapeutic potential of the hydrogels. An injectable hydrogel
containing gold and laponite nanoparticles was tested to improve the clinical efficacy of
cardiovascular regeneration [78]. It was suggested that incorporation of electroconductive
materials with nanoparticles in the myocardial extracellular matrix (ECM) may increase
the remaining functional characteristics of cardiomyocytes. The modification of laponite
clay was carried out using cetyl trimethylammonium bromide and ionic liquids by ion
exchange method. The hydrogels were fabricated by mixing laponite nanosuspension with
ECM solution for one hour at 37 ◦C. The gold nanoparticles were prepared by adding
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tetrachloroauric acid and tri-sodium citrate solution to the above mixture under stirring
for 15 min. It was demonstrated that the cell survival percentage of the treated cells with
Gold-Lap/ECM hydrogel (Figure 3) was more than Lap/ECM matrix, which confirmed
that inclusion of gold nanoparticles provided adequate aid for cell activity.
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Figure 3. (A) Cytoskeleton arrangement of cardiomyocytes under cardiac-specific markers. (B) Bar
graph of covered area representing immunofluorescence images of cardiomyocytes [78]. (C) Swelling
ratios of alginate/PNIPAAm ICE hydrogels with varying concentrations (10%, 15%, and 20% (w/v))
of N-isopropylacrylamide concentrations at 20 and 60 ◦C. (D) Tensile stressstrain curves of algi-
nate/PNIPAAm ICE hydrogels at 20 ◦C. (E) Tensile stress–strain curves of alginate/PNIPAAm ICE
hydrogels at 60 ◦C [79].

5.2. Buccal Delivery

A buccal drug delivery system has attracted keen attention since the buccal mucosal
membrane is more permeable and allows rapid permeation of pharmaceutical actives into
the systemic circulation. An ideal polymer employed for buccal delivery should have
excellent spreadability, swelling, rheological characteristics, adequate bioadhesivity in dry
and wet state, mechanical strength, and be non-toxic, economical, biocompatible, and
biodegradable [80]. To limit the release and permeation of the drug across the buccal
mucosa, hydrogel-based tablets, films, or bioadhesive patches can be successfully devel-
oped. Hydrogel present in mucoadhesive tablets can modulate the release pattern of the
drug depending on the hydration rate and subsequent swelling process of the construct.
The utilization of cellulosic or acrylic polymers typically results in prompt and prolonged
bioadhesion even with high drug entrapment. Frequently used hydrogel-based polymers
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for buccal delivery dosage forms are hydroxyethyl cellulose (HEC), carboxymethyl cel-
lulose (CMC), hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC),
chitosan, polyacrylic resins and polyvinyl alcohol (PVA), polyvinyl pyrrolidone, Kollicoat,
maltodextrin, Lycoat NG 73, and pullulan [81,82].

Buccal films prepared from mucoadhesive polymers like chitosan-carbopol/chitosan-
gelation loaded with miconazole nitrate demonstrated excellent in vitro efficacy against
Candida species. Further, buccal films provide more flexibility, increase contact time, and
offer more protection to the wounded oral mucosa. Bioadhesive patches were fabricated
from various ionic (sodium CMC and chitosan) and non-ionic (PVA, HEC, HPMC) mu-
coadhesive hydrogel polymers [83–85]. Nanocarriers loaded into hydrogels are used for
buccal delivery to improve the residence time and bioavailability, and to protect the drug
from degradation [86].

Evaluation of mucoadhesion using tensile strength and rotating cylinder tests revealed
CMC, HEC, and HPMC as the most promising cellulose derivatives for buccal application.
Thus, generally regarded as safe approved cellulose-based patches can be utilized for
different conditions affecting the intraoral cavity [87]. The PROLOC™ bioadhesive drug
delivery system attaches remarkably well to the soft, hydrated mucus membranes of the
body since it is formed from starch-polyacrylic acid blends, which then entirely erode
and disappear. We have effectively utilized Proloc 15 polymer along with water-insoluble
polymers, Eudragit RL100/RS100, in order to develop a buccal film for the effective delivery
of almotriptan [80]. Enhanced buccal permeation was demonstrated by the developed
hydrogel-based mucoadhesive film compared to oral suspension with equivalent dose
(Figure 4). A dental light-curable gelatin hydrogel containing antimicrobial peptide showed
significant bioadhesivity to physiological soft tissue such as gingiva as well as hard surfaces
such as bone or titanium implants. Further, cytocompatibility, biodegradability, and tissue
regenerative capability demonstrated by these multifunctional hydrogels demonstrate its
potential ability to be utilized in various peri-implant diseases [88].
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When pH of the exposed medium is more than the pKa of the negatively charged
polymer chain, hydrogels are dissociated and subsequently swollen. Cationic polymers
possessing amino acid functional groups show significant aqueous solubility at acidic pH
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and poor aqueous solubility at neutral pH. Better protection of labile drug was observed in
pH of oral cavity utilizing cationic hydrogel polymers [89].

Development of a buccal drug delivery system employing a catechol-functionalized
chitosan hydrogel cross-linked with non-toxic biocompatible cross-linker genipin has
been described. The gelation time and other mechanical properties of this hydrogel were
comparable to chitosan. In vivo studies indicated sustained release of lidocaine up to 3 h
without any untoward effects on rabbit mucosa [90]. The main disadvantage of genipin
cross-linked film is the formation of a dark blue color in the cross-linked film.

Cytokine PharmaSciences Inc. has recently developed the Pilobuc buccal insert based
on a hydrogel polymer technology that allows sustained release of pilocarpine for several
hours. The novel proprietary buccal formulation minimizes many undesirable side effects
associated with oral systemic administration in case of xerostomia and Sjögren’s Syndrome.
The US Food and Drug Administration (FDA) has recently approved OraDisc A, a propri-
etary CMC- and HPMC-based mucoadhesive patch of amlexanox used for the treatment of
aphthous ulcers.

5.3. Oral Delivery

Hydrogels employed for oral therapeutic systems should possess ideal properties
such as biocompatibility, capacity to accommodate diverse actives, tunable properties,
site-specific delivery, and controlled release of synthetic drugs and biotherapeutics for both
local and systemic treatment applications.

In oral drug administration, the greatest challenges faced by the formulation scientist
is to deliver hydrophilic macromolecules such as insulin or heparin. Hydrogels are well
adapted to accommodate these drugs in their polymeric networks to protect them from
the acidic conditions of the stomach. To achieve this target, natural polymers with anionic
pendant groups are grafted with acrylic acid derivatives to obtain stimuli-sensitive behavior
in the final hydrogel polymer. Various polymeric network design strategies to create smart
hydrogels with prompt responsiveness and improved mechanical properties for diverse
applications have been reviewed elsewhere [91].

Various investigations have revealed the effectiveness of the pH-sensitive hydro-
gels included in oral dosage forms of chemotherapeutic agents, insulin, calcitonin, and
interferon-β [89,92]. Particle size of the hydrogel can be tailored to deliver the drugs to
either targeted sites (e.g., 1–1000 µm-small intestine), intracellular vesicles (e.g., 50–200 µm-
endosomes), or lymphatic vessels (<30 µm). It was reported that orally administered
chemotherapeutics are more effective, and have minimum side effects when compared to
parenteral administration [93].

Superporous hydrogel (SAH) formulations possess good mechanical strength and
faster swelling rates, suggesting them appropriate for oral drug delivery and biomedical
applications [94]. To achieve the goal of acid protection and intestinal release, anionic hy-
drogels are typically used since they are ionized, swollen, and have increased pore size and
hence allow drug release at a pH higher than the pKa of the polymer chain [95]. Ionization
at a pH lower than the pKa of the polymer chain would allow cationic hydrogels for drug
delivery in stomach and intracellular environments. A new class of amphiphilic polymeric
carriers composed of anionic P(MAA-g-EG) incorporated with PMMA nanoparticles for
oral delivery of low- molecular-weight proteins or hydrophobic drugs such as doxorubicin
for targeted delivery to the colon have been reported [96]. It was demonstrated that in-
creased embedding of nanoparticles leads to high drug entrapment and extended release
to the colon. Similarly, spray dried gelatin nanospheres showed greater mucoadhesion
following oral administration [97].

A novel hydrogel fabricated from grafting polycaprolactone onto a methacrylic acid
copolymer structure was utilized for the oral delivery of amifostine. The radio-protective
efficacy evaluated through complete blood parameters and a 30-day survival study in
mice indicated effective radioprotection. Such hydrogels could protect the drug from
acidic and enzymatic degradation in the stomach to deliver the drug to the intestine [98].
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From the results of high encapsulation efficiency (94.2 ± 2.6%), drug-loading capacity
(13.5 ± 0.4%), and extended in vivo hypoglycemic effect (~24 h), the authors concluded
that insulin entrapped in lectin-functionalized carboxymethylated kappa-carrageenan mi-
croparticles has the capacity to develop as an oral insulin drug delivery system [99].

Forming polyelectrolyte complexes with natural anionic alginate polymer matrices
and chitosan can control the drug release profile as well as inhibit the rapid decomposition
of alginate at alkaline pH. Interpenetrating networks of such complexes have shown
promise for proteins and vaccine delivery. The potential ability of novel biocompatible
hyaluronic acid derivatives designed for protein and peptide delivery was evaluated using
α-chymotrypsin under simulated acidic conditions [100].

Intracellular chemotherapeutic delivery of hydrogel carriers has been carried out
with acid labile oxime linkage or acetals. The temperature- and pH-sensitive, acid degrad-
able carbohydrate-based nanogels for the endosomal delivery of DNA and enzyme have
been investigated [101]. Novel pH- and temperature-responsive hydrogels synthesized
from N-Acryloyl-L-phenylalanine amino acid and guar gum polymer via free radical poly-
merization has been suggested for controlled release of an antineoplastic agent, imatinib
mesylate [102]. The advantages of hydrogels are stimuli responsiveness, biocompatibility,
and high drug loading while the main limitation is complete dependence of swellability on
diffusivity of water. Hydrogel polymers suggested for oral protein and peptide delivery
are PMMA, alginate-based, and chitosan-based hydrogels [103].

Conventional hydrogel oral preparations are generally prepared as matrix or reservoir
systems (Figure 5). In a matrix system, the dispersed drug diffuses out of the matrix after
the exposure to aqueous medium and subsequent dissolution of the matrix. In the hydrogel
reservoir systems, the drug delivery rate is mainly influenced by the physicochemical
characteristics of the drug and polymer, as well as the thickness of the polymer shell.
The mechanisms of drug release from hydrogels are mainly influenced by dosage form-
related variables and/or polymer characteristics. On the other hand, nanosuspension
incorporated into the hydrogels for oral therapy also shows significant improvement in
bioavailability [104]. Selected examples of commercial dosage forms for oral delivery are
summarized in Table 3.

Table 3. Selected examples of hydrogel-based commercial dosage forms for oral delivery.

Commercial
Product Polymers Active Constituents Dosage Form Application Manufacturer

Buccastem® M
Povidone K30, xanthan
gum, locust bean gum

Prochlorperazine
maleate Tablet Nausea and vomiting

in migraine Alliance

Biotene Carbomer and
hydroxyethyl cellulose Nil Gel Oral moisturizing agent

in dry mouth GlaxoSmithKline

Gengigel® Hyaluronan Nil Gel Mouth and gum
care-oral ulcers Oral Science

Hydrogel 15% Carbomer in ozonized
sunflower oil Ozone Gel Oral health Honest 03

Lubrajel™ BA Glyceryl acrylate and
glyceryl polyacrylate Nil Gel Oral moisturizing agent Prospector

Nicorette® Hydroxypropyl
methylcellulose Nicotine Chewing gum Smoking cessation GlaxoSmithKline

Nicotinell® Xanthan gum and gelatin Nicotine Chewing gum Smoking cessation GlaxoSmithKline

Zilactin-B Gel® Hydroxypropyl cellulose Benzocaine Gel Local anesthetic in minor
oral problems

Blairex
laboratories Inc.

ZuplenzTM
Polyethylene glycol 1000,

polyvinyl alcohol and
rice starch

Ondansetron Soluble oral film
Chemotherapy, radiation,
surgery-induced nausea

and vomiting

Aquestive
Therapeutics
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5.4. Transdermal Drug Delivery

Transdermal drug delivery offers an important means of delivering drugs through
the surface of the skin for local or systemic effects. The advancement of transdermal drug
delivery has been sharply limited by the failure of many drugs to permeate the skin at
clinically relevant rates, for instance proteins and peptides. Both chemical and physical
approaches are used to enhance the transdermal permeation of actives [105]. Hydrogels
suitable for transdermal drug delivery systems should possess excellent biocompatibility,
biodegradability, elasticity, non-allergenicity, ease of application, soft consistency, and high
water content. Due to the hydration effects induced on the skin, hydrogels are utilized to
increase the transport of drugs across the skin [106,107].

Microneedle arrays fabricated from cross-linked hydrogel polymers upon insertion
into the skin can absorb interstitial fluid to form continuous channels connecting to
dermal circulation. In the first reported study, an aqueous mixture constituting poly
(methylvinylether/maleic acid) and PEG 10,000 was used to develop microneedles employ-
ing silicone micromold templates. It was demonstrated that hydrogel-based microneedles
provided prolonged transdermal drug administration and the release rate of the drug is
mainly influenced by the cross-link density of the hydrogel polymer. Furthermore, pulsatile
or bolus delivery can be electrically modulated and the method requires only minimally
invasive patient monitoring [108]. The feasibility of hydrogels forming a microneedle patch
for the sustained delivery of high dose metformin has been investigated [109]. After the
hydrogel microneedle application, steady state plasma drug concentration (3.2 µg/mL) was
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maintained until 24 h in rat model with an overall bioavailability improvement of nearly
30%. Thus, hydrogel-forming microneedle technology could be successfully adopted for
sustained release delivery of therapeutics in near future. It was reported that iontophoretic
delivery of methotrexate from hydrogel was found to be more effective compared to pas-
sive delivery, signifying the potential of hydrogel-based iontophoresis [110]. The repulsion
between cationic buprenorphine and chitosan vehicles may account for the difference
in permeation rates from various vehicles [111]. A novel portable and disposable ion-
tophoretic reverse electrodialysis device (RED) connected to a electroconductive hydrogel
constituted of polypyrrole-embedded PVA has been developed [112]. It was concluded that
charge-inducing agents through RED-driven iontophoretic units can effectively facilitate
the transdermal transport of both acidic and basic drugs.

Due to high water content, swollen hydrogels can provide ease of application and more
comfort for patients compared to transdermal patches. In our laboratory, an optimized
gel constituting nebivolol with gellan gum, carbopol, and PEG 400 was developed for
transdermal delivery and subsequently evaluated in albino rats. Considerable enhancement
of transdermal flux (30.86 ± 4.08 µg/cm2/h) was noticed in optimized gels compared to
nebivolol suspension [113]. Therefore, stable hydrogels formed from the combination of
gellan gum and carbopol 940 could be successfully utilized for transdermal delivery of
biopharmaceutical classification system class II drugs.

A paintable oligopeptide hydrogel containing paclitaxel-encapsulated cell penetrating
peptide-modified transfersomes was developed for topical melanoma treatment. A plas-
tered patch comprising a paclitaxel-modified transfersomes hydrogel above the melanoma
tumor provided extended retention capacity and significant suppression of tumor growth
in combination with systemic chemotherapy using taxol [114]. Various studies have eval-
uated the role of hydrogels in promoting the dermal drug delivery via nanoparticulate
carriers [115].

The potential capabilities of three nanocarriers such as polymeric micelles, solid lipid
nanoparticles, and self-nanoemulsifying drug delivery system (SNEDDS) were compared
as transcutaneous drug delivery systems for lidocaine, through an artificial skin mem-
brane [116]. Highest lidocaine loading was noticed in SNEDDs compared with polymeric
micelles and solid lipid nanoparticles while cumulative lidocaine concentration after 6 h for
both polymeric micelles and SNEDDS was significant compared to solid lipid nanoparticles.

In another study, significant dermal delivery of hydrocortisone from novel composites
constituted of micelles and hydrogel was reported. An enhanced permeation rate with
cumulative quantities of hydrocortisone transported was many folds higher compared
to hydrocortisone cream [117]. Thus, incorporating a particulate carrier loaded with the
drug within the hydrogel matrix can be considered as a feasible and effective strategy for
transdermal therapy.

The pH-sensitive potential of Eudragit S100 nanoparticles loaded with piroxicam
was evaluated for transdermal delivery using Carbopol 934. Nanoparticles (25–40 nm)
were prepared by a simple nanoprecipitation technique and dispersed in a Carbopol
934 hydrogel. Results indicated that delivery of these nanocarriers from the hydrogel
matrix exhibited considerable enhancement of piroxicam via mice skin [118]. Transdermal
enhancement potential of hydrogel led to commercialization of products such as Voltaren
Gel®, Lidoderm® patch, and Persa-Gel®.

5.5. Vaginal Drug Delivery

The vaginal route is mainly used for the treatment of conditions and diseases affecting
the vulvovaginal area caused by yeast, mold, fungi, and bacteria. The vaginal mucosal
lining is also convenient for the absorption of diverse drugs including proteins and peptides
for systemic effects, since it offers a high surface area and contains an extensive network of
blood vessels. The chemical structure and properties of the most frequently used polymers
for vaginal drug delivery applications and recent advances in hydrogels as drug delivery
vehicles for vaginal infections have been reported [119].
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Mucoadhesive chitosan and sodium alginate were successfully utilized to fabricate
vaginal inserts loaded with chlorhexidine digluconate [120]. The inclusion of these poly-
mers in the formulation was to impart better adhesion between the device and the mucosal
lining of the vaginal cavity.

The interaction of the polymer with mucin is related to the physicochemical properties
such as molecular weight, porosity, functional groups, molecular conformation, swelling
and cross-linking capacity, and degree of cross-linking. A novel readily spreadable bigel
was developed with a combination of hydrophilic carbopol 934 gel with organogel consti-
tuted of sorbitan monostearate-sesame oil. In vitro studies indicated enhanced metronida-
zole release rate and antimicrobial efficacy compared to marketed Metrogyl® gel [121].

The design of hydrogel-based dosage forms depends on the route of administration;
for instance, in vaginal administration the dosage form is usually either cylindrical or
torpedo fabricated devices. A vaginal drug delivery system was prepared with flexible
propylene glycol-constituting liposomes loaded with metronidazole or clotrimazole dis-
persed in carbopol hydrogel. It was found that penetration of deformable propylene glycol
liposomes in hydrogel was more rapid than liposomal preparations without hydrogel.
In vitro studies from the drug-loaded liposomes in hydrogel under simulated vaginal
conditions indicated sustained and diffusion-controlled drug release [122].

Vaginal hydrogels containing antimicrobial agents could act as a physical and ther-
apeutical barrier against viral infections and restrict the spreading of the virus through
the vaginal mucosa. For instance, Pluronic® F127 and HPMC containing carboxy group
modified polystyrene particles was found to decrease the motility of Type 1 human im-
munodeficiency virus (HIV-1) by changing the size and surface charge [123]. Furthermore,
the loading of anti-HIV CD4 M48U1 mini-peptide within these polymers did not modify
its anti-HIV-1 activity, unlike conventional hydrogel.

An improved mucoadhesion was observed in a hydrogel combination made of HPMC
(5% w/w) and chitosan loaded with metronidazole nanoparticles. The viscoelastic behavior
of the developed product was similar to commercial Zidoval® vaginal gel [124]. An inter-
esting investigation on the hydrogel composed of low-molecular-weight chitosan revealed
a significant reduction of the metabolic activity during the development of the biofilm and
decreased total biomass to ~85% [125]. The drastic reduction of structural complexities
of biofilm contributed to by low-molecular-weight chitosan can be effectively utilized for
the treatment of vulvovaginitis. Nanocapsules loaded with indole-3-carbinol thickened
with gellan gum demonstrated pseudoplastic flow characteristics, vaginal mucosal adhe-
sion, neutral pH, non-irritating behavior, and enhanced in vitro anti trichomonas vaginalis
activity [126].

A novel delivery system prepared from post-expansile hydrogel foam aerosol of
propylene glycol-liposomes constituting matrices for vaginal drug delivery applications
has been reported. Results from this investigation revealed uniform distribution over
the vaginal epithelium, better adhesion properties, and increased contact time with the
vaginal mucosal membrane [127]. In order to overcome the limitations of low solubil-
ity and poor bioavailability of resveratrol or epicatechin, a vaginal system comprising
liposomal polyphenols in chitosan-based hydrogel was developed. The in vitro release
study demonstrated sustained release and anti-inflammatory and excellent free radical
scavenging activity in comparison to antioxidants vitamin C and E [128].

5.6. Ocular Delivery

The ophthalmic drug delivery system is challenging for formulation scientists due to
unique anatomical, physiological, and biochemical barriers of the eye. Hydrogel polymers
selected for ocular delivery should be biocompatible, biodegradable, and non-cytotoxic
with prolonged retention time. Hydrogels as drug delivery carriers offer several advan-
tages in ophthalmic applications such as ease of preparation, non-invasive administration
method, and high water content, which may stabilize the potency of bioorganic actives
such as peptides, nucleic acids, and proteins [129]. Besides, hydrogels can entrap large
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doses of drugs in their three-dimensional porous molecular network also given through via
small gauge syringes. Hydrogel polymers and cross-linkers used in ocular formulations
and their associated chemistries are extensively reviewed elsewhere [130].

Different delivery routes and target sites for cross-linked polymers are presented in
Figure 6. Due to short elimination half-life, Avastin® used in age-related macular degen-
eration is administered as repeated injections. The frequency of dosing and loss of drug
by drainage can be overcome by formulating in hydrogel. An injectable polysaccharide
cross-linked hydrogel synthesized by mixing glycol chitosan and oxidized alginate aque-
ous solution has been reported [131]. An in vitro release study indicated rapid Avastin®

release within 4 h followed by sustained release up to 3 days. The authors suggest that the
developed in situ gel with controllable degradation rate might be utilized as a versatile
carrier in ocular delivery.
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Thermoresponsive hydrogels are the most investigated hydrogel polymers because
the temperature differences existing outside and inside the body are sufficient enough to
cause cross-linking of the polymer or promote the drug release. The preparation of a sus-
tained release, latanoprost-loaded injectable thermosensitive hydrogel system constituting
chitosan/gelatin/glycerol phosphate demonstrated rapid gelation within 1 min at 37 ◦C.
In vivo evaluation in a rabbit glaucoma model showed significant reduction of intraoc-
ular pressure after a single subconjunctival administration of chitosan/gelatin/glycerol
phosphate [132]. Another thermosensitive in situ gel prepared from triblock polymer poly-
(dl-lactic acid-co-glycolic acid) (PLGA)–PEG–PLGA was tested for ophthalmic delivery of
dexamethasone acetate. It was synthesized through ring-opening polymerization using DL-
lactide and glycolide in the presence of PEG (PEG1000:PEG1500 = 1:1) and the catalyst tin
(II) octoate. The copolymer incorporated with 20% w/w of dexamethasone had a low critical
solution temperature of 32 ◦C, which is close to the ocular surface temperature. Significant
improvement of ocular bioavailability was indicated by higher Cmax (125 ng/mL) and area
under the curve (AUC; 436.0 ± 52.60 ng·h/mL) in rabbits [133]. The PEG diacrylate cross-
linked hydrogels developed from PNIPAAm appears to be a promising, minimally invasive
platform for extended drug delivery to the posterior segment [134]. The prepared hydrogel
retained better thermoresponsive characteristics since it can absorb more water below
lower critical solution temperature through homogeneous macropores created by PEG. In
another study with the same polymer, it was found that the rate of protein (bovine serum
albumin, immunoglobulin G, bevacizumab and ranibizumab) release can be controlled by
varying the cross-linker density without opaqueness, which may otherwise interfere with
visual function [135]. Short duration of action and incomplete biodegradability are the few
issues concerning this novel drug delivery platform.

The key advantages of iontophoresis are the significant enhancement of drug release
and control of therapeutic compounds including large-molecular-weight drugs. A pulsed
low current (1.6 mA/cm2) non-invasive iontophoretic treatment using methotrexate-loaded
hydrogels was reported to be potentially effective in treating ocular inflammatory diseases
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and intraocular lymphoma [136]. After iontophoretic treatment, s minimum effective drug
concentration was maintained for at least 8 h at the sclera and retina and for 2 h at the
aqueous humor.

The sustained release preparations can facilitate even small-molecular-weight actives
that may usually eliminate fast from the vitreous humor, particularly from intravitreal
solution dosage form. A thermoresponsive PLGA-PEG-PLGA hydrogel was demonstrated
to prolong the delivery of Avastin® up to 14 days in the vitreous humor and retina following
intravitreal injection. The drug load in the polymeric hydrogel did not transform the sol-gel
behavior and exhibited no apparent toxicity to retinal tissues [137]. It was found that after
the intravitreal injection, the aqueous humor concentrations of Avastin® from aqueous
solution of Avastin® and the Avastin® hydrogel at 1 day after drug administration were
674.69 ± 297.84 ng/mL and 4471.10 ± 386.34 ng/mL, respectively. It was suggested that the
extended retention (8 weeks) in the corneal tissue is probably due to corneal composition
of collagen without enzymes, resulting in slow clearance.

Intracameral delivery of drugs permits drug diffusion into anterior chamber and a
few posterior ocular tissues. A biodegradable in situ gelling drug delivery system con-
taining pilocarpine prepared from carboxylic acid end capped-PNIPAAm for intracameral
administration of glaucoma has been reported. Ocular bioavailability and duration of
action was found to be more compared to ophthalmic drops, pilocarpine injection, or
drug-loaded PNIPAAm [138]. Some commercial examples of hydrogel-based ocular drug
delivery systems and soft contact lens (SCL) materials are summarized in Table 4.

Table 4. Selected commercial examples of hydrogel-based ocular drug delivery systems and soft contact lens materials.

Product Name Principal Components Indications Manufacturer

Biofinity® Silicone hydrogel Continuous wear up to 7 days. Corrects
near sightedness and farsightedness Cooper vision

Air optix® night and
day®aqua

Lotrafilcon-A (fluoro-silicone hydrogel) Continuous wear up to 7 days. Corrects
near sightedness and farsightedness Alcon

Retisert®
Fluocinolone acetonide, silicone

elastomer and polyvinyl
alcohol membrane

Deliver long term control
of inflammation Bausch and Lomb

Lacrisert® Hydroxypropyl cellulose Moderate to severe dry eyes Bausch and Lomb

Systane® Propylene glycol For use as a lubricant to prevent further
irritation or to relieve dryness of the eye Alcon

Restasis® Cyclosporine, carbomer copolymer
Type A Indicated to increase tear production Allergan

Proclear (Omafilcon B)

2-hydroxy-ethylmethacrylate and
2-methacryloxyethyl phosphorylcholine

cross-linked with ethylene
glycol dimethacrylate

Indicated for daily wear for the
correction of visual acuity Cooper vision

Clintas Hydrate® Carbomer Lubricating eye gel for occasional dry
eye discomfort Altacor

Dailies® AquaComfort
Nelfilcon A polymer (polyvinyl alcohol

partially acetalized with
N-formylmethyl acrylamide)

Optical correction of
refractive ametropia Ciba vision

Systane® gel drops
Polyethylene glycol 400,

propylene glycol
For the temporary relief of burning and

irritation due to dryness of the eye Alcon

Hylo® gel
Sodium hyaluronate, citrate

buffer, sorbitol Long lasting dry eye relief Candorvision

Iluvien® Fluocinolone acetonide, polyvinyl
alcohol, and silicone adhesives Treatment of diabetic macular edema Alimera Sciences

Yutiq™ Fluocinolone acetonide,
polyvinyl alcohol

Treatment of chronic non-infectious
uveitis affecting the posterior segment

of the eye
EyePoint Pharmaceuticals Inc.

Ozurdex® Dexamethasone, poly
(D,L-lactide-co-glycolide) Macular edema, non-infectious uveitis Allergan
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Biodegradable PLGA microspheres containing the anti-vascular endothelial growth
factor aflibercept for ocular drug delivery have been disclosed [139]. The microspheres
were dispersed within a thermosensitive hydrogel made up of biodegradable PEG-co-(L-
lactic acid) diacrylate/NIPAAm hydrogel. In vitro release demonstrated an extended and
controlled drug release (0.07–0.15 µg/day) for up to 6 months.

Due to beneficial physicomechanical properties such as wound leakage (>80 mmHg),
duration of cross-linking (<30 s), bioadhesive strength (0.1 kPa), mechanical strength (5–200
kPa), percentage swelling (<200% w/w), decomposition, and retention time (1 week to
6 months), hydrogels represent an important substitute for wound closing techniques
such as sutures or stromal hydration [140]. An example of an FDA-approved ocular
healing hydrogel for corneal application is ReSure® sealant prepared from four armed
N-hydroxysuccinimide-capped PEG cross-linked trilysine amine. Duraseal® was approved
for cranial adhesion and investigated for wound sealing [141]. These biocompatible
formulations, in addition to sealing corneal wounds, restore and maintain intraocular
pressure similar to normal healing process, avoid astigmatism, and are removed during re-
epithelization.

Various hydrogel polymers are being evaluated to find an alternative for vitreous sub-
stitutes including HPMC, hyaluronic acid/gellan gum, pHEMA, poly (glycerol methacry-
late), siloxanes, PVA, and PVP [129]. The clinical success of vitreous substitutes are limited
by various issues including immune response initiation, faster assimilation or decomposi-
tion, or failure to form a complete retinal tamponade [142]. The challenging problems such
as biocompatibility, sophisticated drug encapsulation and release mechanisms, process
scale-up, shelf-life, and sterilization must be solved before the therapeutic applications of
hydrogels can be fulfilled.

5.7. Contact Lens

Contact lenses provide a safe and effective way to correct vision, when used with
personal care and proper supervision. Insertion of traditional SCL pre-soaked in drug
solutions or post application of eye drops have the ability to release drugs, decreasing elim-
ination and sorption across conjunctiva. Various types of polymeric hydrogels frequently
employed in contact lens-based drug delivery systems, and their merits and demerits, are
described elsewhere [143].

Polymeric hydrogels such as pHEMA are extensively used as SCL materials for ocular
delivery of various drugs [144]. An improved biocompatibility and drug entrapment
without compromising viscoelasticity was observed when it was copolymerized with 4-
vinylpyridine and N-(3-aminopropyl) methacrylamide [145]. An artificial intraocular lens
can address the issues due to cataract and myopia to restore the original visual function.
Siloxane-based hydrogels and hydrophilic and hydrophobic acrylate polymers are the
newer classes of intraocular lenses.

A number of researchers have employed polymerization reactions to entrap drugs,
proteins, and cells in hydrogel structures. However, dissolving the drug in a polymerization
mixture may result in undesired reactions causing loss of their functionality. To overcome
the disadvantages, polymeric hydrogels encapsulated with colloidal drug particles have
been utilized as potential ophthalmic drug delivery systems. The silica stabilized drug-
loaded microemulsions were loaded in contact lenses fabricated from pHEMA hydrogel.
The data revealed sustained release of the drug for eight days and the release rate could
be controlled by the particle size and drug loading [146]. A ring implant was developed
from timolol-loaded ethyl cellulose sandwiched between a hydrogel contact lens prepared
from the same polymer. In vivo pharmacokinetic studies indicated an increase in mean
residence time and AUC while a pharmacodynamic study demonstrated sustained release
results in decrease of intraocular pressure for about a week [147]. Though pHEMA exhibits
the resistance to crack propagation and possesses tunable mechanical properties, one of
its major disadvantages is slower biodegradability that limits its application in biological
fields. Researchers have been able to improve the mechanical properties and low-molecular-
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weight products after degradation by changing the degree of cross-linking with various
polymers. Multilayer modification technique has been adopted to modify silicone hydrogel
intraocular lenses with hyaluronic acid/chitosan polyelectrolyte complexes in order to
prevent cell adhesion and proliferation without compromising optical characteristics [148].
A schematic overview of this preparation method is depicted in Figure 7.
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A hydrogel containing a cationic functional group in its side chain was prepared with
2-hydroxyethyl methacrylate (HEMA) and methacrylamide propyl trimethylammonium
chloride [149]. It was capable of entrapping an anionic drug, azulene, based on ion
exchange reaction. Similarly, hydrogel contact lens materials having phosphate side groups
in polymer networks were investigated for their role in cationic drug delivery. One of the
most extensively studied molecular complexations is the interaction between ligands and
cyclodextrin to form reversible inclusion complexes [150]. A successfully grafted acrylic
hydrogel constituting β-cyclodextrin (β-CDs) exhibited enhanced capacity to entrap drugs
and improved the extending of drug release in lacrimal fluid for half a month [151]. In the
polymer structure, β-CDs are not a part of the chain but project on 2–3 ether bonds through
the hydroxyl groups. The pendant did not change the physicomechanical properties of
the polymers such as light transmittance, glass transition temperature, swelling degree,
viscoelasticity, oxygen permeability, or surface contact angle. However, a cytocompatible
acrylic hydrogel increased the drug loading (1300%) and drug affinity (15-fold), and
decreased the friction coefficient (50%).

Molecularly imprinted polymer hydrogels are synthetic polymers displaying specific
molecular recognition domains generated during polymerization reactions due to the inclu-
sion of molecular templates of interest. The drug release from molecularly imprinted hydro-
gels made of methyl methacrylate functional polymer with ethylene glycol dimethacrylate
was studied at different pH [152]. High drug loading capacity with desired profile following
Fickian type of drug release kinetics was observed. pHEMA imprinted with norfloxacin
was investigated as contact lens materials for ocular drug delivery [153]. Some exam-
ples of molecularly imprinted polymers impregnated with timolol are: N,N- diethylacry-
lamide and HEMA, natural receptor-based poly(AA-co-AM-co-HEMA-co-PEG200DMA),
poly(AMco-HEMA-co-PEG200DMA), poly(AA-co-AM-co-NVPco-HEMA-co-PEG200DMA),
and poly(AA-co-HEMAco-PEG200DMA). A novel antibacterial contact lens material made
of an antimicrobial metal organic framework, [154] (AGMNA) incorporated into polymer
hydrogel using the polymer HEMA, has been reported [154]. Significant antimicrobial
activity against both Gram-negative and Gram-positive microorganisms was demonstrated.

Though the results from various investigations reveal that the drug entrapment ca-
pacity is enhanced, the affinity towards a template molecule is the main limitation of
the imprinted hydrogels. Maximal drug loading is restricted by the template molecules
and functional monomers of the imprinted hydrogel. In addition, the deformation of the
imprinted hydrogel utilized for the contact lenses materials may affect the release profile
of drugs. Molecularly imprinted materials capable of specific recognition of the template



Pharmaceutics 2021, 13, 357 22 of 36

in aqueous environments with minimum nonspecific interactions with drugs and other
excipients are the main focus of current investigations in this field. The synergistic combi-
nation of imprinting and external stimuli responsiveness may have tremendous practical
applications in different types of drug delivery systems. Molecularly imprinted polymers
are extensively probed in hydrogel contact lenses for improving drug entrapment as well
as prolonging their release duration. A layer-by-layer coating of natural polysaccharides
using genipin as a cross-linker to sustain the release of diclofenac sodium from the surface
of silicone hydrogels and SCL has been reported [155]. A biocompatible, hydrophilic, and
non-toxic coating had minor effects on the physical characteristics of SCL and success-
ful sterilization of these biopolymers can also be carried out through a high hydrostatic
pressure sterilization method. Such mono or multifunctional imprinted hydrogels as SCL
materials could be potentially used in ocular drug delivery systems.

5.8. Wound Dressing

The complex biological process of wound healing in human beings is culminated
through well-defined events, namely: coagulation and hemostasis; inflammation, chemo-
taxis, and activation; proliferation, maturation, and remodeling. Hydrogels as a wound
dressing match most of the desirable features expected for wound healing and are the
most appropriate material for burn patients. Due to the hydrogels’ unique advantages of
retaining desired moisture level at the wound zone, allowing proper oxygen and mois-
ture exchange between the wound and the surroundings, biocompatibility, possessing
tissue like structure, ease of application due to softness, elasticity and flexibility, providing
cooling sensation for patient’s comfort, ability to absorb serous discharges from lesions,
and reduced interferences with wound healing process, their role as the preferred wound
dressing is well accepted by clinicians and biomaterial scientists [156]. The poor mechanical
stability of hydrogels has been resolved by using composite or hybrid membranes systems
employing physical or irradiation cross-linking methods. The cross-linked polymers have
the ability to retain more water in their three-dimensional mesh structures. The hydrogel
structure can embed actives such as antibiotics in the molecular network during gel forma-
tion and release it in a controlled manner after application to the wounded site. Treatment
of wounds in the moist environment of hydrogels has shown to enhance re-epithelialization
and additionally provides a microenvironment enabling healing without scarring. Recent
developments including synthetic processes of hydrogels and their biomedical applications
as wound dressing materials are reviewed in the literature [157].

The material used for wound dressing is routinely subjected to: testing for tensile
strength using a texture analyzer; cytotoxicity tests for biocompatibility based on human
polymorphonuclear neutrophils to trigger a respiratory burst; microbial testing for antibac-
terial efficacy using the colon-drip flow reactor model employing the methicillin-resistant
staphylococcus aureus or pseudomonas aeruginosa biofilm growth; toxicity and skin sensi-
tivity evaluation. Permeability of moisture and gases through the film for wound dressing
is essential to keep the wound comfortable and enhance the healing process. It can be
evaluated using the water vapor permeability testing based on the method described in
United States Pharmacopoeia.

Technological advances in moist wound dressings are evolving with different inbuilt
properties such as absorption, hydration, and antibacterial activity. In order to create a moist
wound environment, the application of a moisture-retentive dressing may include one or
more of the following materials such as hydrogel, petroleum jelly, hydrocolloid dressing,
gelling alginate dressing, film dressing, and occlusive foam dressing depending on the type
of wound. Gamma radiation induced cross-linking with aqueous solutions of hydrophilic
polymers such as PVA or PVP and resulted in concurrent generation of sterilized hydrogels
currently marketed as “Áqua-gel” wound dressings [158]. An inexpensive method has
been invented to prepare sterilized hydrogels by mixing an aqueous solution of suitable
hydrophilic polymers and a cross-linking process is accomplished by thermal curing under
high pressure followed by autoclaving or microwave irradiation [159].
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Hydrogels have been included in the architecture of some wound dressings together
with other added constituents, forming composite products beneficial for many types
of wounds. Composite hydrogels made of gelatin-grafted dopamine/chitosan/carbon
nanotubes [160], lignin-chitosan-PVA [161], or nanocurcumin loaded N,O-carboxymethyl
chitosan/oxidized alginate hydrogel [162] provide new hope for efficient wound care
management.

Irregularly shaped amorphous hydrogel dressings are primarily formulated to rehy-
drate or to create a favorable moist condition that supports healing of wounds, burns, and
tissue damages caused by radiation. Selected examples of various commercial hydrogel
wound dressings are displayed in Table 5. A topical anesthetic hydrogel containing lido-
caine and hyaluronic acid is recommended for partial or full thickness wounds and painful
dressing changes. Soft and conformable alginate dressings are particularly recommended
for wounds with excessive exudates such as pressure ulcers and infected wounds. Hy-
drocolloid wound dressings usually composed of gelatin or pectin cellulose derivatives
are recommended for partial and full thickness wounds that require a secondary dressing.
Recently, an amidated pectin oxidized chitosan has been suggested as a potential wound
dressing material for skin rejuvenation [163]. The main advantage of this method is its
ability to form in situ gel without any cross-linking. Further, both modified and natural
polysaccharides had the desired gelation time, good biocompatibility, and solubility in
neutral solution. Novel methods such as 3D printing [164] and electrospun techniques [165]
were investigated for fabricating wound dressing materials. Collagen, a natural structural
protein that constitutes the extracellular matrix, is involved in different phases of wound
healing events. Collagen can stimulate and recruit macrophages and fibroblasts, provide
moisture or absorption, and create a microenvironment that hastens healing cascade by
manipulating wound biochemistry. Oxidized regenerated cellulose in combination with col-
lagen has the capability to bind with growth factors and inhibit matrix metalloproteinases
in the wound site [166]. Collagen dressings can drastically decrease elastase levels in a
wound environment, thereby disrupting the brutal cycle of chronic wounds and potentially
promote wound healing.

A novel injectable hydrogel wound dressing was prepared from sericin, isolated from
silk cocoon [167]. To improve the mechanical properties of sericin, it was cross-linked with
sodium alginate using calcium ion as cross-linking agent to form an interpenetrating poly-
meric network. Further, silver nanoparticles were synthesized in situ by tyrosine moiety of
sericin to enhance the antibacterial potential of the hybrid hydrogel. Injectable hydrogels
are attractive as a minimally invasive non-surgical treatment for irregular wounds. CCK-8
assay showed the cytocompatible nature of sodium alginate/sericin and sodium algi-
nate/sericin with silver nanoparticles. The bacterial growth and bacterial colony counting
assay proved the antibacterial activity of sodium alginate/sericin with silver nanoparticles
compared with the control. Wound contraction ratio determined after 12 days showed
significant improvement with nanoparticles, demonstrating the potential of the hydrogel
in wound healing.

Calcium alginate dressings are most promising in heavily exudative wounds where
they enhance formation of granulation tissue. The alginate cross-link with sodium present
in wounds could form a gel structure that provides an optimal moist healing environment
while calcium stimulates cell migration, remodeling, and accelerates wound homeosta-
sis [168]. In vivo studies in porcine and mouse models indicated that adipose-derived stem
cells in gelatin wound dressings significantly accelerated the wound healing process and
skin regeneration through enhanced cell growth and cell differentiation [169]. The histolog-
ical examination showed that the wound dressing samples exhibited significantly lower
inflammatory responses than that of the control sample and had hair follicle formation.

Amnioexcel® and amniomatrix® are cryopreserved amniotic suspensions developed
by means of a proprietary CryoPrime™ process, which maintains the unique structural
characteristics of amniotic allograft membrane. The product comprises collagen and
alginate and has native tissue incorporating intact extracellular matrix and growth factors.
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It contributes structural tissues for repair, replacement, or reconstruction of damaged skin,
especially in challenging and difficult to heal wounds.

Table 5. Selected commercial examples of hydrogel-based wound dressing materials.

Product Name Principal Components Indications Manufacturer

Helix3-cm® Type 1 native bovine collagen Management of burns, sores, blisters, ulcers,
and other wounds Amerx Health Care Corp.

3M™ Tegaderm™ hydrogel
wound filler Hydrocolloid dressing Low to moderate draining wounds, partial-

and full-thickness dermal ulcers 3M Health Care Ltd.

AquaSite ®amorphous
hydrogel dressing

Glycerin based
hydrocolloid dressing

Provide moist heat healing environment and
autolytic debridement Integra Life Science Corp.

Algicell® Ag calcium
Alginate dressing with

antimicrobial silver
Calcium alginate ionic silver Effective against a broad range of bacteria and

more absorption of drainage Integra Life Science Corp.

INTRASITE® gel hydrogel
wound dressing

Modified carboxymethyl
cellulose, propylene glycol

Re-hydrates necrotic tissue, facilitating
autolytic debridement minor burns, superficial

lacerations, cuts, and abrasions

Smith &Nephew Healthcare
Limited

Microcyn® skin and wound
hydrogel

Hypochlorous acid All types of chronic and acute wounds as all
types of burns Microsafe group

Prontosan® wound gel Polyhexanide and betaine Cleansing and moisturizing of skin wounds
and burns Bbraun

Purilon® gel, Regenecare®

wound gel
2% lidocaine collagen, aloe

and sodium alginate Pressure ulcers, cuts, burns, and abrasions MPM Medical

Cutimed® gel Carbomer 940 Supports autolytic debridement in necrotic
and sloughy wounds BSN Medical

Viniferamine® wound
hydrogel Ag

Glycerin
Metallic silver

Partial and full thickness wounds with signs of
infection and little to no exudate McKesson

HemCon® bandage PRO Chitosan Providing hemostasis, antibacterial barrier
against wide range of microorganisms TriCol biomedical Inc.

Hyalofill®-F and R
Hyaluronic acid in fleece

and rope

Absorbs wound exudate, promotes
granulation tissue formulation, supports

healing process
Anika

CMC fiber dressing Carboxymethyl cellulose Absorptive dressing for moderate to
heavy exudate Gentell

Inadine™ (PVP-1)
non-adherent dressing

Polyethylene glycol,
povidone iodine

Ulcers deriving from different etiologies,
chronic wounds 3M Health Care Ltd.

6. Tissue Engineering

Tissue engineering or regenerative medicine is a rapidly evolving multidisciplinary
field that refers to the practice of combining scaffolds, cells, and biologically active
molecules for the recovery, maintenance, and improvement of tissue performance. Bio-
materials contribute a pre-defined three-dimensional porous support structure within the
anatomical site in which cells can attach, grow, and undergo spatial reorganization to
generate new fully functional tissue. They also allow for the transfer of cells and desired
biological factors to the targeted sites in the body. The fabrication of diverse geometrically
shaped scaffolds with tunable pore sizes is particularly important for confinement of bioac-
tives and cells for various biomedical applications [170]. Further, an interconnected porous
structure is significant since the channels formed allow nutrients and signaling molecules
to reach cultured cells [171].

An ideal biomaterial is expected to be biodegradable and bioresorbable to allow
restoration of damaged tissue without inducing an inflammatory response. Thus, biomate-
rials provide adequate mechanical integrity for support during early tissue development,
while in late development, it should have begun degradation itself such that it does not
hinder additional tissue growth. A review describing the structure, synthesis, properties,
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fabrication method, and tissue engineering applications of hydrogels has been recently
published [29].

Due to biodegradable and biocompatible characteristics, triblock polymers of PLA–
poly(ethylene oxide)–PLA are employed as drug delivery carriers and tissue scaffolds [172].
Due to high porosity, PLA nanofibrous scaffolds are widely used for orthopedic, nerve,
and soft tissue engineering applications [173]. The PVA-grafted lactide oligomers have
demonstrated their potential application as a cartilage substitute in tissue engineering [174].

The most frequently used biological materials for scaffold fabrication are collagen,
various proteoglycans, alginate-based substrates, and chitosan. In comparison to synthetic
polymers, natural polymers are more biodegradable and bioactive, besides improving
cell adhesion, proliferation, and growth. Nevertheless, fabricating homogenous and re-
producible scaffold structures from fragile biological materials presents a challenge, for
instance, in orthopedic applications. In order to avoid the problems using single-phase
biomaterials, composite scaffolds comprising a number of biomaterials can be utilized.

The static microenvironment typically provided by hydrogels does not exactly simu-
late the complex heterogeneous and dynamic nature of the extracellular matrix. Recently,
a number of novel fabrication technologies such as 3D bioprinting have emerged, which
maintains the spatial heterogeneity essential for tissue integration, cellular activities, and
biological processes [175]. The ability to create a printable and biocompatible cell-enriched
hydrogel matrix is limited by the cytotoxic substances generated during cross-linking and
photopolymerization reactions. An organ-on-chip system is considered as an emerging tool
utilizing a microfluidic bioreactor device, where cells are microengineered to create tissue
constructs which can reproduce organ-level functions [176]. The method is particularly
useful for screening potential drug candidates and probing the fate of cells under different
conditions, as it mimics in vivo conditions of the human body.

The application of novel approaches to concurrently control both the gelation process
and the interactions between the gel and the extracellular matrix would widen the practical-
ity of injectable hydrogels for drug delivery as well as in biomedical fields. Implanted hy-
drogels can either directly act as drug carriers or immobilize other drug delivery carriers at
the targeted site. An injectable curcumin liposome-chitosan/β-glycerophosphate hydrogel
(Cur.ps-H) system created through combined approaches involving a supercritical carbon
dioxide technique and a thin-film evaporation method for tissue regeneration application
has been reported [177]. This technique demonstrated maximum entrapment efficiency
and stability when compared to thin film hydration. In vitro release studies of Cur.ps-H
show sustained release of about 12 d, which suggest injectable liposome-hydrogels as a
favorable delivery system for tissue restoration.

6.1. Polymers
6.1.1. Collagen

Polymer scaffolds are utilized as space filling agents, as delivery vehicles for bioac-
tives, and as three-dimensional structures as reservoirs of cells and growth factors for the
formation of desired tissues. Collagen is used either alone or in combination with added
constituents to promote biological and/or mechanical characteristics of the scaffold.

Investigations have led to the advancement of a collagen scaffold with optimized
composition, cross-linking density, and pore size distribution for bone regeneration in vivo
in minimally loaded calvarial defects. Improved mechanical properties with enhanced per-
meability for cell infiltration and vascularization have been demonstrated by introducing
hydroxyapatite in a highly interconnected porous structure of collagen based on the two
main constituents of bone. A biologically active composite scaffold was created either by
adding a collagen slurry to a stable nano-hydroxyapatite suspension or immersing porous
collagen scaffolds in nano-hydroxyapatite suspension after freeze-drying. The suspension
method was found to be more reproducible, and the quantity of nano-hydroxyapatite
loaded could be customized with greater ease than with the immersion technique [178].
It was reported that cell-free scaffolds prepared from collagen–glycosaminoglycan and
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collagen–calcium phosphate showed excellent healing compared to controls and tissue-
engineered mesenchymal seeded constructs. The macrophage-led tissue remodeling re-
sponse suggests that matrix deposited cell laden scaffolds adversely affect healing during
bone regeneration [179].

The main hindrance in nerve regeneration is to develop an artificial neural graft
that could imitate the extracellular matrix (ECM). It has been demonstrated in many
investigations that electrospinning polymer blending is a simple and effective approach
for fabricating novel biocomposite nanofibrous scaffolds. Data demonstrated that PLGA–
silk fibroin–collagen scaffolds, particularly the one that contains 50% PLGA, 25% silk
fibroin, and 25% collagen, is more suitable for nerve tissue engineering compared to PLGA
nanofibrous scaffolds [180].

Results from cell regeneration and neurofilament protein expression analysis data
indicated that the biocomposite nanofibrous, electrospun fabricated scaffold composed
of poly(L-lactide-co-epsilon-caprolactone)/collagen I/collagen III behaves like ECM in
nerves and therefore has a capability to be utilized a possible substrate for nerve regenera-
tion [181]. It was demonstrated that aligned poly(3-hydroxybutyrate-co-3-hydroxyvalerate
are better substrates for nerve tissue regeneration application [182]. The heparin/collagen
constituting nerve growth factor layered onto the poly-L-lactide nanofibrous scaffolds
also exhibited its potential role in peripheral nerve regeneration [183]. Thermosensitive
hydrogels of PLGA-g-PEG constituting hyaluronic acid were researched for bone tissue
engineering applications. It was indicated that the hydroxyapatite contents significantly
enhanced the mechanical strength of hydrogels and the bioactivity of the composite.

The main limitations that restrict the extensive use of hydrogels in tissue engineer-
ing are uncontrollable swelling, toxic cross-linking processes, inadequate pseudoplastic
rheological behavior, and lack of self-healing properties. An attempt has been made to
circumvent these issues by modifying collagen hydrogel using 8-arm polyethylene glycol-
maleimide cross-linker by thiol-Michael addition click reaction [184]. Novel self-healing,
biodegradable, and biocompatible hydrogels demonstrated only minimum swelling (6%),
as well as excellent shear thinning and cell compatibility properties.

6.1.2. Alginates

Alginate-based hydrogels have been extensively evaluated in tissue engineering since
they carry several characteristics akin to human extra cellular matrix. Recently, oxidized
alginate-based hydrogels have drawn considerable attention as biodegradable materials for
tissue engineering applications. Even with many promising advances, current technologies
are limited in their capacity to regenerate cartilage bearing complex mechanical properties
and biochemical composition. The regeneration of cartilage is investigated through a
combination of chondrocytes or stem cells, stimulatory growth factors, and bioreactors
enclosed within scaffolds preferably made from hydrogels. Development of cytocompatible
adipocytes from human adipose stem cells entrapped in varying molecular weights of
oxidized alginate hydrogel was reported [185]. In another study, a cell-enriched arginyl-
glycylaspartic acid grafted oxidized alginate hydrogel used as a bioink for 3D-printing
applications enhanced cell growth compared to unmodified alginate-based printed con-
structs [186]. Oxidized alginate/gelatin and oxidized alginate/fibrin hydrogels were
investigated for bone tissue regeneration. A covalently cross-linked hydrogel made from
galactosylated chitosan and oxidized alginate was tested as a scaffold for liver tissue engi-
neering [187]. The oxidized alginate was also tested for cardiac repair, tissue fixation, and
wound healing applications.

Creating a 3D vascularized architecture that supports cell viability due to enhanced
oxygen permeation and nutrient transport continues to remain as a major hurdle in the
field of bioengineering. A novel coaxial nozzle fabrication technology has been devel-
oped to print blood-vessel-like microchannels with mechanically stable shells containing
cell-enriched structures within a calcium alginate gel matrix [188]. High cell viability
attained by this method is mainly due to minimum exposure of the cell-encapsulated
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core to cross-linking agents while maintaining an effective cross-linking of external shell
materials that provide an adequate mechanical stability to the formed structure. In another
study, gelatin was incorporated to improve the mechanical stability of the structures along
with hydroxyapatite and human mesenchymal cells for bone engineering. It was reported
that Young’s modulus of the hydrogel systems was enhanced with the increase in hydrox-
yapatite content [189]. Calcium alginate microparticles loaded with bone morphogenic
protein-2 (BMP-2) demonstrated improved osteogenic differentiation and controlled re-
lease of BMP-2 in goat multipotent stromal cells. Due to enhanced in vivo enzymatic
degradation of gelatin, controlled release of BMP-2 was observed up to 4 weeks after
subcutaneous implantation in mice [190]. AlgiMatrix® is an example commercial hydrogel
product typically used for 3D cell culture applications.

Recently, researchers have created a thermally actuating and mechanically strong con-
struct prepared from Alginate/PNIPAAm ionic covalent entanglement hydrogels through
extrusion-based 4D bioprinting [79]. The bioinks had a fixed alginate concentration of 4%
(w/v) and varying NIPAAm concentrations (10%, 15%, or 20% w/v) with constant amounts
of covalent cross-linking agent and UV initiator. By varying the amount of thermosensitive
PNIPAAm network in the hydrogel, the gels demonstrated change in reversible length
between 41–49% after heating and cooling between 60 ◦C and 20 ◦C (Figure 2). Blocked
stresses noticed in tension were between 10–21 kPa. The opening and closing of smart
valves in response to hot and cold water opens the possibility of such smart hydrogel
materials to be used as self-assembling structures and various biomedical applications.

6.1.3. Hyaluronic Acid

Hyaluronic acid offers many advantages as a scaffold including biodegradability, a
primary intracellular component of connective tissues, creating an environment conducive
for cell infiltration, and taking part in key cellular activities such as proliferation, tissue
regeneration, and wound repair. Hyaluronic-acid-based polymers have been explored
as cell carriers for bone, nerve, soft tissue, and smooth muscle engineering applications.
Different chemical modifications on hyaluronic acid are performed to create new bio-
compatible, biodegradable mechanically strong scaffolding materials. The utilization
of chitosan as a composite material for hyaluronic-acid-based hydrogel have been stud-
ied [191]. In vitro studies and implantation studies in osteochondral defects in rabbit knee
joints with scaffolds encapsulated with chondrocytes showed ECM production effective
for tissue repair. Similarly, implantation of tauroursodeoxycholic acid–PLGA microspheres
in a hyaluronic acid hydrogel matrix in osteochondral defects in rats showed enhancement
of tissue regeneration, defect filling, the generation of tissue structure, and calcification of
the cartilage [192].

Development of an injectable in situ forming click cross-linked hyaluronic acid hydro-
gel loaded with chondrogenic differentiation factor, cytomodulin-2, and human periodontal
ligament stem cells (hPLSCs) for musculoskeletal application has been described. The
data observed signified that the hPLSC-loaded hydrogel exhibited greater and prolonged
chondrogenic differentiation of hPLSCs [193]. Increased cell viability, biocompatibility,
and better cell infiltration was noticed with the cross-linked hydrogel between poly (Nε-
acryloyl-L-lysine) and hyaluronic acid [194]. The resultant composite hydrogels had
excellent shape recovery properties after loading and unloading for 1.5 cycles (up to 90%)
and displayed a highly porous microstructure. In vitro biocompatibility evaluation with
pre-osteoblast MC3T3-E1 cells indicated that the pLysAAm/HA hydrogels could support
cell viability and proliferation.

Evaluation of cellular activities and hyaluronidase expression displayed efficient pro-
liferation, growth, and migration of the cells in heparin–hyaluronic acid hydrogels, when
compared to hyaluronic-acid-only hydrogels [195]. It was disclosed that in this synergistic
hydrogel, heparin chiefly acts as a binding domain for stem cells while hyaluronic acid
mainly acts as a degradation site for human adipose tissue-derived mesenchymal-derived
stem cell secreted enzymes.
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Due to the viscoelasticity and fibrillar architecture, hyaluronic acid–collagen networks
can be employed as materials that simulate the natural ECM, which could stimulate the
differentiation of embedded stem cells [196]. Different natural polymers such as arginyl-
glycylaspartic acid peptide-functionalized pectin, type I collagen, thiolated hyaluronic acid
derivatives, and glycol chitosan have been used in combination with hyaluronic acid for
cartilage tissue engineering [197].

In vivo studies of hyaluronic acid/chitosan in situ forming hydrogel demonstrated
superior biocompatibility, rapid tissue regeneration, enhanced cell density, vascularization,
and ECM formation [198]. Injectable hyaluronic acid–PEG hydrogel demonstrated its role
in possible treatment for intervertebral disc degeneration to regain disc thickness and
hydration [199]. These results are promising for tunable ECM-based materials for tissue en-
gineering and regenerative medicine. A novel injectable, near-infrared irradiation-induced
in situ forming reactive oxygen species cleavable hyaluronic acid hydrogel was used as a
delivery vehicle for combined photodynamic-anticancer therapy with protoporphyrin and
doxorubicin to obtain tunable on-demand drug release [200]. This versatile hydrogel pos-
sessing remarkable biocompatibility and biodegradability could act as a potential carrier
for combined chemo-photodynamic cancer therapy in the near future.

7. Future Perspectives and Challenges

During the last few decades, many attempts have been made to develop targeted drug
delivery systems that enable the drug delivery to specific sites, organs, tissues, cells, or
organelles in the body to improve the therapeutic outcome. In this context, self-assembled
nanocarriers to actively target overexpressed antigens or receptors in tumor cells are being
explored greatly as an important approach to treatment. Hydrogel-based biosensors have
been investigated for various biomedical applications [201] including cell metabolite and
pathogen detection, tissue engineering, wound healing, and cancer monitoring, and identi-
fication of low-molecular-weight endogenous ligands such as glucose, lactate urea, and
cholesterol. Recently, molecular imprinting techniques utilizing biological molecules with
monomers and cross-linking agents have been used for fabricating biosensors. Fabrication
of 3D-printed materials using hydrogels is receiving much attention these days [175]. The
incorporation of nanotechnology and dynamic techniques such as 3D printing to the tissue
engineering systems may narrow down the gaps currently existing among the in vitro
models of tissue engineering. There is an emerging approach in hydrogel-based bioprinting
for fabricating cell-laden scaffolds to develop anatomical size, complex tissue architecture,
and tissue-specific functions [202].

8. Conclusions

Though research has been mainly directed towards macroscopic hydrogels, there is an
ever-growing interest in micro and nanogels. Hydrogel nanoparticles are one of the most
promising nanoparticulate drug delivery systems owing to their unique nature combining
the features and characteristics of a hydrogel system with a nanoparticle. Polyelectrolyte
nanogels can act as pharmaceutical carriers by accommodating oppositely charged low-
molecular-weight drugs and macromolecules such as oligo- and polynucleotides (siRNA,
DNA) as well as proteins as targeting motifs. The development of novel hydrogel formu-
lations or improvement of existing hydrogels are presently drawing lot of attention from
formulation and biomedical scientists, and have resulted in many commercial products.
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