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Construction of a web-based nanomaterial
database by big data curation and modeling
friendly nanostructure annotations

Xiliang Yan® 2, Alexander Sedykh?3, Wenyi Wang?, Bing Yan® "*® & Hao Zhu® 2°*

Modern nanotechnology research has generated numerous experimental data for various
nanomaterials. However, the few nanomaterial databases available are not suitable for
modeling studies due to the way they are curated. Here, we report the construction of a large
nanomaterial database containing annotated nanostructures suited for modeling research.
The database, which is publicly available through http://www.pubvinas.com/, contains 705
unigue nanomaterials covering 11 material types. Each nanomaterial has up to six physico-
chemical properties and/or bioactivities, resulting in more than ten endpoints in the data-
base. All the nanostructures are annotated and transformed into protein data bank files,
which are downloadable by researchers worldwide. Furthermore, the nanostructure anno-
tation procedure generates 2142 nanodescriptors for all nanomaterials for machine learning
purposes, which are also available through the portal. This database provides a public
resource for data-driven nanoinformatics modeling research aimed at rational nanomaterial
design and other areas of modern computational nanotechnology.
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ARTICLE

he global market value of nanotechnology is expected to

reach $90.5 billion by 2021! as commercial and consumer

nano-products continue to rise2~4. Increased production,
use and environmental accumulation of these nanomaterials
present important toxicology concerns®~’. A variety of in vitro
and in vivo assays evaluating their potential environmental and
human health effects have generated vast quantities of experi-
mental data®?, requiring data extraction, analysis, and sharing for
guiding the safe design of next-generation nanomaterials!®!1.
This urgency is echoed in the recent Nanoinformatics Roadmap
2030 in USA and Europe, aimed at promoting the capture, pre-
servation, and dissemination of publicly available data on nano-
materials. The Roadmap, which outlined the importance of
coordinating research efforts and charting the challenges in
nanoinformatics as a set of milestones, envisages the flow of data
from experimentalists into structured databases that can be used
by computational modelers to predict nanomaterial properties,
exposure and hazard values that will support regulatory actions!2.

Two large databases for chemicals and proteins have already
impacted different areas of science. As a small molecule database,
PubChem provides structural annotation (e.g., chemical struc-
tures, SMILES, and InChi key), physicochemical properties (e.g.,
logP and molecular weight) and available bioactivities (e.g.,
EC50 and IC50)!3. Since its launch in 2004, PubChem has served
various scientific communities including cheminformatics,
chemical biology, medicinal chemistry, and drug discovery.
Another crucial database for scientific community is the Protein
Data Bank (PDB)!4, which provides three-dimensional structures
of biological macromolecules, (e.g., proteins and nucleic acids)
as PDB files for broad researchers in fields like molecular
biology, structural biology, and computational biology.
However, a comparable nanomaterial database is not available.
The key to building such a database of nanomaterials is nanos-
tructure annotation—a computer-friendly format for encoding
information.

Several nanomaterial databases serving specific areas are avail-
able (Table 1)!5-1°. For example, the cancer Nanotechnology
Laboratory (caNanoLab) database (https://cananolab.nci.nih.gov/)
built by the National Cancer Institute in 2007!° is designed to

expedite and validate the use of nanotechnology in biomedicine.
However, it is not fully accessible to the public because it contains
proprietary data. While these nanomaterial databases, which are
shown in Table 1, share published data and have been used for
modeling studies!®20:21, they are limited by the way they are
curated. Although, new file formats (e.g., JSON!7 and ISA-TAB-
Nano?2) are also specially designed in several nanomaterial
databases, such as eNanomapper and NANoREG, to store and
manage the curated nanomaterial data. Nanomaterial entities
(e.g., composition, physicochemical properties, and biological
activities of the nanomaterials) in these databases exist as text
outputs extracted directly from publications, ignoring nanos-
tructure annotations that are critical for modeling studies. As a
result, variables (e.g., physicochemical properties) used in pre-
vious modeling studies were mostly experimentally generated.
Without nanostructure annotations, diverse structural informa-
tion for predictive modeling and other research such as nanos-
tructure analysis and visualization cannot be performed.

Here, we report a publicly available nanomaterial database that
contains annotated nanostructures of diverse nanomaterials sui-
table for immediate modeling research. The database, constructed
from thousands of scientific papers, currently contains 705
unique nanomaterials, 1365 physicochemical property (e.g., logP,
zeta potential, and hydrodynamic diameter) and 2386 bioactivity
(e.g., cell viability, cellular uptake, and ROS) data points. All
experimentally obtained information on the structure of the
nanomaterials, such as form, size, shape, and surface ligand were
annotated and stored as PDB files, which are downloadable from
the web portal (http://www.pubvinas.com/). The PDB files can be
used to generate nanodescriptors, which were created in-house to
quantitatively represent nanostructure diversity. Using these
nanodescriptors, we developed predictive models for three critical
property/bioactivity endpoints of various nanomaterials using
machine learning (k-nearest neighbor) and deep learning (deep
neural network) approaches. This is the largest and the only
nanomaterial database that contains nanostructure annotations to
support nanomaterial modeling and rational nanomaterial
design. Furthermore, the predictive models developed from this
database can be used to predict three critical properties and

Table 1 Nanomaterial databases.

Database Data points Usage Reference
caNanolab 1308 Expedite and validate the use of nanotechnology in biomedicine 15
https://cananolab.nci.nih.gov/

SZNANO 6854 Develop and commercialize safe and sustainable nano-products 16
http://portal.s2nano.org/

eNanomapper 5528 Develop a computational framework for nanotoxicity data 17
http://www.enanomapper.net/ management

Nanomaterial registry 2031 Help understanding the fundamental properties of nanomaterials 18
http://nanohub.org/

Nanoparticle information library 88 Capture the information about nanomaterial physicochemical 19
http://nanoparticlelibrary.net/ characteristics

NanoMILE 120 Contain characterization data and high throughput screening toxicity ——
https://ssl.biomax.de/nanomile/cgi/ data of nanomaterials

login_bioxm_portal.cgi

DaNa Knowledge Base _ Help understanding the impacts of nanomaterials for humans and the —
https://www.nanopartikel.info/en/ environment

NanoDatabank >1000 Design with simplicity of nanomaterial data storing and sharing —
http://nanoinfo.org/nanodatabank/

NBI Knowledgebase 200 Help understanding the mechanism of nanomaterial exposure effects —
http://nbi.oregonstate.edu/ in biological systems

Nanowerk 4000 Help the nanotechnology community to research nanomaterials —
https://www.nanowerk.com/

The low curation of existing nanomaterials’s databases is limiting their application in modeling studies. Here the authors report a publicly available nanomaterial database that contains annotated
nanostructures of diverse nanomaterials immediately available for modeling research studies.
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Fig. 1 Visualization of 16 representative nanomaterials in the database. The database contains 705 nanomaterials that vary in material type, size, shape,
and surface ligand. Most nanomaterials were spherical but rod-like and irregular ones were also annotated and included in the database. Different surface
chemistries of the nanostructures were rendered in different colors by QuickSurf drawing method in VMD, offering direct impressions of the
nanomaterials. Emboldened text represents text identifiers that can be used to search for the nanomaterial in the database.

bioactivity (i.e., logP, zeta potentials, and cellular uptake) of new
nanomaterials.

Results

Construction of the nanomaterial database. A total of 705
nanomaterials, comprising 414 gold nanoparticles (GNPs),
17 silver nanoparticles (AgNPs), 12 platinum nanoparticles
(PtNPs), 12 palladium nanoparticles (PdNPs), 80 carbon nano-
tubes (CNTs), 48 buckminsterfullerenes (Cgp), 34 quantum dots
(QDs), 32 metal oxides nanoparticles (MONPs), 21 DNA origami
nanoparticles (DnaNPs), 11 dendrimers, and 24 cyclic peptide
nanotubes (CPNTs), were annotated for the database. Figure 1
shows 16 representative nanostructures covering all nanomaterial
types in the database and are rendered by visual molecular
dynamics (VMD) using the QuickSurf method?3. This method
uses positions of atoms and the Monte Carlo simulation for
generating the volumetric density maps and isosurface that
simulate electron density and solvent accessible surface for the
input nanostructures. For example, GNP164 represents the 164th
gold nanoparticle in the database that has a core diameter of 5 nm
(Fig. 1, see Supplementary Data for other structure information).
The nanostructures varied in material type, size, shape, and
surface ligand. For example, CsoNP42 and AgNP14 are 1 nm and
40 nm, respectively. Although most nanomaterials are spherical,
the database also contains rod-like (e.g., GNP412, CNT80, and
CPNT15) and irregular (e.g., Dendrimer6 and DnaNP7) nano-
materials. Different surface chemistries of the nanostructures
were rendered with different colors. For example, the nano-
particle PANP12 (logP = 2.52) with hydrophobic surface ligands
are shown as cyan while the nanoparticle PtNP8 (logP = —1.47)
with hydrophilic surface ligands are rendered purple. Other
structural details can also be observed, for example, the long
surface ligand chains on GNP164 are shown as tentacles. These
detailed 3D plots of nanomaterials in the database provide direct

impressions of the relevant surface chemistry and physicochem-
ical properties.

Figure 2 is an overview of the data curated in this study (see
Supplementary Data for details), including physicochemical
properties (logP and zeta potential), bioactivities (cell viability,
reactive oxidative stress (ROS), and cellular uptake), along with
the nanomaterial types and structure information (surface ligands
and size). Although majority of the nanomaterials are GNPs,
there are 291 other types of nanomaterials (Fig. 2a). The
functions of nanomaterials are affected by surface small molecules
(e.g., drugs and peptides), which determine their diverse
applications (e.g., drug delivery and tumor diagnosis). As shown
in Fig. 2b, the number of surface ligands ranged from 1 (such as
Cgo nanomaterials) to more than 6000 (such as GNP12). This is
because ligand density is highly affected by the properties of the
surface ligands. For example, similar sized GNP (~5.8 nm) can
have around 200 ligands per particle for positively charged
ligands (e.g., GNP130) and negatively charged ligands (e.g.,
GNP138). Meanwhile, ligands without charges can pack up to
over 700 surface ligands per GNP (e.g., GNP152). Among the 705
nanomaterials, one contained up to four different ligands
(GNP392) and there were in total 314 unique surface ligands.
The spherical nanomaterials in the database also had a wide size
distribution (Fig. 2c). At the lower end, there are GNPs with
diameter less than 10nm that are suitable for biomedical
applications?42°. Some spherical nanoparticles have sizes ranging
from 10 to 45 nm.

The nanomaterials in this database are also biologically diverse
(Fig. 2d-h). The logP values of the nanomaterials, which describe
the hydrophobicity of relevant nanomaterials, ranged from —2.68
to 2.72. Zeta potential—the charge at the interface between the
nanomaterial surface and its liquid medium—of nanomaterials in
this database was tested in three solutions (water, aqueous buffer,
and serum) and they ranged from —93.73mV to 86.80 mV
(Fig. 2e). Cell viability showed a spread from 2% to 118.05%
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Fig. 2 Overview of the nanomaterial database. a-h Distributions of nanomaterials accounting to a nanomaterial type, b surface ligand number,
¢ nanomaterial size, d logP, e zeta potential, f cell viability, g reactive oxidative stress (ROS) and h cellular uptake. Nanomaterials in the database show
chemical, structural, and biological diversity. The numbers in the brackets of b, ¢ represent the range of the surface ligand number and nanomaterial size,

respectively.

(Fig. 2f), indicating the various nanomaterials induced varying
degrees of cytotoxicity. ROS level, which is used to evaluate
cellular oxidative stress, linked to cancer, diabetes, and aging, also
ranged widely from 0.44 to 4.10 (Fig. 2g). For nanomaterials,
cellular uptake is usually a prerequisite for their applications in
drug delivery, bioimaging and, etc®. In this database, cellular
uptake capacity of all nanomaterials varied from —1.87 g cell ™! to
1.36 g cell~! with a log10-tranformation (Fig. 2h).

Analysis of nanostructure diversity. After annotating and saving
the structures of all 705 nanomaterials in our database as PDB
files, we calculated 680 nanodescriptors using the Virtual
Nanostructure Simulations (VINAS) toolbox?’—an in-house
cheminformatics program designed to calculate descriptors
based on the annotated nanomaterial structures. The current
descriptors calculated by VINAS are based on Delaunay tessel-
lation, which is a fast way to transform the nano surface geometry
into quantitative values as nanodescriptors. Using the 680 cal-
culated nanodescriptors, we performed principal component
analysis (PCA) and used the top three principal components,
which account for 79% of the total descriptor variance, to show
the occupation of all nanomaterials in a 3D chemical space

(Fig. 3a). All the nanomaterials were structurally diverse and
occupied most of this chemical space. Compared to other
nanomaterials, MONPs occupied a larger area because the rele-
vant VINAS nanodescriptor values, which are based on atomic
properties, varied significantly according to the unique atoms
(e.g.» Zn, Co, and Ce) that make up each MONPs.

Chemical structure is the key to determine a molecule’s
physicochemical properties and biological activities. The content
that structurally similar molecules should exhibit similar
bioactivities is the fundamental hypothesis of all quantitative
structure-activity relationship (QSAR) and other relevant model-
ing studies?$2. To quantitatively study the structural similarity
among nanomaterials, we calculated the pairwise Euclidean
distance for all nanomaterials. All nanodescriptor results were
normalized to a range between 0 and 1 before calculation. A total
of 248,160 distances were generated among each two of the 705
nanomaterials. The distribution of values ranged from 0.004 to
17.31 with an average of 5.3 (Fig. 3b). Two substances are
typically considered similar if their normalized Euclidean distance
is less than 0.5031. In this database, some nanomaterials that
belong to different nanomaterial types, are also structurally
similar. For example, the Euclidean distances between PtNP1 and
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Fig. 3 Nanostructure diversity analysis. a Nanomaterial chemical space shown by principal component analysis (PCA) of all 705 nanomaterials. The three
principal components (PC1, PC2, PC3) account for 43%, 23, and 13% of the total descriptor variance, respectively. Different colors were associated with
different nanomaterial classifications. Six nanomaterials are shown with their identifiers (i.e., PtNP1, PANP1, Dendrimer4, CPNT24, GNP406, and
MONP10). b Distribution of the 248, 160 Euclidean distances calculated from each pair of nanomaterials in the database. The distribution ranged from
0.004 to 17.31with an average of 5.3 (black dashed line). Normalized distribution curve is shown as red dotted line.

PdNP1, and between Dendrimer4 and CPNT24 are 0.037 and
0.14, respectively. PtNP1 and PdNP1 with Euclidean distance
near zero are considered structurally similar because they are
about the same size (6 nm and 5.8 nm, respectively) and have the
same surface ligand at the similar density (371 and 365 ligands

per particle, respectively). Although Dendrimer4 is irregular and
CPNT24 is rod-like, they are considered structurally similar
because they have similar sizes (2 nm and 1.41 nm * 1.44 nm) and
atomic compositions (C, N, O, and H). Some structural outliers
such as GNP406 and MONP10 were also seen. GNP406 is
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data, visualize data, select data based on classifications, and, etc.) and b example PDB file as an output shown as three parts: (1) the basic information, (2)
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structurally different because it is a rod-like gold nanoparticle
(most are spherical) that is also relatively large at 30 nm x 33 nm.
MONP10, which is a La,O; metal oxide nanoparticle around
24.6nm in diameter, is structurally different because of the
unique properties of the Lanthanum (La) atom.

Nanomaterial database portal. To share the structural annotated
data, we developed an online database portal (http://www.
pubvinas.com/) that currently can be used to download the
PDB files, visualize the nanostructures and upload new data
(Fig. 4a). A full-time computer systems administrator will be
responsible for maintaining the portal. Each PDB file of the
nanomaterials can be downloaded by clicking the dropdown bars
with their corresponding classification (e.g., gold nanoparticles,
silver nanoparticles, and platinum nanoparticles). Users can view
the nanostructure online from the corresponding PDB file and
open the downloaded PDB file using well-known cheminfor-
matics software (e.g., VMD, RasMol, and MOE). An example
PDB file is shown in Fig. 4b. The first part of the file contains the
basic information on the structure of the nanomaterial (e.g., the
form, shape and size); the second part contains information about
the atoms (e.g., atom type and coordinates); and the third part
includes information on the bond/connection between atoms.
Users may also share their new data (e.g., new nanomaterials
synthesized and/or tested against new bioassays) by uploading
them as a text file (Fig. 4a). After reviewing the upload files, the
system administrator will generate the PDB files and add the new
dataset to the nanomaterial database. We expect to add more
functions, such as an online toolbox to calculate nanodescriptors
and several trained models, in the future to predict the properties
of new nanomaterials.

Predictive nano property/bioactivity modeling. Using data from
the database, we used k-Nearest Neighbor (kNN), a traditional
machine learning approach, and deep neural network (DNN), a

representative deep learning algorithm, to build computational
models that will identify quantitative relationships between the
annotated nanostructures and target activities. Two properties
and one bioactivity (i.e., logP, zeta potential tested in water at
pH =7, and cellular uptake capacity in A549 cells) were selected
for modeling. The logP dataset contains 147 unique nanomater-
ials, including 123 GNPs, 12 PtNPs and 12 PdNPs. The zeta
potential dataset contains 213 unique nanomaterials, including
148 GNPs, 6 AgNPs, 12 PtNPs, 12 PANPs, 8 MONPs, 24 QDNPs,
and 3 Dendrimers. The cellular uptake dataset contains 71 GNPs,
which were tested against A549 cells. Each model was developed
using the kNN and DNN approach with VINAS nanodescriptors
calculated from the associated nanomaterials in the dataset. The
performance of the model was evaluated by both the 5-fold cross-
validation and external prediction methods common in modeling
studies2-33. For each endpoint, the available data were randomly
split into a training set (80% of the data) for developing the
model, and a test set (20% of the data) for external validation of
the model. The training set was further split into five subsets. The
model was developed using four of the five subsets and the
remaining subset was used for validation. This procedure was
repeated five times until all subsets were used for validation once.

The correlations between experimental and predicted values of
the six resulting models based on kANN and DNN are shown in
Fig. 5, which also includes the root mean square error (RMSE)
and correlation coefficients (R2). Overall, both R? and RMSE for
5-fold cross validation (RZ2_5CV and RMSE_5CV) and external
prediction (RZ_val and RMSE_val) are at the same order of
magnitude, indicating the 5-fold cross-validation process and
external prediction yielded similar results. All correlation
coefficients (both R>_5CV and R?_val) were above 0.5, indicating
that all six models successfully predicted the relationships
between the annotated the nanostructures and target activities>.
When comparing R _5CV and R?_val, kNN models (Fig. 5a, c, €)
showed better predictability than DNN models (Fig. 5b, d, f).
Although DNN is a popular modeling tool and has demonstrated
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Fig. 5 Correlations between experimental (Exp) and predicted (Pred) values. kNN (a, ¢, ) and DNN (b, d, f) models are developed for predicting logP
(a, b), zeta potential (¢, d) and cellular uptake (e, f). logP dataset contains 147 unique nanomaterials, including 123 GNPs, 12 PtNPs and 12 PdNPs. Zeta
potential dataset contains 213 unique nanomaterials, including 148 GNPs, 6 AgNPs, 12 PtNPs, 12 PdANPs, 8 MONPs, 24 QDNPs, and 3 Dendrimers. Cellular
uptake dataset contains 71 GNPs, which were tested against A549 cells. Root mean square error (RMSE) and correlation coefficients (R2) are also shown.
RMSE_5CV and R2_5CV represent the RMSE and R2 values for 5-fold cross validation, while RMSE_val and R?_val represent the values for external
prediction. R2_CV and R?_val above 0.5 indicate high correlation between Exp and Pred values.

high predictability in recent modeling challenges in drug
discovery3>39, it performed differently in other studies3”38. Here,
the lower predictability of DNN models is likely due to overfitting
caused by too many neurons in the layers compared to the size of
the input data. Both kNN (Fig. 5e) and DNN (Fig. 5f) cellular
uptake models performed better (i.e., higher R? values) than the
logP and zeta potential models.

The resulted models, especially the kNN models, can be used to
predict new nanomaterials directly from their structures and
assist rational nanomaterial design. Because the cellular uptake
dataset consists of only one type of nanomaterial (GNP) so that
the applicability of the resulted cellular uptake model can be

reliably applied to predict new GNPs. The logP and zeta potential
datasets consist of various types of nanomaterials collected from
different sources. The two models can be used to predict the
properties of a wide range of nanomaterials. In addition, based on
the same nanostructure annotation method, machine learning
models were recently built to predict the inflammatory responses
and cytotoxicity of various carbon nanoparticles’®. Once a new
nanomaterial is virtually designed using computer, its properties
will be assessed using the developed models before chemical
synthesis. This procedure will greatly save resources by prioritiz-
ing new nanomaterials with desired properties and/or cellular
uptake potentials.

NATURE COMMUNICATIONS | (2020)11:2519 | https://doi.org/10.1038/541467-020-16413-3 | www.nature.com/naturecommunications 7


www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE

Discussion

In summary, we constructed a universal nanomaterials database
containing structure annotations suitable for direct computational
modeling. The database currently contains 705 unique nanomater-
ials with multiple biological testing results. Structures of these
nanomaterials were annotated and stored as PDB files that are
retrievable from online portal. The new data being uploaded in the
future will rapidly expand the database. We also developed several
machine learning models using three property and bioactivity
datasets in this database and showed the models had highly accurate
predictability based on cross-validation and external validation
results (i.e., RZ > 0.5). The resulted models can be used to predict two
critical properties and one bioactivity of new nanomaterials directly
from their nanostructures. Some materials such as alloy nanoma-
terials*0, polymeric micelles*!, mesoporous nanomaterials*?, and
metal-organic frameworks (MOFs)-based nanomaterials*3 were
tentatively not included in the database because their nanostructures
were poorly defined and the related publications currently lack
quality control information on their synthesis. Other nanomaterials
that were annotated still lack representative data in some target
endpoints, for example, cellular uptake potentials. For the database
to be more useful, there is still a need to generate more biological
data of diverse nanomaterials.

Methods

Experimental data curation. The database was compiled from in-house data (297
unique nanomaterials) and external data (408 unique nanomaterials). The in-house
data were collected from our previously published studies (these references were
provided in Supplementary References). The external data was collected by manual
literature searching. This process resulted in more than 1000 papers with nano-
material data for further examination. The data were included into the database
with the following conditions satisfied: (1) the material (e.g., core atoms) and size
information were provided in this paper; (2) the surface ligand structures can be
annotated and transferred into SMILES; (3) the nano-bioactivity or physico-
chemical property data were provided with detailed experimental information.
There are 69 publications that were identified to contain useful data by fulfilling all
criterions (these references were provided in Supplementary References). Each
publication was manually examined, and relevant structure information (e.g., core,
size, and surface ligands), experimental data, and testing details were extracted
from the corresponding papers. For raw data with size and shape information of a
set of nanoparticles instead of a single molecular entity, the same core was set for
all the nanoparticles in this data source. Data were also obtained directly from
figures of published papers using PlotDigitizer. The surface ligand structures were
converted to SMILES, which were shown in Supplementary Data.

Nanostructure annotation. For nanoparticles, the core atoms were first put
together as a nano core based on the particle size information. Then the associated
surface ligands were randomly placed on the core surface. For GNPs, AgNPs,
PtNPs, PANPs, MONPs, and QDs, the core of the corresponding nanostructure
was generated by replicating the unit cell of the most thermodynamically stable
crystal structures and then deleting atoms outside the input diameter data. The
lattice parameters (e.g., unit cell lengths and angles) were obtained from the
Materials Project (https://materialsproject.org/). For CNTs, the python toolkit
scikit-nano (https://scikit-nano.org/) was applied to construct the carbon core
(pristine CNTs). All the surface ligands were optimized before being grafted to the
nano core. As for Cg, the SMILES obtained from the paper** were directly con-
verted to PDB file. The PDB files of DnaNPs were either collected from the cor-
responding papers*>~43 or generated by the Legogen®®. The PDB files of
dendrimers were collected from corresponding papers®9->3, For CPNTs, the
nanostructures were generated by an in-house program written in C++°% In this
procedure, the amino acids were firstly connected as various cyclic peptides
through peptide bonds and then these cyclic peptides were stacked as CPNTs
through H-bonds.

Nanodescriptor generation. At first, 126 tetrahedron fragments were generated
for each nanostructure based on our previous study, which were calculated by
combining the Delaunay tessellation and atom types’. In our previous study, the
value of a nanodescriptor was calculated as the value of each tetrahedron elec-
tronegativity multiplied by its occurrences in the nanostructure. As described
above, the range of nanomaterial size has a wide distribution in the current
database. As a result, there will be a large difference of the tetrahedron occurrences
between the large nanomaterials and small nanomaterials. In order to resolve this
issue, property-based descriptors were also calculated in this study. The procedure
can be described as follows: (1) The occurrence of each tetrahedron was converted

to frequency (the occurrence of each tetrahedron divided by the total number of all
the tetrahedrons in each nanostructure). (2) More atomic properties were intro-
duced, which included the calculated radii (R.,;), the covalent radii (R.y), the
empirical radii (Remp), the atom mass (M), the boiling point (i), the density (p),
the electron affinity (E,), the electronegativity (), the heat of fusion (AHg,), the
heat of vaporization (AH,,p), the first ionization energy (IE;), the second ionization
energy (IE,), the melting point (Tpe), the molar volume (Vy,01), the specific heat
(Q), the thermal conductivity (1) and the valence (g). Then, these 17 property
values of each tetrahedron were multiplied respectively by the corresponding tet-
rahedron frequency, as described in our previous study2’. As a result, 17 descriptor
matrices were generated that each descriptor matrix contained 126 individual
descriptors (the tetrahedron fragments integrated with atomic properties). The
calculated nanodescriptors for all nanomaterials are available from the web portal.
After removing descriptors with limited information (e.g., with consistent values
over all nanomaterials), total 680 nanodescriptors were used for modeling purpose.
The nanostructure annotations and nanodescriptor generations were described in
details in our previous papers2’->°,

Computational modeling. The datasets were split into training sets (80% of the
original datasets) and test sets (20% of the original datasets). The training sets were
used to build models, and the associated test sets were used to evaluate the developed
models. The performance of each model was indicated by 5-fold cross validation
within the training set and the external validation by predicting the test set. In this
study, two different machine learning approaches were used to develop the compu-
tational models. The k-nearest neighbor (kNN) method used the weighted average of
nearest neighbors as its prediction and employed a variable selection procedure to
define neighbors?’->, which was developed in-house (also available at http://
chembench.mml.unc.edu/). The deep neural network (DNN) is a multi-layer feed-
forward neural network, which was implemented using Keras 2.2.4 (https://keras.io/)
python deep learning library, with the TensorFlow backend. The DNN architecture
used in this study included a sequence of five dense layers (three hidden layers), which
were fully connected neural layers. Three hidden layers contained 512, 128, and 64
nodes, respectively. The relu was used as activation function to perform non-linear
transformations. The dropout function, set as 0.2, was used to prevent overfitting of
the resulting models. The rmsprop and mean squared error (MSE) were used as
optimizer and loss function to compile the DNN model in this study. The learning
rate was set as the default value of the rmsprop optimizer. Each DNN model was
trained for 300 epochs.

Data availability
All experimental data can be accessed from the Supplementary Data or from the
Experimental data page of the web portal (http://www.pubvinas.com/).

Received: 9 January 2020; Accepted: 22 April 2020;
Published online: 20 May 2020

References

1.  McWilliams, A. The Maturing Nanotechnology Market: Products and
Applications (BCC Research, Wellesley, MA, 2016).

2. Quadros, M. E. & Marr, L. C. Silver nanoparticles and total aerosols emitted by
nanotechnology-related consumer spray products. Environ. Sci. Technol. 45,
10713-10719 (2011).

3. Stamm, H., Gibson, N. & Anklam, E. Detection of nanomaterials in food and
consumer products: bridging the gap from legislation to enforcement. Food
Addit. Contam. 29, 1175-1182 (2012).

4. Vance, M. E. et al. Nanotechnology in the real world: redeveloping the
nanomaterial consumer products inventory. Beilstein J. Nanotechnol. 6,
1769-1780 (2015).

5. Valsami-Jones, E. & Lynch, I. How safe are nanomaterials? Science 350,
388-389 (2015).

6. Cao, M, Li, J,, Tang, J., Chen, C. & Zhao, Y. Gold nanomaterials in consumer
cosmetics nanoproducts: analyses, characterization, and dermal safety
assessment. Small 12, 5488-5496 (2016).

7. Djuridi¢, A. B. et al. Toxicity of metal oxide nanoparticles: Mechanisms,
characterization, and avoiding experimental artefacts. Small 11, 26-44 (2015).

8. Zhang, Y. et al. Perturbation of physiological systems by nanoparticles. Chem.
Soc. Rev. 43, 3762-3809 (2014).

9. Sharifi, S. et al. Toxicity of nanomaterials. Chem. Soc. Rev. 41, 2323-2343
(2018).

10. Maojo, V. et al. Nanoinformatics: a new area of research in nanomedicine. Int.
J. Nanomed. 7, 3867-3890 (2012).

11. Hendren, C. O., Powers, C. M., Hoover, M. D. & Harper, S. L. The
nanomaterial data curation initiative: a collaborative approach to assessing,
evaluating, and advancing the state of the field. Beilstein J. Nanotechnol. 6,
1752-1762 (2015).

8 | (2020)11:2519 | https://doi.org/10.1038/s41467-020-16413-3 | www.nature.com/naturecommunications


https://materialsproject.org/
https://scikit-nano.org/
http://chembench.mml.unc.edu/
http://chembench.mml.unc.edu/
https://keras.io/
http://www.pubvinas.com/
www.nature.com/naturecommunications

ARTICLE

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Haase, A. & Klaessig, F. EU US Roadmap Nanoinformatics 2030 (EU
NanoSafety Cluster, 2018).

Kim, S. et al. PubChem substance and compound databases. Nucleic Acids Res.
44, D1202-D1213 (2016).

Rose, P. W. et al. The RCSB protein data bank: Integrative view of protein,
gene and 3D structural information. Nucleic Acids Res. 45, D271-D281 (2017).
Gaheen, S. et al. CaNanoLab: data sharing to expedite the use of
nanotechnology in biomedicine. Comput. Sci. Disco. 6, 014010 (2013).
Trinh, T. X., Ha, M. K,, Choi, J. S., Byun, H. G. & Yoon, T. H. Curation of
datasets, assessment of their quality and completeness, and nanoSAR
classification model development for metallic nanoparticles. Environ. Sci.
Nano 5, 1902-1910 (2018).

Jeliazkova, N. et al. The eNanoMapper database for nanomaterial safety
information. Beilstein J. Nanotechnol. 6, 1609-1634 (2015).

Mills, K. C., Murry, D., Guzan, K. A. & Ostraat, M. L. Nanomaterial registry:
database that captures the minimal information about nanomaterial physico-
chemical characteristics. J. Nanopart. Res 16, 2219 (2014).

Miller, A. L., Hoover, M. D., Mitchell, D. M. & Stapleton, B. P. The
Nanoparticle Information Library (NIL): A prototype for linking and sharing
emerging data. J. Occup. Environ. Hyg. 4, D131-D134 (2007).

Ha, M. K. et al. Toxicity classification of oxide nanomaterials: effects of data gap
filling and pchem score-based screening approaches. Sci. Rep. 8, 1-11 (2018).
Choi, J. S, Trinh, T. X., Yoon, T. H,, Kim, J. & Byun, H. G. Quasi-QSAR for
predicting the cell viability of human lung and skin cells exposed to different
metal oxide nanomaterials. Chemosphere 217, 243-249 (2019).

Thomas, D. G. et al. ISA-TAB-Nano: a specification for sharing
nanomaterial research data in spreadsheet-based format. BMC Biotechnol.
13, 2 (2013).

Krone, M., Stone, J., Ertl, T. & Schulten, K. Fast visualization of Gaussian
density surfaces for molecular dynamics and particle system trajectories.
EuroVis(Short Papers) https://doi.org/10.2312/PE/EuroVisShort/
EuroVisShort2012/067-071 (2012).

Khlebtsov, N. & Dykman, L. Biodistribution and toxicity of engineered gold
nanoparticles: a review of in vitro and in vivo studies. Chem. Soc. Rev. 40,
1647-1671 (2011).

Huo, S. et al. Ultrasmall gold nanoparticles as carriers for nucleus-based gene
therapy due to size-dependent nuclear entry. ACS Nano 8, 5852-5862 (2014).
Depan, D. & Misra, R. D. K. Hybrid nanoparticle architecture for cellular
uptake and bioimaging: direct crystallization of a polymer immobilized with
magnetic nanoparticles on carbon nanotubes. Nanoscale 4, 6325-6335 (2012).
Yan, X. et al. In silico profiling nanoparticles: predictive nanomodeling using
universal nanodescriptors and various machine learning approaches.
Nanoscale 11, 8352-8362 (2019).

Cherkasov, A. et al. QSAR modeling: where have you been? Where are you
going to? J. Med. Chem. 57, 4977-5010 (2014).

Zhu, H. Big data and artificial intelligence modeling for drug discovery. Annu.
Rev. Pharmacol. Toxicol. 60, 573-589 (2020).

Dragos, H., Gilles, M. & Alexandre, V. Predicting the predictability: a unified
approach to the applicability domain problem of gsar models. J. Chem. Inf.
Model. 49, 1762-1776 (2009).

Shen, M. et al. Quantitative structure-activity relationship analysis of
functionalized amino acid anticonvulsant agents using k nearest neighbor and
simulated annealing PLS methods. J. Med. Chem. 45, 2811-2823 (2002).
Wang, W, Kim, M. T., Sedykh, A. & Zhu, H. Developing enhanced blood-
brain barrier permeability models: integrating external bio-assay data in
QSAR modeling. Pharm. Res. 32, 3055-3065 (2015).

Kim, M. T. et al. Mechanism profiling of hepatotoxicity caused by oxidative
stress using antioxidant response element reporter gene assay models and big
data. Environ. Health Perspect. 124, 634-641 (2016).

Eriksson, L. et al. Methods for reliability and uncertainty assessment and for
applicability evaluations of classification- and regression-based QSARs.
Environ. Health Perspect. 111, 1361-1375 (2003).

Mayr, A. et al. Large-scale comparison of machine learning methods for drug
target prediction on ChEMBL. Chem. Sci. 9, 5441-5451 (2018).

Feng, C. et al. Gene expression data based deep learning model for accurate
prediction of drug-induced liver injury in advance. J. Chem. Inf. Model. 59,
3240-3250 (2019).

Russo, D. P., Zorn, K. M,, Clark, A. M., Zhu, H. & Ekins, S. Comparing
multiple machine learning algorithms and metrics for estrogen receptor
binding prediction. Mol. Pharm. 15, 4361-4370 (2018).

Rodriguez-Pérez, R., Miyao, T., Jasial, S., Vogt, M. & Bajorath, J. Prediction of
compound profiling matrices using machine learning. ACS Omega 3,
4713-4723 (2018).

Liu, G. et al. Analysis of model PM2.5-induced inflammation and cytotoxicity
by the combination of a virtual carbon nanoparticle library and computational
modeling. Ecotoxicol. Environ. Saf. 191, 110216 (2020).

Liu, X., Wang, D. & Li, Y. Synthesis and catalytic properties of bimetallic
nanomaterials with various architectures. Nano Today 7, 448-466 (2012).

41. Movassaghian, S., Merkel, O. M. & Torchilin, V. P. Applications of polymer
micelles for imaging and drug delivery. Wiley Interdiscip. Rev. Nanomed.
Nanobiotechnol. 7, 691-707 (2015).

42. Tang, F, Li, L. & Chen, D. Mesoporous silica nanoparticles: synthesis,
biocompatibility and drug delivery. Adv. Mater. 24, 1504-1534 (2012).

43. Dang, S., Zhu, Q. L. & Xu, Q. Nanomaterials derived from metal-organic
frameworks. Nat. Rev. Mater. 3, 1-14 (2017).

44. Toropova, A. P, Toropov, A. A., Benfenati, E., Leszczynska, D. & Leszczynski,
J. QSAR modeling of measured binding affinity for fullerene-based HIV-1 PR
inhibitors by CORAL. J. Math. Chem. 48, 959-987 (2010).

45. Bai, X,, Martin, T. G., Scheres, S. H. W. & Dietz, H. Cryo-EM structure of a 3D
DNA-origami object. Proc. Natl Acad. Sci. USA 109, 20012-20017 (2012).

46. Nguyen, N. et al. The absence of tertiary interactions in a self-assembled DNA
crystal structure. J. Mol. Recognit. 25, 234-237 (2012).

47. Dong, Y., Chen, S., Zhang, S. & Sodroski, J. Folding DNA into a lipid-
conjugated nanobarrel for controlled reconstitution of membrane proteins.
Angew. Chem. 130, 2094-2098 (2018). .

48. Pan, K. et al. Lattice-free prediction of three-dimensional structure of
programmed DNA assemblies. Nat. Commun. 5, 5578 (2014).

49. Slone, S. M. Building DNA Brick Structures with LegoGen. Theoretical and
Computational Research at the Interface of Physics, Biology, and
Nanotechnology, http://bionano.physics.illinois.edu/tutorials/using-legogen-
build-dna-brick-structures (2016).

50. Maingi, V., Jain, V., Bharatam, P. V. & Maiti, P. K. Dendrimer building
toolkit: Model building and characterization of various dendrimer
architectures. J. Comput. Chem. 33, 1997-2011 (2012).

51. Schilrreff, P., Mundifia-Weilenmann, C., Romero, E. L. & Morilla, M. J.
Selective cytotoxicity of PAMAM G5 core-PAMAM G2.5 shell tecto-
dendrimers on melanoma cells. Int. . Nanomed. 7, 4121-4133 (2012).

52. Maiti, P. K, Cagin, T., Wang, G. & Goddard, W. A. Structure of PAMAM
dendrimers: generations 1 through 11. Macromolecules 37, 6236-6254 (2004).

53. Naha, P. C, Davoren, M., Lyng, F. M. & Byrne, H. ]. Reactive oxygen species
(ROS) induced cytokine production and cytotoxicity of PAMAM dendrimers
in J774A.1 cells. Toxicol. Appl. Pharmacol. 246, 91-99 (2010).

54. Yan, X, Fan, J., Yu, Y., Xu, J. & Zhang, M. Transport behavior of a single Ca?
+, K*, and Nat in a water-filled transmembrane cyclic peptide nanotube. J.
Chem. Inf. Model. 55, 998-1011 (2015).

55. Wang, W. et al. Predicting nano-bio interactions by integrating nanoparticle
libraries and quantitative nanostructure activity relationship modeling. ACS
Nano 11, 12641-12649 (2017).

Acknowledgements

X.Y. and B.Y. were supported by the National Key R&D Program of China
(2016YFA0203103), the National Natural Science Foundation of China (91543204 and
91643204), and the introduced innovative R&D team project under the “The Pearl River
Talent Recruitment Program” of Guangdong Province (2019ZT08L387). W.W. and H.
Z. were partially supported by the National Institute of Environmental Health Sciences
(grant number RO1ES031080, R15ES023148, and P30ES005022). We thank A. L. Chun of
Science StoryLab for editorial service.

Author contributions

H.Z. and B.Y. conceived and designed the study. H.Z. designed the project strategy. X.Y.
curated the experimental data, constructed the web portal, simulated the virtual nano-

materials, calculated nanodescriptors, built the models, and performed validation. A.S.

designed, wrote and tested codes for constructing the virtual nanomaterials and guided
several nanodescriptors calculation. W.W. helped analyze the results. X.Y., B.Y., and H.Z.
wrote the paper. All authors have read and approved this paper.

Competing interests
The authors declare no competing interests.

Additional information
Supplementary information is available for this paper at https://doi.org/10.1038/s41467-
020-16413-3.

Correspondence and requests for materials should be addressed to B.Y. or H.Z.

Peer review information Nature Communications thanks Christine Ogilvie Hendren
and David Winkler for their contribution to the peer review of this work. Peer reviewer
reports are available.

Reprints and permission information is available at http://www.nature.com/reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

| (2020)11:2519 | https://doi.org/10.1038/541467-020-16413-3 | www.nature.com/naturecommunications 9


https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
https://doi.org/10.2312/PE/EuroVisShort/EuroVisShort2012/067-071
http://bionano.physics.illinois.edu/tutorials/using-legogen-build-dna-brick-structures
http://bionano.physics.illinois.edu/tutorials/using-legogen-build-dna-brick-structures
https://doi.org/10.1038/s41467-020-16413-3
https://doi.org/10.1038/s41467-020-16413-3
http://www.nature.com/reprints
www.nature.com/naturecommunications
www.nature.com/naturecommunications

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-16413-3

Open Access This article is licensed under a Creative Commons
By

Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly from
the copyright holder. To view a copy of this license, visit http://creativecommons.org/
licenses/by/4.0/.

© The Author(s) 2020

10 NATURE COMMUNICATIONS | (2020)11:2519 | https://doi.org/10.1038/541467-020-16413-3 | www.nature.com/naturecommunications


http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.nature.com/naturecommunications

	Construction of a web-based nanomaterial database by big data curation and modeling friendly�nanostructure annotations
	Results
	Construction of the nanomaterial database
	Analysis of nanostructure diversity
	Nanomaterial database portal
	Predictive nano property/bioactivity modeling

	Discussion
	Methods
	Experimental data curation
	Nanostructure annotation
	Nanodescriptor generation
	Computational modeling

	Data availability
	References
	Acknowledgements
	Author contributions
	Competing interests
	Additional information




