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Abstract
Artefacts are a common and unwanted aspect 
of any measurement process, especially in a 
clinical environment, with multiple causes 
such as environmental changes or motion. In 
near-infrared spectroscopy (NIRS), there are 
several existing methods that can be used to 
identify and remove artefacts to improve the 
quality of collected data.

We have developed a novel Automatic 
Broadband Artefact Detection (ABroAD) pro-
cess, using machine learning methods along-
side broadband NIRS data to detect common 
measurement artefacts using the broadband 
intensity spectrum. Data were collected from 
eight subjects, using a broadband NIRS moni-
toring over the frontal lobe with two sensors. 
Six different artificial artefacts – vertical head 
movement, horizontal head movement, frown-
ing, pressure, ambient light, torch light – were 
simulated using movement and light changes 
on eight subjects in a block test design. It was 
possible to identify both light artefacts to a 
good degree, as well as pressure artefacts. 
This is promising and, by expanding this work 
to larger datasets, it may be possible to create 

and train a machine learning pipeline to auto-
mate the detection of various artefacts, mak-
ing the analysis of collected data more 
reliable.

1	 �Introduction

Near infrared spectroscopy (NIRS) instruments 
use light in the near infrared spectrum (usually 
only two discrete wavelengths) to measure the 
changes in haemoglobin concentrations. It is also 
possible, when using a broadband NIRS system 
(more than 100 wavelengths), to observe in addi-
tion changes in tissue metabolism via quantifica-
tion of the oxidative state of cytochrome-c-oxidase 
[1]. Therefore, with broadband NIRS it is possi-
ble to measure changes in oxygenation within the 
brain, as well as changes in metabolism. This can 
be important to investigate how the brain responds 
to stimuli (functional activation) [2] or the impact 
of injuries such as hypoxic ischaemic encepha-
lopathy [3]. When collecting measurements, 
external factors (movement, ambient light etc.) 
can create artefacts within the data. These can 
lead to data being less reliable and vary in cause 
and impact size. We attempt to identify artefacts 
using machine learning.

Machine learning is the process of identifying 
patterns within data to try and understand it, pref-
erably in a way that will allow this understanding 
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to be used with new data [4]. Data are normally 
represented within machine learning as a set of 
features e.g. number of words in a document or 
the length of each sentence. Features may already 
be present in the data or new ones may be engi-
neered from the data available. These data are 
then used with an algorithm that processes it and 
produces output such as a classification or a pre-
dicted value. The quality of this prediction is then 
evaluated using a metric. In the case of a pre-
dicted value, that may be its error, or in the case 
of a classification it may be the classification 
accuracy or some other suitable metric.

This work aims to develop and use a machine 
learning platform to identify artefacts within 
broadband NIRS data. This is done using the 
broadband spectra of light rather than the calcu-
lated chromophore concentrations. The platform 
was tested with data generated in a series of 
experiments wherein subjects simulated arte-
facts. These data were then used to engineer fea-
tures that describe each broadband spectrum, 
before being classified using a random forest 
classifier.

2	 �Method

Broadband NIRS data were collected from eight 
different subjects in a block test design using a 
custom-built broadband NIRS system, based on 
a system previously described by Bale et al. [3], 
at a sample rate of 5 Hz. Two sensors were used: 
a short separation: sensor 13 at 10  mm, and a 
long-separation: sensor 7 at 30 mm. Six different 
artefacts were simulated  – horizontal motion 
(shaking head), vertical motion (nodding head), 
frowning, pressure on sensor, ambient room 
light and directed torch light  – in 10  s blocks 
repeated twice. There was 10 s of rest between 
each artefact, leading to roughly 50 data points 
for each block.

The start and end of each artefact, as well as 
the start and end of the experiment, was marked 
in the output data as an event using the LabVIEW 
software which collects data from the NIRS sys-

tem. All artefacts were simulated in the order 
listed above for all subjects.

At each time point a spectrum of light was col-
lected for 1340 wavelengths between 610 and 
920 nm, as seen in Fig. 1. Thus, these data have 
an extremely high dimensionality and can also be 
deemed to be functional, i.e. each wavelength is 
functionally related to its neighbouring wave-
lengths. Many machine learning approaches 
assume data points to be independent so, to both 
reduce the dimensionality and generate features 
that are not functionally related, feature engineer-
ing was undertaken.

Feature engineering describes the process 
by which new features are generated from 
existing data. The features were chosen by 
looking at different spectra for each artefact 
and attempting to identify differences that 
could then be summarised in a single number 
or measure. These were: power density frac-
tion, sample entropy, autocorrelation and 
area under the curve.

The ambient light artefact is one of the most 
noticeable, as the fluorescent lights used in the 
room led to spikes in intensity at specific wave-
lengths, as seen in Fig. 1c. It was found that the 
fraction of the integrated power density spectrum 
occupied by the top 99% of frequencies (referred 
to as the fractional power density) was gener-
ally lower in the spectra containing ambient arte-
facts as compared to a control. Figure 2a shows 
there is a clear difference between distributions 
when considering the ambient light artefact com-
pared to all others. The torch light artefact also 
shows a distribution of values that are clearly 
separate compared to all non-light artefacts, 
though to a much lesser degree.

Sample entropy is a modification of approxi-
mate entropy, chosen due to it being more com-
putationally efficient, and is a measure of the 
complexity level within a signal [5]. Figure  2b 
shows the distribution of sample entropy values. 
The control, horizontal and vertical artefacts 
show little difference, but both pressure and 
ambient light have distributions that are generally 
lower than the other artefacts, whilst torch light 
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appears to have a distribution that is generally 
higher.

Autocorrelation is the correlation of a signal 
with a time delayed copy of itself as a function of 
delay. Figure  2c shows the distribution of 
autocorrelation values for each artefact, where 

the ambient light artefact shows a markedly dif-
ferent distribution to the other artefacts.

Many artefacts, particularly those due to 
changes in light, showed an increase in intensity 
for many wavelengths, increasing the area under 
the curve. This could be calculated by integrat-

Fig. 1  Example spectra (integration time 0.2 s) from subject 5 during control (a) and two artefacts (b, c)

Fig. 2  Distribution of feature values for each artefact
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ing under the light spectrum using the trapezoi-
dal rule. Good separation can be seen in Fig. 2d, 
particularly in the pressure artefact and both light 
artefacts.

Figure 3 outlines the machine learning pro-
cess. For each subject, i, the spectrum at each time 
point, tj is converted into a four-dimensional fea-
ture vector, xi,j of the form {xi, j, 1, xi, j, 2, xi, j, 3, xi, j, 

4} and assigned a true classification yi,j according 
to the artefact simulated at that time point. This 
dataset is split into test and training sets, based on 
the subject number, i. This ensures that the algo-
rithm is tested on data from an unseen subject.

The training data are then fed into a machine 
learning pipeline consisting of two main steps: 
scaling and estimation. Scaling is done using 
the ‘RobustScaler’ from the Scikit-learn library 
[6] and is done to ensure all features are 
roughly equatable in terms of magnitude. 
Without this, features that are of significantly 
different magnitudes to others, e.g. AUC, may 
receive undue weighting in the estimation pro-

cess. The scaled data are then passed into a 
random forest classifier [7].

This is fitted using a grid search, cross-
validation method. The training data are split by 
subject into training and test sets “M times”, with 
M = 10, allowing retesting of the method on dif-
ferent permutations of the overall training set. 
The classifier is run for different parameter com-
binations, and the set that provides the best final 
score is chosen as the best estimator. This is then 
trained on the total training set and tested on the 
initial test set. This final score allows the effec-
tiveness of the chosen method to be evaluated.

The scoring metric chosen here is the 
`weighted F1-score’ – where a perfect classifica-
tion has a score of 1 and no correct classifications 
would have a score of 0  – which accounts for 
both precision (p) and recall (r) and is able to deal 
with the class imbalance inherent in the data. It is 
defined as F1 = 2*p*r/(p+r). Precision is the frac-
tion of correct classifications for a class j out of 
the total number of predictions of that class, 

Fig. 3  Outline of the machine learning process
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whilst recall is the fraction of correct classifica-
tions for a class j out of the total number of actual 
occurrences of that class.

Initially, all artefacts were considered together. 
A distinct difference can be seen between the 
F1-scores for light artefacts and for motion 
artefacts. Therefore, it was decided to addition-
ally consider datasets that contained just motion 
artefacts and just light artefacts to determine if 
classification could be improved by doing so.

3	 �Results

Training and test sets were selected randomly, 
splitting by subject. The same test and training 
splits were used for all results. The algorithm was 
trained using data from subjects 1, 2, 3, 4, 6 and 
8 and tested against data from subjects 5 and 7. 
Figure 4a, b show the F1-scores for each artefact, 
type of model run and for each sensor. The long-
separation sensor shows a much better set of light 
only scores than the short-separation (ambient: 
0.89 vs 0.08, torch: 0.96 vs 0.01). Across both 

sensors there is a clear inability to detect motion 
artefacts, but this is improved by omitting light 
artefacts when classifying. Additionally, for both 
sensors the algorithm is able to detect the non-
presence of an artefact when only considering 
light artefacts.

4	 �Discussion

We have developed a machine learning platform 
that has been tested with broadband NIRS data. 
We have shown that it can detect the non-presence 
of light artefacts across both long and short sen-
sors, as well as the ability to determine the pres-
ence of specific light artefact types in the 
long-distance sensor.

The algorithm shows difficulty detecting 
motion artefacts, particularly those due to hori-
zontal and vertical movement. This may be 
because the choice of engineered features does 
not adequately capture information that can dis-
tinguish these artefacts, or it may be that these 
artefacts were not adequately simulated during 

Fig. 4  F1-scores for each artefact and run type
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data collection. Double cross-validation [8] will 
be used to further validate this process, ensuring 
that test scores are not test set dependent.

New features can be easily added into the pro-
cess and, with further data collection, the plat-
form can be improved to detect these artefacts. 
Additionally, whilst the data used here are from a 
broadband NIRS system, there is the potential for 
data from accelerometers and external light 
sensors to be used with the platform where broad-
band data are not available.
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