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Review Article

ABSTRACT
It is important to understand how different human organs coordinate and interact with each 
other. Since obesity and cardiac disease frequently coincide, the crosstalk between adipose 
tissues and heart has drawn attention. We appreciate that specific peptides/proteins, lipids, 
nucleic acids, and even organelles shuttle between the adipose tissues and heart. These 
bioactive components can profoundly affect the metabolism of cells in distal organs, including 
heart. Importantly, this process can be dysregulated under pathophysiological conditions. This 
also opens the door to efforts targeting these mediators as potential therapeutic strategies to 
treat patients who manifest diabetes and cardiovascular disease. Here, we summarize the 
recent progress toward a better understanding of how the adipose tissues and heart interact 
with each other.
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INTRODUCTION

Adipose tissue (AT) in human adults 
accounts for 20%–50% of  the body mass 
and is considered to be the second largest 
organ after skin.[1] Excessive expansion of  
AT defines the various forms of  obesity, 
depending on which fat pads absorb the bulk 
of  the calories. The prevalence of  obesity 
has been continuously rising in recent 
decades.[2] Obesity is well established as an 
independent risk factor for cardiovascular 
disease, and has a pronounced association 
with coronary artery disease, heart failure, 
and atrial fibrillation.[3] Therefore, it 
is of  paramount importance to better 
understand the mechanistic basis for the 
tight correlations between AT dysfunction 
and cardiovascular pathophysiology. Here, 
we pay particular attention to the crosstalk 
between AT and heart, in which significant 
progress has been made recently.

The breakthrough d iscover ies  of  
adiponectin and leptin have completely 
changed the view of  AT as a simple energy 

reservoir to a highly active and complex 
endocrine organ. The secretory fingerprints 
of  the various ATs are now much better 
defined and stretch from simple metabolites 
to a variety of  bioactive molecules, including 
adipokines, inflammatory cytokines, lipids, 
carbohydrates, miRNA, and extracellular 
vesicles (EVs).[4-6] We review the potential 
impact of  these mediators on the 
physiological or pathological functions 
of  heart. We also need to focus on the 
functions of  epicardial AT, a unique fat 
depot anatomically located adjacent to the 
myocardium. There is, in fact, emerging 
evidence for a reverse crosstalk from the 
heart to AT, which also deserves some 
discussion (Figure 1).

ADIPOKINES

Adipokines are factors mainly secreted 
by adipocytes. Since there is a significant 
amount of  AT in the body, fairly large 
amounts of  adipokines enter the blood 
circulation and coordinate the physiological 
state of  the AT with the function of  distal 
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organs as well as with the local microenvironment of  the 
adipocyte. Depending on how loose a definition we use 
for the term adipokine, a fair number of  these proteins 
have been reported. Here, we would only summarize the 
ones that exert a clear influence on cardiac function. These 
include adiponectin, leptin, resistin, and fibroblast growth 
factor (FGF) 21.

Adiponectin
Adiponectin, initially identified in 1995,[7] is a complex 
adipokine. Adiponectin exerts pleiotropic effects on 
multiple tissues, which includes the brain, heart, liver, 
kidneys, bone, blood vessels, pancreatic β-cells, and 
immune cells,[8,9] and is beneficial for healthspan and 
lifespan.[10] Low levels of  adiponectin are tightly associated 
with increased incidence of  cardiac diseases.[11] However, in 
the setting of  high plasma adiponectin levels in the context 
of  end-stage heart disease, it is associated with increased 
mortality. Further complicating the issue is the fact that 
adiponectin may have differential effects on patients with 
ischemic heart disease and heart failure as a function of  
ethnic background.[12–15]

Atherosclerosis is the main cause for myocardial 
infarction in man. In mice, adiponectin inhibits the 
inflammatory responses in immune cells, and therefore 
is tightly associated with reduced atherosclerosis.[16,17] 
Moreover, adiponectin deficiency further worsens 
and adiponectin administration attenuates ischemia/
reperfusion (I/R)-induced cardiac injury.[18] In a murine 
model for cardiac hypertrophy, induced by pressure 
overload and angiotensin II infusion, adiponectin 
represses cardiac hypertrophy and remodeling.[19,20] 
Adiponectin exerts its effect on the heart mainly through 
binding with its receptors in the heart. There are three 
receptors for adiponectin, including AdipoR1, AdipoR2, 
and T-cadherin.[21,22] Multiple mouse studies show that 

T-cadherin plays a protective role in the progression 
of  cardiac diseases. However, the detailed function 
of  AdipoR1 and AdipoR2 in cardiomyocytes is still 
somewhat obscure. T-cadherin may be the main mediator 
for adiponectin’s effect on cardiomyocytes, even though 
this receptor lacks a cytoplasmic signaling domain.[23]  
Adiponectin administration into T-cadherin-knockout 
mice has no beneficial effects on pressure overload-
induced cardiac hypertrophy, indicating that the other two 
receptors, AdipoR1 and AdipoR2, do not play a major 
role in this process.[24]

Leptin
Discovered in 1994,[25] leptin is predominantly secreted by 
AT.[26] Leptin is a pleiotrophic hormone that can regulate 
food intake, energy expenditure, reproduction, hemostasis, 
angiogenesis, blood pressure, and immune responses8. 
Clinical observations have shown that hyperleptinemia is 
positively correlated with adverse cardiovascular disease 
outcome.[27] Plasma leptin is acutely increased in patients 
suffering from a myocardial infarction.[28] In fact, high 
plasma levels of  leptin is an independent risk factor to 
predict the occurrence of  cardiac death in patients with 
coronary artery disease.[29] In addition, high levels of  leptin, 
independent of  body mass index (BMI) and blood pressure, 
is linked to increased myocardial wall thickness.[30]

In rodent models with cardiac disease, the contributions 
of  leptin and its receptors to the disease are quite complex. 
In atherosclerosis, leptin deficiency represses disease 
progression in ApoE-knockout mice,[31] but promotes 
atherosclerosis in low-density lipoprotein receptor (LDLR)-
knockout mice.[32] Both ob/ob mice (leptin deficiency) and 
db/db mice (leptin receptor [LEPR] deficiency) manifest 
age-dependent progression of  cardiac hypertrophy.[33,34] 
Particularly, cardiac diastolic and systolic function is 
impaired in db/db mice.[35,36] Acute deletion of  LEPR 

Figure 1: The crosstalk between adipose tissue and the heart.
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in adult cardiomyocytes leads to lethal heart failure[37] 
and worsens myocardial infarction-induced injury.[38] 
Interestingly, myocardial infarction in rats upon neutralizing 
leptin receptor with antibodies has no impact on the infarct 
size, but mitigates cardiac dysfunction and hypertrophy.[39] 
Either way, it seems that leptin–LEPR pathway is essential 
to maintain normal function of  the heart. However, upon 
a pathological insult, overactivation of  this pathway may 
compromise cardiac function.

How can both low and high leptin levels be associated with 
cardiac disease? Our recent observations on leptin action 
may provide some clues. Complete lack of  leptin in mice 
and humans leads to morbid obesity, while hyperleptinemia 
is also associated with an obese phenotype.[40] These 
observations clearly imply that circulating leptin levels 
need to be maintained in a narrow range to sustain normal 
physiological functions: too much leptin is detrimental to 
cardiac function, while the complete lack of  leptin is also 
harmful. We have to bear this in mind regarding various 
leptin-associated human diseases, including cardiac disease. 
In patients with very low or no circulating leptin levels, 
elevating its levels by supplementing exogenous leptin 
may be highly effective in preventing disease progression. 
However, in a conventional obese patient with high 
circulating leptin levels, reducing the leptin levels, by either 
genetic or pharmaceutical approaches, is beneficial toward 
achieving metabolic health.[41,42]

Resistin
Resistin was named because of  its effect in inducing 
insulin resistance. It was identified independently by several 
laboratories.[43–45] In mice and humans, resistin exerts similar 
functions, even though it displays completely different 
expression patterns. In mice, resistin is mainly secreted 
by adipocytes, while in humans, it is largely derived from 
macrophages.[46] Resistin can bind to two receptors, the 
toll-like receptor 4 (TLR4) and adenylyl cyclase-associated 
protein 1 (CAP1), to promote inflammatory responses.[47,48]  
The function of  resistin is diverse under different 
pathological conditions. Resistin protects the heart 
from I/R injury through activating the AKT pathway.[49]  
However, resistin also exacerbates pressure overload-
induced heart failure due to activating a DNA damage 
response.[50]

Fibroblast growth factor 21
FGF21 is a unique member of  the fibroblast growth 
factor family. It affects the cell metabolism rather than 
proliferation, a common function that the other members 
of  the family exert.[51] FGF21 is a hepatokine, adipokine, 
and myokine, and has profound beneficial effects on 
obesity and type 2 diabetes.[52] It is also emerging as a 
crucial link between AT and the heart. FGF21 can repress 

cardiac hypertrophy and protect the heart from I/R injury.
[53,54] Under regular physiological conditions, FGF21 
is mainly secreted by the liver. However, under some 
pathophysiological conditions, FGF21 can be secreted 
by other tissues, including brown AT and even the heart 
itself. Ruan et al. establish a clear link between brown AT 
and heart with respect to FGF21. They demonstrate that 
in rodents, brown AT can secrete FGF21 into the circulation 
under hypertensive conditions. This FGF21 directly targets 
the heart to attenuate cardiac remodeling.[55] Moreover, it 
is possible that cardiomyocyte-derived FGF21 could 
constitute a feedback signal to AT. Serum concentrations 
of  FGF21 are significantly elevated after myocardial 
infarct ion both cl inical ly as wel l  as in murine 
models.[56] Under these conditions, FGF21 may impact 
systemic glucose and lipid metabolism. As such, FGF21 
constitutes a two-way communication axis between AT 
and the heart.

INFLAMMATORY CYTOKINES

Obesity is generally accompanied by subclinical but chronic 
inflammation, and the severity of  type 2 diabetic state 
correlates well with the degree of  inflammation.[57] In the 
diabetic state, the immune cells together with adipocytes 
produce a considerable number of  inflammatory 
cytokines, such as tumor necrosis factor-alpha (TNF-α), 
interleukin (IL)-6, IL-1, IL-17, and IL-22.[58] This systemic 
inflammatory state can further worsen the progression 
of  ischemic and hypertensive heart disease.[59] Meantime, 
cardiomyocytes and infiltrated immune cells in the damaged 
heart secrete considerable amounts of  inflammatory 
cytokines as well,[60] which may also affect the function of  
AT. Therefore, the inflammatory response is an integral 
part in the crosstalk between AT and the heart.

LIPIDS

ATs are actively secreting, fatty acid-derived bioactive lipids. 
While some of  the lipids are retained in AT, others enter 
the bloodstream and possess a broad effect on distal organs, 
including liver, heart, muscle, and pancreas.[61,62] Here, we 
highlight two kinds of  lipids that may have direct effects 
on cardiac diseases.

Ceramides
Ceramides are produced either by hydrolysis of  membrane-
located sphingomyelin or by de novo synthesis.[63] Ceramide 
levels in human plasma have emerged as prognostic 
indicators of  major adverse cardiovascular events.[63,64] In 
atherosclerotic plaques, ceramides are enriched. They may 
initiate the formation of  lipoprotein aggregation[65] and 
impair the plaque stability.[66] Importantly, animal studies 
show that inhibiting the synthesis of  ceramide alleviates 
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atherosclerosis.[67] Zhang et al. report that Hypoxia-
inducible factor 2α (HIF2α) deficiency in adipocytes 
exacerbates western diet-induced atherosclerosis. 
Mechanistically, HIF2α initiates the transcription of  
alkaline ceramidase 2, which hydrolyzes ceramides. 
Therefore, HIF2α deficiency results in an elevation 
of  ceramides and a worsening of  atherosclerosis.[68]  
Moreover, ceramides play a detrimental role in heart 
failure. Heart biopsies reveal that high levels of  ceramides 
accumulate in the failing myocardium as well.[69] This 
accumulation impairs cardiac function.[70] In contrast, 
decreasing the levels of  ceramides improves myocardial 
infarction-induced heart failure.[69] In addition, our own 
studies have shown that adiponectin and its receptors 
enhance ceramide catabolism,[71] which is likely to be the 
basis for the cardioprotective effects of  adiponectin.

Palmitoleate
Palmitoelate is a unique monosaturated fatty acid, in which 
the double bond is at position n-6. It was first identified 
as an adipose-derived bioactive lipid in Fabp4/5 double-
knockout mice.[72] Intriguingly, palmitoleate is found in 
postprandial python plasma and can promote physiological 
heart growth.[73] Palmitoleate can also repress inflammatory 
responses, thereby attenuating the progression of  
atherosclerosis.[74]

EXTRACELLULAR VESICLES

EVs are cell-derived membranous structures which can 
be sorted into three subtypes, microvesicles, exosomes, 
and apoptotic bodies, according to their origins and the 
pathways that lead to their release.[75,76] Proteins, lipids, 
nucleic acid, and even submitochondrial particles can be 
packaged into EVs and then transported to other cells 
or organs.[77,78] Clinical studies have shown that some 
specific plasma EVs are correlated with a high incidence 
of  myocardial infarction and mortality in obese patients 
with vascular diseases.[79–81] Here, we focus on the recent 
advances regarding the EV-mediated crosstalk between 
AT and heart.

In AT, adipocytes, immune cells, mesenchymal stem cells, 
and endothelial cells actively produce a large number of  
EVs, which affect the immune response, adipogenesis, 
thermogenesis, and adipokine release.[82] These EVs 
transport messages from ATs to distal organs, including 
heart, liver, skeleton muscle, pancreas, and brain. 
Importantly, several reports have directly demonstrated 
that AT-derived EVs play an important role in ischemic 
heart diseases. Lu et al. reveal that adipocytes from high 
fat diet (HFD) mice secrete miR-130b-3p-containing EVs, 
which exacerbate cardiac I/R injury.[83] Our lab recently 
reported that mitochondria-containing EVs derived from 

dysfunctional adipocytes can trigger a burst of  reactive 
oxygen species (ROS) and a compensatory antioxidant 
response in cardiomyocytes that protects the heart from 
the damage triggered by an I/R insult.[84]

EVs can also be secreted by cells in the heart, including 
cardiomyocytes, endothelial cells, and fibroblasts.[85] 
Similarly, these EVs not only play a role locally, but also 
transport cargos to other organs such as AT. Lu et al. 
recently showed that EVs derived from the mouse heart 
upon an I/R insult can induce endoplasmic reticulum (ER) 
stress in adipocytes and impair their endocrine function.[86] 
Interestingly, we found that in adipocytes, caveolin 1 can 
effectively be replenished by EVs secreted by endothelial 
cells. Combined, all the observations highlight the very 
active communication between cardiovascular system and 
ATs.[87]

EPICARDIAL AT AND THE HEART 

As a specific subtype of  visceral fat, epicardial AT 
directly interacts with the myocardium and is located 
between epicardium and heart (Figure 1). Epicardial AT 
is completely absent in mice. However, in humans, it can 
account for 20% of  the total ventricular weight,[88] covering 
80% of  the area of  human heart,[89] even infiltrating into 
the myocardium.[90] Epicardial AT originates from the 
splanchnopleuric mesoderm as well as the heart itself.[91] 
The composition of  epicardial AT is similar to that of  the 
subcutaneous and other visceral fat tissues. Interestingly, 
the size of  adipocytes in epicardial AT is comparatively 
smaller, probably due to a higher ratio of  pre-adipocytes 
to mature adipocytes, which is not seen to the same extent 
in other fat pads.[92] 

Clinical studies have shown that the volume of  epicardial 
AT is highly associated with cardiac disease. The thickness 
of  epicardial AT positively correlates with the degree of  
the metabolic syndrome[93] and has significant potential 
predicting a high risk to develop cardiovascular disease.[94] A 
higher volume of  epicardial AT tends to impair the stability 
of  plaques in atherosclerosis,[95,96] which leads to an increase 
in the events of  ischemic heart disease. Besides, epicardial 
AT is a risk factor for ventricular hypertrophy, heart failure 
with preserved ejection fraction,[97] and atrial fibrillation.[98] 
All these clinical observations suggest that epicardial AT 
may be a driving force for cardiac diseases. However, the 
detailed mechanistic involvement of  epicardial AT in the 
processes still needs to be worked out.

In contrast to its aforementioned role in cardiac disease, 
epicardial fat in humans may also exert some beneficial 
roles in preserving normal heart function based on a limited 
set of  observations: (1) epicardial AT can protect the heart 
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from mechanical stress; (2) epicardial AT can serve as a 
local energy sink for cardiac muscle to protect against 
high levels of  free fatty acids in coronary circulation;[99] 
(3) epicardial AT functions as a brown fat to defend the 
myocardium and coronary vessels against hypothermia;[100] 
and (4) epicardial AT provides the anatomical site for the 
ganglia innervating the myocardium.[101] However, due to 
the complete absence of  epicardial fat in current existing 
mouse models, it is very difficult to clarify the exact 
role(s) of  epicardial AT in heart function under normal 
physiological and pathological conditions. Nonhuman 
primate models may have to provide the necessary insights 
to unravel a direct functional involvement of  epicardial AT 
in cardiovascular disease.

Beyond that, similar to the other fat depots, epicardial AT 
can secrete adipokines, EVs, and lipids to affect heart, 
and we appreciate that the heart can regulate the status 
of  epicardial AT. Coronary atherosclerosis correlates well 
with a proinflammatory phenotype in epicardial AT.[102] 
Interestingly, although there is no epicardial AT around 
heart in normal mice, it can be induced after the mice are 
subjected to myocardial infarction,[103] thereby opening up 
the possibility to study its impact on the mouse heart. In 
addition, cardiac hormones, such as ANP and BNP, and 
cytokines secreted from heart can affect epicardial AT 
directly.

CONCLUSIONS AND PERSPECTIVES

Ample evidence supports the notion that an active 
crosstalk exists between AT and the heart via adipokines, 
cytokines, lipids, and EVs. Here, we provide a very high-
level assessment of  some of  the mechanisms in place to 
mediate this crosstalk. Considering the high prevalence of  
obesity and cardiovascular disease, this area will receive 
more attention in the future, as many gaps persist. Once 
we identify the key players, they may not only serve as 
important biomarkers, but also have the potential to be 
targets for intervention to resolve aspects of  various 
pathophysiological cardiac disease states. 
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