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Abstract: In this study, following the green, environmentally friendly and sustainable development
strategy, cellulose nanocrystals (CNCs) were prepared through a solvent-free esterification reaction
between microcrystalline cellulose and maleic anhydride, combined with subsequent ultrasonic
treatment, and maleic-anhydride-modified CNC-reinforced zein/catechin/β-cyclodextrin inclusion
complex nanoparticles nanocomposite films were prepared by a facile solution casting. The amount of
CNCs in the film matrix was 0–8 wt%, and their effect on structural, physicochemical and functional
properties of the resulting films were investigated. SEM images showed that the addition of CNCs
made the microstructure of the film more smooth and uniform. The intermolecular hydrogen
bonds between CNCs and film matrix were supported by FT-IR. XRD analysis also confirmed the
appearance of a crystalline peak due to the existence of CNCs inside the films. The incorporation of
CNCs significantly reduced water vapor permeability, water solubility and the swelling degree of the
nanocomposite film, and also significantly increased tensile strength and elongation at break from
12.66 to 37.82 MPa and 4.5% to 5.2% (p < 0.05). Moreover, nanocomposite film packaging with CNCs
can effectively inhibit the oxidation of soybean oil.

Keywords: cellulose nanocrystals; zein; antioxidant activity; biodegradable films; food oxidation

1. Introduction

Nowadays, food packaging plays an important role in food processing and the food
supply chain, which must meet the increasingly stringent requirements and needs of soci-
ety [1]. Most of the materials used in the food packaging industry are synthetic polymers
obtained from petrochemical products, which cause serious environmental problems due
to their non-degradability [2]. Therefore, the development of environmentally friendly
polymers with higher biodegradability has become a general trend.

Zein, which displays biodegradability, thermoplasticity and excellent film-forming
properties, has been extensively investigated as a commercial material for edible packag-
ing [3]. However, like many other proteins, the brittle film formed by natural zein is not
flexible enough to withstand industrial processing [4], and the tensile strength of single
zein-based film needs to be improved [5]. In recent years, researchers have made great
efforts to improve the physical and chemical properties of zein films [6–8]. Fortunately,
the application of nanotechnology has provided new horizons for the development of
biopolymer-based food packaging materials. Biopolymer-based nanocomposite films can
be used as carriers for functional additives, such as antioxidants and antibacterial agents,
and the added nano-reinforcing phase can improve the mechanical and barrier properties
of packaging materials [9]. Catechin (CA) is a kind of plant polyphenol extracted from
tea and other natural plants and has important functions of antioxidant and free radical
scavenging activities [10]. Cyclodextrins (CDs) are non-toxic macrocyclic oligosaccharides,
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consisting of (α-1,4)-linked α-D-glucopyranose units, with a hollow hydrophobic inte-
rior and hydrophilic outer surface [11]. This feature enables CDs to host both polar and
non-polar guests of polymers or small molecules [12]. The most common CDs are α-CD,
β-CD and γ-CD with 6, 7 and 8 glucopyranose units [13]. Many studies have reported
that the antioxidant stability of CA was improved when combined with β-CD [10,12,14].
Our group previously prepared CA/β-CD inclusion complex nanoparticles (NPs) by the
nanoprecipitation method [15]. The NPs do not need to be separated and dried, and the
suspension can be used as a solvent for dissolving zein directly, which makes the process
environmentally friendly and low cost. Compared with the single zein film, the elongation
at break and tensile strength of the nanocomposite film increased from 1.52 to 4.55% and
2.28 to 12.49 MPa, respectively. After storage, the antioxidant activity of the nanocomposite
film still maintained a high level. However, the performance of zein/CA/β-CD inclusion
complex NPs nanocomposite film still has great potential for improvement.

Cellulose is considered to be a fascinating biopolymer, the subject of extensive de-
velopment and research and a renewable raw material. Cellulose is composed of D-
glucopyranose units, which are linked together by β-(1→4)-glycosidic bonds to form
linear macromolecules with high crystallinity [16]. Cellulose nanocrystals (CNCs) are rigid
rod-like particles with a typical acicular structure measuring 100–1000 nm in length and
4–25 nm in diameter [17]. CNCs combine the excellent properties of cellulose with the
fascinating characteristics of the nano-sized materials [18]. As an eco-friendly, sustainable,
green substance, CNCs also offer a potential for the reinforcement of biopolymer-based
food packaging, e.g., protein and polysaccharide films, to replace petroleum-based materi-
als [19,20]. CNCs have the advantages of non-toxicity, high crystallinity, and a large aspect
ratio and surface area, which can effectively improve the poor water barrier and tensile
strength of biopolymer-based films, and meet the requirements of different foods [21,22].
Yadav et al. (2020) recently developed CNC-reinforced chitosan-based sustainable biocom-
posite films, and they found the CNCs improved the water vapor permeability, mechanical
and UV barrier properties of the biocomposite films [23]. Huq et al. (2012) prepared
CNC-reinforced alginate-based nanocomposite film, and they found the incorporation
of 5 wt% CNCs in alginate enhanced the tensile strength and water vapor permeability
of the nanocomposite film [20]. Ma et al. (2017) studied chitosan film reinforced with
modified CNCs as cellulose spheres for food packaging applications, and the composite
film exhibited improved thermal and mechanical properties [24]. Chemical and mechan-
ical treatments were commonly used for removing amorphous cellulose and obtaining
CNCs [21,25]. During their processing, CNCs usually introduce some groups to negative
charge, such as carboxylate and sulfate groups, which makes it easy to separate from raw
materials and form stable dispersion due to electric repulsion [22]. According to the princi-
ple of electrostatic interaction, whether the matrix was charged or not, the negative charge
of CNCs will have a profound impact on the performance of biopolymer-based films [26].
When CNCs with negative charge were added to the matrix, electrostatic repulsion was
beneficial to the homogeneous distribution, even morphology and further contribution to
film strength [27].

In this study, a simple, green and efficient method was used to prepare CNCs by
the solvent-free esterification of microcrystalline cellulose with maleic anhydride com-
bined with subsequent ultrasonic treatment. Then, various amounts of maleic-anhydride-
modified CNCs were introduced into zein/CA/β-CD inclusion complex NP films by a
facile solvent casting approach. The aim of this study was to investigate the effects of
CNCs, as eco-benign renewable reinforcements, on the structural, physicochemical and
antioxidant properties of nanocomposite films. Moreover, the effect of nanocomposite films
on the oxidative of soybean oil was studied.
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2. Materials and Methods
2.1. Materials

β-CD (diameter of 1.53 nm) was obtained from Sinopharm Chemical Reagent Co.,
Ltd. (Shanghai, China). Zein (average molecular weight of 25,000–45,000) was purchased
from Dulai Biotechnology Co., Ltd. (Nanjing, China). Microcrystalline cellulose and maleic
anhydride were bought from Aladdin Chemical Co., Ltd. (Shanghai, China). 1,1-diphenyl-
2-picrylhydrazyl (DPPH) was purchased from Shanghai yuanye Bio-Technology Co., Ltd.
(Shanghai, China). (+)-CA (purity > 98%) and 2,2′-Azino-bis (3-ethylbenzothiazoline-6-
sulfonic acid) diammonium salt (ABTS) were purchased from Macklin Biochemical Co.,
Ltd. (Shanghai, China). Soybean oil was bought from Jiusan Grain and Oil Industry Group
Co., Ltd. (Harbin, China). All other reagents were of analytical grade and purchased from
Aladdin Chemical Co., Ltd. (Shanghai, China).

2.2. Preparation of Nanocomposite Films

The CNCs were prepared by the method described in our previous research with
slight modification [28]. Briefly, maleic anhydride (15 g) and microcrystalline cellulose (3 g)
were mixed in a mortar and then reacted at 120 ◦C for 3.5 h. The esterification reaction
did not need solvents, which has the advantages of easy purification and low cost. After
that, the reactants were washed with absolute ethanol and then purified water until the
filtrate became neutral. The pH of the esterified microcrystalline cellulose suspension was
adjusted to 11 using an aqueous solution of sodium hydroxide (1 M), and then washed with
purified water until the pH reached 7.8. The purified water was added to the suspension
until 0.5 wt% esterified microcrystalline cellulose suspension was obtained. The suspension
(30 g) was ultrasonically treated with an ultrasound generator (SONICS VCX750, SONICS
& MATERIALS Inc., Newtown, CT, USA) with output power of 600 W, and the treatment
time was 30 min. The CNC suspension was centrifuged and freeze dried, and the obtained
CNC powder was stored at 4 ◦C for further use. The crystallinity of the prepared CNC
was 82.86%.

The zein film was prepared by referring to our previous research [15]. First, 1 mL
of absolute ethanol containing CA (5.8 mg) was dropwise added into 10 mL of β-CD
aqueous solution (2 mM), and the system was continuously stirred (200 rpm, 5 h) in the
dark. Then, the nanoprecipitation method was used to prepare the CA/β-CD inclusion
complex NPs after inclusion reaction. Absolute ethanol (44 mL) was added dropwise
into the CA/β-CD inclusion complex solution under stirring. After that, the mixture
was continuously stirred (200 rpm, 20 min) to form a NP suspension. Then, 1.6 g of zein
was added to a 20 mL NP suspension and stirred (400 rpm) for 30 min. The solution
was mixed with different contents of CNCs (0, 2, 4, 6 and 8 wt%) and glycerin (30 wt%)
on a zein basis. Finally, the film solution (20 mL) was casted on a polypropylene mold
(8.1 cm × 11.2 cm). All films were equilibrated in a desiccator (75% RH) for 2 days at room
temperature. The nanocomposite films containing 0–8 wt% of CNCs were named Zein/NPs,
Zein/NPs/2CNCs, Zein/NPs/4CNCs, Zein/NPs/6CNCs and Zein/NPs/8CNCs.

2.3. Structural Characterization of Films

Scanning electron microscopy (Zeiss, MERLIN Compact, Jena, Germany) was used to
observe the surface morphology of the film. The film samples were fixed on the sample
stages with conductive pastes, and then plated in a vacuum gold plating machine for
2 min. After that, the micro-structures of the films were observed under scanning elec-
tron microscopy (SEM). A Fourier transform infrared (FT-IR) spectrometer (IRAffinity-1
SHIMADZU, Kyoto, Japan) was used to record the FT-IR spectra of the film in the range
of 4000–500 cm−1 with 32 scans at a resolution of 4 cm−1. Before testing, the sample was
dried at 40 ◦C for 24 h, then the sample (1–2 mg) was ground with KBr (200 mg) and
then compressed into an ultrathin disc for measurement. An X-ray diffractometer (Rigaku
D/max2500, Rigaku Corporation, Tokyo, Japan) with Cu Kα radiation (λ = 1.542 Å) at
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40 kV and 40 mA was used to record the X-ray diffraction (XRD) pattern of the film. The
film samples were scanned between 2θ = 5◦ and 35◦ with a rate of 2◦/min.

2.4. Determination of the Physical Properties of Films
2.4.1. Thickness, Moisture Content (MC), Water Solubility (WS) and Swelling Degree (SD)

A helical micrometer was used to measure the thickness of the film (Harbin Measuring
& Cutting Tool Group Co., Ltd., Harbin, China). The film was dried at 105 ◦C until constant
weight and the mass loss of the film relative to its initial mass was the MC. The proportion
of the film dry matter dissolved in water after immersion for 24 h was the WS. The SD
was tested based on a previous method [29]. The film (40 mm × 10 mm) was immersed in
distilled water (30 mL) for 24 h and the ratio of the weight of the film after absorbing water
to its initial weight was the SD of the film.

2.4.2. Water Vapor Permeability (WVP)

The WVP of the film was tested by the previous method [15]. The film sample was
sealed over a special aluminum cup (1.3 cm in depth and exposed area of 28.26 cm2)
containing 2 g of anhydrous CaCl2, and placed into a desiccator with RH of 95% at room
temperature for 48 h. The WVP of the film was calculated using the following equation:

WVP
(

gm−1h−1 Pa−1
)
=

W × t
M× D× ∆P

(1)

where W is the weight change of the film (g); t is the thickness of the film (m); M is the
lapsed time for the weight gain of film (h); D is the area of film (m2); ∆P is the change in
pressure (Pa).

2.4.3. Optical Property

A UV–Vis spectrophotometer (UV-2550, Shimadzu, Japan) was used to measure the
light transmittance of a film sample between 300 and 800 nm and the absorbance at 600 nm.
The films were cut into rectangle pieces (1 cm × 4 cm) and placed in a spectrophotometer
cell. The air was selected as a reference. The opacity of the films was calculated using the
following equation [23]:

Opacity = Abs600/d (2)

where Abs600 is the value of absorbance at 600 nm and d is the thickness of the film (mm).

2.4.4. Mechanical Properties

The dumbbell-shaped specimens with 4 mm neck width and 50 mm long were cut
from the film samples. Mechanical properties, including elongation at break (EAB) and
tensile strength (TS), were measured by a tensile testing machine (Model QJ 210, Shanghai,
Qingji, China), based on our previous research [15]. The 100 N sensor was selected and the
tensile speed was set to 10 mm/min.

2.5. Antioxidant Properties

The film samples were stored in a dark box (50 cm × 50 cm × 130 cm) at room
temperature. At designated time intervals (3 and 90 days), films were taken out and the
antioxidant activity was determined by the following method.

The free radical scavenging activity of the film was tested by DPPH assay [30]. The
sample (1 cm × 1 cm) was put into test tube and immersed into a 0.2 mM DPPH ethanol
solution (2 mL) for 30 min in the dark. The film was then separated from the solution by
filtration, and the absorbance of the solution was measured at 517 nm. The DPPH radical
scavenging activity of the film was calculated using the following equation:

DPPH radical scavenging(%) =
A0−Ai

A0
×100 (3)
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where Ai and A0 are the absorbance of the sample and blank group, respectively.
The total antioxidant activity of the film was tested by ABTS assay [30]. The film

(1 cm × 1 cm) was placed in diluted ABTS+ solution (2 mL, 6 min). The film was separated
from the solution by filtration. Then, the absorbance of the solution at 732 nm was measured
using a UV–Vis spectrophotometer (UV-2550, Shimadzu, Japan). The total antioxidant
activity of the film was calculated using the following equation [15]:

Total antioxidant activity (%) =
A− Ai

A
×100 (4)

where Ai and A are the absorbance of the sample and blank group, respectively.

2.6. Oxidative Stability of Soybean Oil in Film Pouches

The effect of films on inhibiting oil oxidation was tested based on a previous method
with slight modifications [31]. The film pouch (8 cm × 8 cm) containing 22 mL of soybean
oil was heat sealed and stored at room temperature for 30 days. Every 5 days, 2 mL of
oil was taken out and thiobarbituric acid reactive substances (TBARS) and peroxide value
(PV) were analyzed. For PV, 5 mL of methanol/chloroform (1:2, v/v) was mixed with an
oil sample (50 µL), and then reacted with of 20 mM ferrous chloride (50 µL) and 50 µL of
ammonium thiocyanate (30%, w/v) in 3.5% HCl (w/v) for 20 min. The absorbance of the
reaction solution was determined at 500 nm, and PV was calculated by using the cumene
hydroperoxide standard curve. For TBARS, 5 mL of solution containing trichloroacetic
acid (15%, w/v), thiobarbituric acid (3.75%, w/v) and 0.25 mM HCl was mixed with oil
(1 g). The mixture was heated in boiling water (10 min), cooled and centrifuged (5000× g,
20 min). The absorbance of the supernatant was determined at 532 nm, and a 1,1,3,3-
tetramethoxypropane standard curve was used to calculate the TBARS value.

2.7. Statistical Analysis

All tests were repeated at least three times and the results were expressed as
mean ± standard deviation. Data were analyzed by the Duncan test with SPSS software,
and p < 0.05 was statistically significant.

3. Results and Discussion
3.1. Structural Characterization of Films
3.1.1. Morphology

In order to investigate the effect of CNCs on the surface structure of zein/CA/β-CD
inclusion complex NP film, the physical appearance and microstructure of the film were
characterized. As shown in Figure 1, all zein films presented a yellow color. In addition,
the macroscopical surface of zein films was smooth. With the increase in the amount of
CNCs added, there was almost no visible agglomeration on the surface of the films. The
micrographs are included in Figure 1. There were a few agglomerations on the surface of
Zein/NPs without adding CNCs. The lines on the film surface were caused by scratches
in the mold. The microstructure of zein films became smooth and homogeneous with the
increase in CNC content, indicating that the zein and CNCs have good compatibility. There
was no obvious agglomeration on the microscopic surface of the films, indicating that the
esterified CNCs can be well dispersed in the matrix due to electrostatic repulsion, and
this is conducive to the improvement of film strength [22]. Huq et al. (2012) also found a
similar phenomenon that alginate film was more compact in the presence of CNCs, which
improved the mechanical properties of the films [20]. Yadav and Chiu (2019) reported that
the smoothness of the microstructure of κ-carrageenan film increased upon the addition of
CNCs [32]. Yadav et al. (2020) also found that chitosan film containing CNCs showed a
uniform and dense structure due to the small size and homogeneous distribution of CNCs
in film, and the uniform and homogeneous distribution of CNCs in the nanocomposite
film was the main reason for the improvement of physical and mechanical properties of
chitosan-based film [23]
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Figure 1. Physical appearances and SEM images of Zein/NPs (a), Zein/NPs/2CNCs (b),
Zein/NPs/4CNCs (c), Zein/NPs/6CNCs (d) and Zein/NPs/8CNCs (e).

3.1.2. FT-IR Spectra

Figure 2 shows the FT-IR spectra of the films. For zein, the amide II region between
1500 and 1600 cm−1 reflects C–N stretching vibration and N–H bending vibration and
the amide I region between 1600 and 1700 cm−1 was generally characteristic of the C=O
stretching vibration of peptide bond [33]. Generally, the amide II band indicates the
environment for hydrogen bonding, whereas the amide I band represents secondary
structures such as β-sheet and α-helix of the protein [34]. The intensity of the infrared
spectrum of the nanocomposite films in the amide II band peak (around 1540 cm−1)
increased after adding CNCs, indicating that the interaction between amide and CNCs
changed the hydrogen environment. There was a wide peak around 3400 cm−1 in the
amide A region between 3200–3500 cm−1, which corresponded to the O–H stretching
vibration [6]. After adding CNCs to Zein/NPs, the absorption peak of the nanocomposite
films between 3200 and 3500 cm−1 shifted. The result implied the potential interaction
of hydrogen bonding among zein, zein/CA/β-CD inclusion complex NPs and CNCs. In
addition, the infrared spectrum of the nanocomposite films at 1400–1800 cm−1 displayed
many hetero peaks with the increase in the CNC content. This was because the infrared
spectrum of CNCs has characteristic peaks in the range of 1400–1800 cm−1 [28]; with
the increase in CNC content, the characteristic peaks of CNCs gradually appear in the
infrared spectra of the films. Notably, compared with the spectrum of Zein/NPs, a new
peak at about 1740 cm−1 attributable to C=O stretching of the maleate moiety in esterified
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CNCs was observed in Zein/NPs/CNCs films [28], and the peak intensity increased with
the increase in CNC content, indicating that CNCs were successfully embedded into the
film matrix.
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Zein/NPs/6CNCs (d) and Zein/NPs/8CNCs (e).

3.1.3. XRD Patterns

The XRD patterns of the films are shown in Figure 3. There are two diffraction peaks
in the XRD pattern of Zein/NPs, the peak positions are 9.2◦ and 19.5◦. It is worth noting
that a new diffraction peak appears at about 22◦ after adding CNCs to Zein/NPs, and the
intensity of the diffraction peak increases with the increase in CNC content. The reason
for this was that there was a strong characteristic peak at around 2θ = 22◦ of CNCs, with
the increase in CNC content, this characteristic peak gradually appears in the XRD pattern
of the films, which is also the evidence that CNCs have been successfully embedded into
the film matrix. Huq et al. (2012) found a similar phenomenon when incorporating CNCs
into alginate to prepare nanocomposite films [20]. Ye et al. (2017) also observed a new
diffraction peak in the gelatin-trans-anethole/β-cyclodextrin inclusion complex film, which
was attributed to the peak of the inclusion complex [35]. In addition, the incorporation of
CNCs into Zein/NPs resulted in the presence of an additional diffraction peak and the
peak intensity of the film at about 20◦ became stronger, relative to the contribution of CNCs
that allowed an increase in the crystallinity of the films, which was beneficial to improving
the barrier and mechanical properties of the nanocomposite films [20].
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3.2. Physical Properties of Films
3.2.1. Thickness, MC, WS and SD

As shown in Table 1, the thickness of films increased significantly after CNCs were
added (p < 0.05), because of the increase in solid content in the film. Moreover, it can
be seen from the table that with the increase in the content of CNCs, the MC and WS of
the nanocomposite film decreased significantly (p < 0.05). The reason was that the filling
effect of CNCs and the formation of hydrogen bond network increased the crystallinity of
the film, resulting in the compact structure of the film and the reduction in free volume,
so the equilibrium MC decreased [36]. The reason for the decrease in WS may be that
CNCs were insoluble in water, and the decrease in WS was helpful to improve the water
resistance of the nanocomposite film. The incorporation of CNCs significantly reduced
the SD of the nanocomposite film (p < 0.05). Although there were hydroxyl groups in
CNCs, which were hydrophilic, the hydrophilicity of hydroxyl groups was weakened by
the three-dimensional network structure formed by hydrogen bonds. At the same time,
the polymer chains were closely arranged, forming hydrogen bonds with water molecules,
limiting the penetration and diffusion of water in film, thus preventing water from entering
the film. Therefore, the addition of CNCs reduced the SD of the nanocomposite film.

Table 1. Thickness, MC, WS and SD of zein films.

Films Thickness (mm) MC (%) WS (%) SD (%)

Zein/NPs 0.132 ± 0.002 e 21.82 ± 0.49 a 14.46 ± 0.34 a 15.7 ± 0.74 a

Zein/NPs/2CNCs 0.139 ± 0.003 d 18.62 ± 2.01 b 12.39 ±0.22 b 15.21 ± 1.53 a

Zein/NPs/4CNCs 0.151 ± 0.001 c 17 ± 1.29 cd 12.19 ± 0.46 b 13.5 ± 1 ab

Zein/NPs/6CNCs 0.16 ± 0.002 b 16.35 ± 0.11 d 11.75 ± 0.78 b 11.87 ± 1.24 b

Zein/NPs/8CNCs 0.166 ± 0.002 a 15.73 ± 0.26 e 10.31 ± 0.17 c 8.25 ± 1.62 c

Different letters in the same column indicate significantly different as determined by Duncan’s test (p < 0.05).
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3.2.2. WVP

WVP is one of the most important performance indicators for controlling the transmis-
sion of water vapor through the film in food packaging [37]. As shown in Table 2, the WVP
decreased with the increase in CNC content. The WVP of control Zein/NPs (without CNCs)
was 3.27 × 10−7 g m−1 h−1 Pa−1. Compared with the control film, all the Zein/NPs films
loaded with CNCs had lower WVP (i.e., 2.63, 2.2, 1.75 and 1.29 × 10−7 g m−1 h−1 Pa−1 for
loadings of 2, 4, 6 and 8 wt%, respectively). Moreover, only 8% of CNCs were incorpo-
rated, and WVP was significantly reduced by more than 60%. Compared with pure zein
film, the WVP of the nanocomposite film in this study was reduced by about 74% [15].
Sánchez-García, Hilliou and Lagarón (2010) also reported that the WVP was reduced to
71% compared to the control after the incorporation of CNCs into carrageenan [38]. The
presence of CNCs was believed to increase the tortuosity of the nanocomposite film, re-
sulting in a slower diffusion process, thereby reducing permeability. CNCs with negative
charge have good dispersion in the matrix due to electrostatic repulsion, so the barrier
properties were enhanced [20]. In addition, the results of FT-IR showed that the CNCs
and the film matrix formed intermolecular hydrogen bonds, and the three-dimensional
network structure formed by the hydrogen bonds hinders the diffusion of water vapor.

Table 2. WVP, TS and EAB of zein films.

Films WVP (×10−7 g
m−1 h−1 Pa−1) TS (Mpa) EAB (%) Opacity

Zein/NPs 3.27 ± 0.07 a 12.66 ± 0.33 d 4.5 ± 0.16 c 5.954 ± 0.036 a

Zein/NPs/2CNCs 2.63 ± 0.05 b 22.64 ± 1.77 c 4.76 ± 0.11 b 5.881 ± 0.029 b

Zein/NPs/4CNCs 2.2 ± 0.12 c 29.47 ± 1.95 b 5.2 ± 0.1 a 4.97 ± 0.031 c

Zein/NPs/6CNCs 1.75 ± 0.11 cd 37.82 ± 1.07 a 4.6 ± 0.16 bc 4.668 ± 0.043 d

Zein/NPs/8CNCs 1.29 ± 0.11 d 31.14 ± 1.24 b 4.16 ± 0.11 d 3.096 ± 0.035 e

Different letters in the same column indicate significantly different as determined by Duncan’s test (p < 0.05).

3.2.3. Optical Property

The light transmittance of the films was shown in Figure 4. It can be seen from the
figure that the light transmittance of Zein/NPs was less than 10%. However, after adding
CNCs, the transmittance of the nanocomposite film increases gradually, indicating that
the protein network structure formed by the cross-linking of CNCs and zein was more
uniform and orderly, which was more beneficial to improve light transmittance. This was
consistent with the results of the morphology analysis of the films; after adding CNCs, the
microstructure of the nanocomposite film became smooth and uniform. The transmittance
of all kinds of zein films in UV region was close to zero, indicating that the films have
a strong absorption ability to UV light. The main reason for this was that zein contains
many aromatic amino acids, and its benzene ring structure has a strong ability to absorb
UV light [39]. UV radiation protection is important not only for the protection of packaged
foods, but also for the protection of packaging materials, as UV radiation can lead to the
degradation of polymer materials [40]. Thus, nanocomposite films have the potential to be
developed into UV protection materials.

The opacity of the films is presented in Table 2. The higher value of opacity indicates
lower transparency, and vice versa. The opacity value of Zein/NPs was 5.954 ± 0.036,
which was evidently higher than that of Zein/NPs with CNCs. With the increase in CNC
content, the opacity of the Zein/NPs/CNCs film decreased significantly (p < 0.05), indicat-
ing that the transparency of the composite film increased. It is reported that improving the
dispersion of nanocomposites within the matrix reduced the opacity of the film [41,42]. The
esterified CNCs can be well dispersed in the matrix due to electrostatic repulsion, which
was conducive to improving the transparency of the film.
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3.2.4. Mechanical Properties

As shown in Table 2, the TS of the Zein/NPs was 12.66 ± 0.33 MPa. The addition
of CNCs resulted in a significant (p < 0.05) increase in TS. With 6 wt% CNCs, the TS of
the film increased to 37.82 ± 1.07 MPa, which was 3 times of Zein/NPs. However, with
8 wt% CNCs, the TS of the film decreased slightly. Huq et al. (2012) also found that after
the incorporation of 8 wt% CNCs in alginate-based film, the TS decreased slightly than
film with 5 wt% CNCs [20]. The EAB of the Zein/NPs was 4.5 ± 0.16%. With the increase
in CNCs content, the EAB of the films increased. With 2 wt% CNCs, the EAB of the film
increased to 4.76 ± 0.11%, an increase of 5.8% compared to the Zein/NPs. Moreover, the
incorporation of 4 and 6 wt% CNC contents raised the EAB of the nanocomposite films by
15.6% and 2%, respectively. However, with 8 wt% CNCs, the EAB of the nanocomposite
film was even lower than Zein/NPs. An appropriate amount of CNCs (2–6 wt%) can
improve the mechanical strength of the nanocomposite film. The mechanical properties
of biodegradable films are generally related to the intermolecular forces and network
structure [30]. The distribution and concentration of intra- and inter-molecular interactions
have an important impact on the mechanical properties of protein-based films [15,30]. The
esterified CNCs with negative charge can be evenly distributed in the film matrix due to
electrostatic repulsion. The dense three-dimensional network structure formed by inter-
molecular hydrogen bonds between the CNCs and film matrix can improve the mechanical
properties of the film. This phenomenon was evident from the SEM images. However, as
the content of CNCs continues to increase to 8 wt%, the crystallinity of the nanocomposite
film continued to increase, which reduces the flexibility of polymer molecules, resulting
in the increase in brittleness and decrease in EAB [43]. Other researchers found a similar
phenomenon when CNCs were incorporated into alginate film [20].

3.3. Antioxidant Properties

Antioxidant capacity, especially the ability to scavenge free radicals, is one of the basic
characteristics of active packaging, because free radicals can cause oxidative damage and
corruption of food [44]. The DPPH free radical scavenging activity and total antioxidant
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activity of the films after 3 days and 90 days of storage are shown in Table 3. The addition
of CNCs had no significant effect on the DPPH free radical scavenging activity and total
antioxidant activity of the films after 3 days of storage (p > 0.05). After 90 days, as
the content of CNCs increased, the DPPH free radical scavenging activity of the films
increased significantly (p < 0.05) and total antioxidant activity of the films increased slightly.
The DPPH free radical scavenging activity of Zein/NPs/8CNCs was higher than that of
Zein/NPs and still maintained about 68.94% after 90 days of storage, while the DPPH free
radical scavenging activity of Zein/NPs only retained about 59.7%. In previous studies,
only 22% of DPPH free radical scavenging activity and 44% of total antioxidant activity
were retained in zein film containing CA after 90 days of storage [15], which was much
lower than the antioxidant activity in this study. This difference in antioxidant activity was
due to the fact that CA was effectively preserved against oxidization due to the formation
of an inclusion complex between CA and β-CD [12]. Moreover, as the content of CNCs
increases, relative to the contribution of CNCs that allowed increasing the crystallinity
of the films, making the film structure more compact, which was conducive to blocking
oxygen in the air and reducing the oxidation of active components. It should be noted
that the DPPH radical scavenging activity and total antioxidant activity of the films stored
for 90 days decreased compared with the films stored for 3 days. The CA in film was
responsible for the antioxidant activity because polyphenol compound CA can improve
scavenging activity and antioxidant activity [45]. Polyphenol compounds are composed of
one or more aromatic rings bearing hydroxyl groups and are therefore potentially able to
quench free radicals by forming resonance-stabilized phenoxyl radicals [46]. Because the
film was exposed to air for a long time (90 days), oxidation resulted in the loss of CA in film
to a certain extent, which decreased the antioxidant activity. Wang et al. (2013) also found
that the total phenolic content in chitosan/tea polyphenols film decreased significantly
after storage for 24 days, which was attributed to the oxidation of tea polyphenols in air;
thus, the DPPH radical scavenging activity of the film decreased [47].

Table 3. DPPH radical scavenging activity and total antioxidant activity of films.

DPPH Radical Scavenging Activity (%) Total Antioxidant Activity (%)

Storage Time (Days)

Films 3 90 3 90

Zein/NPs 87.41 ± 1.18 a 59.7 ± 2.4 d 91.5 ± 0.85 a 80.04 ± 2.22 a

Zein/NPs/2CNCs 87.6 ± 1.73 a 61.39 ± 1.07 cd 91.64 ± 1.37 a 81.1 ± 2.02 a

Zein/NPs/4CNCs 87.23 ± 1.28 a 64.43 ± 1.34 bc 92.19 ± 2.24 a 81.9 ± 1.91 a

Zein/NPs/6CNCs 87.9 ± 1.61 a 67.47 ± 2.4 ab 91.96 ± 2.13 a 82.86 ± 2.56 a

Zein/NPs/8CNCs 87.35 ± 2.72 a 68.94 ± 2.33 a 92.1 ± 1.99 a 83.35 ± 3.83 a

Different letters in the same column indicate significantly different as determined by Duncan’s test (p < 0.05).

3.4. Oxidative Stability of Soybean Oil in Film Pouches
3.4.1. PV

For oil-containing products and edible oil, oxidative rancidity is the main problem [48].
After oxidative rancidity, the oil produces substances that are harmful to human health,
such as peroxides, ketones and aldehydes [31]. PV is usually used to evaluate the primary
oxidation of oil [49]. The PV of oil packaged in film pouches during storage is shown in
Figure 5. In the first 10 days, the PV of all samples increased sharply, indicating that the oil
was in the stage of lipid oxidation and reproduction. The reason is that lipid free radicals
can react with oxygen to generate peroxyl free radicals, which become fast-reacting chain
carriers by attacking new lipid molecules [31,49]. However, the PV of oil decreased after
storage for 20 days, then increased slightly, and fluctuated among 20 and 30 days of storage.
This was because hydroperoxides were decomposed into secondary oxidation products,
which reduces the PV [49]. As compared with Zein/NPs, oil in films with CNCs displayed
lower PV throughout 30 days of storage. Moreover, oil packaged in Zein/NPs/8CNCs
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displayed the lowest PV. This may be due to the improved crystallinity and denser structure
of the films after the addition of CNCs, which can effectively prevent the oxygen in the
air from entering the film to oxidize the oil. Nilsuwan et al. (2019) also found that chicken
skin oil packaged in gelatin pouches had lower PV than that packaged in a low-density
polyethylene pouch, which was related to the excellent oxygen barrier property of gelatin-
based films [49]. Cho et al. (2010) also reported that enhanced oxygen barrier properties of
zein films were beneficial in reducing the PV of olive oil after storage [50].
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3.4.2. TBARS

The secondary oxidation stage of oil can be studied by the determination of TBARS lev-
els [51]. Figure 6 shows the changes of TBARS value of oil during storage. The TBARS value
of all samples showed an upward trend during 30 days of storage, indicating that ketones
and aldehydes were produced during the storage [31]. The increase in the TBARS value
revealed the formation of secondary oxidation products, because TBARS value is an index
of decomposition of hydroperoxides into the secondary oxidation products in later stages
of lipid oxidation [52]. Hydroperoxides are decomposed to malonaldehyde, resulting in the
off-flavor of oxidized lipids [53]. It is worth noting that the TBARS value of oil in Zein/NPs
was higher than that in films with CNCs throughout 30 days of storage. The reason was
that the films containing CNCs can more effectively inhibit the oil oxidation, thus reducing
the amount of hydroperoxides decomposed into secondary oxidation products. Since
Zein/NPs/CNCs films had better barrier properties than Zein/NPs, Zein/NPs/CNCs
film packaging improved the oxidative stability of soybean oil. Nilsuwan et al. (2019)
also found that the enhanced barrier properties of protein-based films could improve the
oxidation stability of oil in packaging films [49].



Polymers 2021, 13, 2759 13 of 15

Polymers 2021, 13, x FOR PEER REVIEW 13 of 16 
 

 

Zein/NPs/CNCs film packaging improved the oxidative stability of soybean oil. Nilsuwan 
at al. (2019) also found that the enhanced barrier properties of protein-based films could 
improve the oxidation stability of oil in packaging films [49]. 

 
Figure 6. TBARS value of oil packaged in Zein/NPs, Zein/NPs/2CNCs, Zein/NPs/4CNCs, 
Zein/NPs/6CNCs and Zein/NPs/8CNCs pouches. Different lowercase letters within the same pack-
aging indicate significantly different as determined by Duncan’s test (p < 0.05). 

4. Conclusions 
In the present work, Zein/NPs active food packaging containing different amounts 

(0–8 wt%) of maleic-anhydride-modified CNCs were prepared by a facile solvent casting 
approach. SEM images showed that the addition of CNCs made the microstructure of the 
film more smooth and uniform, indicating that zein and CNCs have good compatibility. 
The FT-IR results showed that the CNCs could interact with film matrix through intermo-
lecular hydrogen bonds. The results of XRD also evidenced the appearance of crystalline 
peak due to the existence of CNCs inside the films. The incorporation of CNCs in zein film 
can improve the barrier and mechanical properties. However, when the amount of CNCs 
was 8 wt%, the increase in crystallinity of the film leads to the increase in brittleness and 
the decrease in flexibility; thereby the EAB decreases significantly (p < 0.05). The addition 
of CNCs slightly improved the antioxidant stability of the nanocomposite films. Moreo-
ver, the oxidation stability of soybean oil was effectively improved by packaging in 
Zein/NPs with CNCs. Therefore, the results showed that Zein/NPs with CNCs can be used 
as active packaging materials to protect food from oxidation and prolong the shelf life of 
food products. 

Author Contributions: Conceptualization, methodology, validation, resources, writing—original 
draft preparation and project administration, L.J.; writing—review and editing, Y.H., X.M. and Y.X.; 
supervision, H.Z. All authors have read and agreed to the published version of the manuscript. 

Funding: This research was funded by the Science Foundation Project of Heilongjiang Province 
(C2018026), the Chinese Natural Science Foundation (11802057), the “Young Talents” Project of 

Figure 6. TBARS value of oil packaged in Zein/NPs, Zein/NPs/2CNCs, Zein/NPs/4CNCs,
Zein/NPs/6CNCs and Zein/NPs/8CNCs pouches. Different lowercase letters within the same
packaging indicate significantly different as determined by Duncan’s test (p < 0.05).

4. Conclusions

In the present work, Zein/NPs active food packaging containing different amounts
(0–8 wt%) of maleic-anhydride-modified CNCs were prepared by a facile solvent casting
approach. SEM images showed that the addition of CNCs made the microstructure of the
film more smooth and uniform, indicating that zein and CNCs have good compatibility. The
FT-IR results showed that the CNCs could interact with film matrix through intermolecular
hydrogen bonds. The results of XRD also evidenced the appearance of crystalline peak
due to the existence of CNCs inside the films. The incorporation of CNCs in zein film can
improve the barrier and mechanical properties. However, when the amount of CNCs was
8 wt%, the increase in crystallinity of the film leads to the increase in brittleness and the
decrease in flexibility; thereby the EAB decreases significantly (p < 0.05). The addition of
CNCs slightly improved the antioxidant stability of the nanocomposite films. Moreover,
the oxidation stability of soybean oil was effectively improved by packaging in Zein/NPs
with CNCs. Therefore, the results showed that Zein/NPs with CNCs can be used as
active packaging materials to protect food from oxidation and prolong the shelf life of
food products.

Author Contributions: Conceptualization, methodology, validation, resources, writing—original
draft preparation and project administration, L.J.; writing—review and editing, Y.H., X.M. and Y.X.;
supervision, H.Z. All authors have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Science Foundation Project of Heilongjiang Province
(C2018026), the Chinese Natural Science Foundation (11802057), the “Young Talents” Project of
Northeast Agricultural University, China (20QC11) and the food source-based functional active
packaging discipline team of Northeast Agricultural University (54941112).

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.



Polymers 2021, 13, 2759 14 of 15

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Olmo, J.A.D.; Perez-Alvarez, L.; Hernaez, E.; Ruiz-Rubio, L.; Vilas-Vilela, J.L. Antibacterial multilayer of chitosan and (2-

carboxyethyl)-beta-cyclodextrin onto polylactic acid (PLLA). Food Hydrocoll. 2019, 88, 228–236. [CrossRef]
2. Zhang, N.; Bi, F.; Xu, F.; Yong, H.; Bao, Y.; Jin, C.; Liu, J. Structure and functional properties of active packaging films prepared by

incorporating different flavonols into chitosan based matrix. Int. J. Biol. Macromol. 2020, 165, 625–634. [CrossRef]
3. Gao, P.; Wang, F.; Gu, F.; Ning, J.; Liang, J.; Li, N.; Ludescher, R.D. Preparation and characterization of zein thermo-modified

starch films. Carbohydr. Polym. 2017, 157, 1254–1260. [CrossRef] [PubMed]
4. Shi, K.; Huang, Y.; Yu, H.; Lee, T.-C.; Huang, Q. Reducing the Brittleness of Zein Films through Chemical Modification. J. Agric.

Food Chem. 2011, 59, 56–61. [CrossRef]
5. Cheng, S.Y.; Wang, B.J.; Weng, Y.M. Antioxidant and antimicrobial edible zein/chitosan composite films fabricated by incorpora-

tion of phenolic compounds and dicarboxylic acids. LWT Food Sci. Technol. 2015, 63, 115–121. [CrossRef]
6. Dong, S.; Guo, P.; Chen, Y.; Chen, G.Y.; Ji, H.; Ran, Y.; Li, S.H.; Chen, Y. Surface modification via atmospheric cold plasma (ACP):

Improved functional properties and characterization of zein film. Ind. Crop. Prod. 2018, 115, 124–133. [CrossRef]
7. Kaur, M.; Santhiya, D. UV-shielding antimicrobial zein films blended with essential oils for active food packaging. J. Appl. Polym.

Sci. 2021, 138, 49832. [CrossRef]
8. Shi, K.; Kokini, J.L.; Huang, Q. Engineering Zein Films with Controlled Surface Morphology and Hydrophilicity. J. Agric. Food

Chem. 2009, 57, 2186–2192. [CrossRef]
9. Adel, A.M.; Ibrahim, A.A.; El-Shafei, A.M.; Al-Shemy, M.T. Inclusion complex of clove oil with chitosan/β-cyclodextrin

citrate/oxidized nanocellulose biocomposite for active food packaging. Food Packag. Shelf Life 2019, 20, 100307. [CrossRef]
10. Ho, S.Y.; Thoo, Y.Y.; Young, D.J.; Siow, L.F. Inclusion complexation of catechin by beta-cyclodextrins: Characterization and storage

stability. LWT Food Sci. Technol. 2017, 86, 555–565. [CrossRef]
11. Wang, J.; Cao, Y.P.; Sun, B.G.; Wang, C.T. Physicochemical and release characterisation of garlic oil-beta-cyclodextrin inclusion

complexes. Food Chem. 2011, 127, 1680–1685. [CrossRef]
12. Jiang, L.; Yang, J.; Wang, Q.; Ren, L.; Zhou, J. Physicochemical properties of catechin/beta-cyclodextrin inclusion complex

obtained via co-precipitation. Cyta J. Food 2019, 17, 544–551. [CrossRef]
13. Zhang, W.; Li, X.; Yu, T.; Yuan, L.; Rao, G.; Li, D.; Mu, C. Preparation, physicochemical characterization and release behavior of

the inclusion complex of trans-anethole and beta-cyclodextrin. Food Res. Int. 2015, 74, 55–62. [CrossRef] [PubMed]
14. Ho, S.; Thoo, Y.Y.; Young, D.J.; Siow, L.F. Cyclodextrin encapsulated catechin: Effect of pH, relative humidity and various food

models on antioxidant stability. LWT Food Sci. Technol. 2017, 85, 232–239. [CrossRef]
15. Jiang, L.; Jia, F.; Han, Y.; Meng, X.; Xiao, Y.; Bai, S. Development and characterization of zein edible films incorporated with

catechin/β-cyclodextrin inclusion complex nanoparticles. Carbohydr. Polym. 2021, 261, 117877. [CrossRef] [PubMed]
16. Csiszar, E.; Nagy, S. A comparative study on cellulose nanocrystals extracted from bleached cotton and flax and used for casting

films with glycerol and sorbitol plasticisers. Carbohydr. Polym. 2017, 174, 740–749. [CrossRef]
17. Jonoobi, M.; Oladi, R.; Davoudpour, Y.; Oksman, K.; Dufresne, A.; Hamzeh, Y.; Davoodi, R. Different preparation methods

and properties of nanostructured cellulose from various natural resources and residues: A review. Cellulose 2015, 22, 935–969.
[CrossRef]

18. Trache, D.; Hussin, M.H.; Haafiz, M.K.M.; Thakur, V.K. Recent progress in cellulose nanocrystals: Sources and production.
Nanoscale 2017, 9, 1763–1786. [CrossRef]

19. Alves, J.S.; dos Reis, K.C.; Menezes, E.G.T.; Pereira, F.V.; Pereira, J. Effect of cellulose nanocrystals and gelatin in corn starch
plasticized films. Carbohydr. Polym. 2015, 115, 215–222. [CrossRef] [PubMed]

20. Huq, T.; Salmieri, S.; Khan, A.; Khan, R.A.; Le Tien, C.; Riedl, B.; Fraschini, C.; Bouchard, J.; Uribe-Calderon, J.; Kamal, M.R.; et al.
Nanocrystalline cellulose (NCC) reinforced alginate based biodegradable nanocomposite film. Carbohydr. Polym. 2012, 90,
1757–1763. [CrossRef]

21. Habibi, Y.; Lucia, L.A.; Rojas, O.J. Cellulose Nanocrystals: Chemistry, Self-Assembly, and Applications. Chem. Rev. 2010, 110,
3479–3500. [CrossRef]

22. Zhao, K.; Wang, W.; Teng, A.; Zhang, K.; Ma, Y.; Duan, S.; Li, S.; Guo, Y. Using cellulose nanofibers to reinforce polysaccharide
films: Blending vs layer-by-layer casting. Carbohydr. Polym. 2020, 227, 115264. [CrossRef]

23. Yadav, M.; Behera, K.; Chang, Y.-H.; Chiu, F.-C. Cellulose Nanocrystal Reinforced Chitosan Based UV Barrier Composite Films for
Sustainable Packaging. Polymers 2020, 12, 202. [CrossRef]

24. Ma, X.; Lv, M.; Anderson, D.P.; Chang, P.R. Natural polysaccharide composites based on modified cellulose spheres and
plasticized chitosan matrix. Food Hydrocoll. 2017, 66, 276–285. [CrossRef]

25. Tang, L.R.; Huang, B.; Lu, Q.L.; Wang, S.Q.; Ou, W.; Lin, W.Y.; Chen, X.R. Ultrasonication-assisted manufacture of cellulose
nanocrystals esterified with acetic acid. Bioresour. Technol. 2013, 127, 100–105. [CrossRef]

26. Nechyporchuk, O.; Belgacem, M.N.; Bras, J. Production of cellulose nanofibrils: A review of recent advances. Ind. Crop. Prod.
2016, 93, 2–25. [CrossRef]

http://doi.org/10.1016/j.foodhyd.2018.10.014
http://doi.org/10.1016/j.ijbiomac.2020.09.209
http://doi.org/10.1016/j.carbpol.2016.11.004
http://www.ncbi.nlm.nih.gov/pubmed/27987830
http://doi.org/10.1021/jf103164r
http://doi.org/10.1016/j.lwt.2015.03.030
http://doi.org/10.1016/j.indcrop.2018.01.080
http://doi.org/10.1002/app.49832
http://doi.org/10.1021/jf803559v
http://doi.org/10.1016/j.fpsl.2019.100307
http://doi.org/10.1016/j.lwt.2017.08.041
http://doi.org/10.1016/j.foodchem.2011.02.036
http://doi.org/10.1080/19476337.2019.1612948
http://doi.org/10.1016/j.foodres.2015.04.029
http://www.ncbi.nlm.nih.gov/pubmed/28412003
http://doi.org/10.1016/j.lwt.2017.07.028
http://doi.org/10.1016/j.carbpol.2021.117877
http://www.ncbi.nlm.nih.gov/pubmed/33766364
http://doi.org/10.1016/j.carbpol.2017.06.103
http://doi.org/10.1007/s10570-015-0551-0
http://doi.org/10.1039/C6NR09494E
http://doi.org/10.1016/j.carbpol.2014.08.057
http://www.ncbi.nlm.nih.gov/pubmed/25439888
http://doi.org/10.1016/j.carbpol.2012.07.065
http://doi.org/10.1021/cr900339w
http://doi.org/10.1016/j.carbpol.2019.115264
http://doi.org/10.3390/polym12010202
http://doi.org/10.1016/j.foodhyd.2016.11.038
http://doi.org/10.1016/j.biortech.2012.09.133
http://doi.org/10.1016/j.indcrop.2016.02.016


Polymers 2021, 13, 2759 15 of 15

27. Sirviö, J.A.; Kolehmainen, A.; Liimatainen, H.; Niinimäki, J.; Hormi, O.E.O. Biocomposite cellulose-alginate films: Promising
packaging materials. Food Chem. 2014, 151, 343–351. [CrossRef]

28. Jiang, L.W.; Yang, J.D.; Wang, Q.; Ren, L.L.; Zhou, J. Fabrication and characterisation of cellulose nanocrystals from microcrystalline
cellulose by esterification and ultrasound treatment. Micro Nano Lett. 2018, 13, 1574–1579. [CrossRef]

29. Mayachiew, P.; Devahastin, S. Effects of drying methods and conditions on release characteristics of edible chitosan films enriched
with Indian gooseberry extract. Food Chem. 2010, 118, 594–601. [CrossRef]

30. Wu, J.L.; Sun, X.Y.; Guo, X.B.; Ji, M.Y.; Wang, J.H.; Cheng, C.; Chen, L.; Wen, C.L.; Zhang, Q.Q. Physicochemical, Antioxidant, In
Vitro Release, and Heat Sealing Properties of Fish Gelatin Films Incorporated with beta-Cyclodextrin/Curcumin Complexes for
Apple Juice Preservation. Food Bioprocess. Technol. 2018, 11, 447–461. [CrossRef]

31. Zhang, X.; Liu, J.; Yong, H.; Qin, Y.; Liu, J.; Jin, C. Development of antioxidant and antimicrobial packaging films based on
chitosan and mangosteen (Garcinia mangostana L.) rind powder. Int. J. Biol. Macromol. 2020, 145, 1129–1139. [CrossRef] [PubMed]

32. Yadav, M.; Chiu, F.-C. Cellulose nanocrystals reinforced κ-carrageenan based UV resistant transparent bionanocomposite films
for sustainable packaging applications. Carbohydr. Polym. 2019, 211, 181–194. [CrossRef]

33. Xu, H.; Zhang, G. Synergistic Effect of Oleic Acid and Glycerol on Zein Film Plasticization. J. Agric. Food Chem. 2012, 60,
10075–10081. [CrossRef] [PubMed]

34. Almutawah, A.; Barker, S.A.; Belton, P.S. Hydration of gluten: A dielectric, calorimetric, and fourier transform infrared study.
Biomacromolecules 2007, 8, 1601–1606. [CrossRef]

35. Ye, Y.; Zhu, M.; Miao, K.; Li, X.; Li, D.; Mu, C. Development of Antimicrobial Gelatin-Based Edible Films by Incorporation of
Trans-Anethole/β-Cyclodextrin Inclusion Complex. Food Bioprocess. Technol. 2017, 10, 1844–1853. [CrossRef]

36. Sharmin, N.; Khan, R.A.; Salmieri, S.; Dussault, D.; Bouchard, J.; Lacroix, M. Modification and Characterization of Biodegradable
Methylcellulose Films with Trimethylolpropane Trimethacrylate (TMPTMA) by γ Radiation: Effect of Nanocrystalline Cellulose.
J. Agric. Food Chem. 2012, 60, 623–629. [CrossRef]

37. Alizadeh-Sani, M.; Rhim, J.-W.; Azizi-Lalabadi, M.; Hemmati-Dinarvand, M.; Ehsani, A. Preparation and characterization of
functional sodium caseinate/guar gum/TiO2/cumin essential oil composite film. Int. J. Biol. Macromol. 2020, 145, 835–844.
[CrossRef]

38. Sánchez-García, M.D.; Hilliou, L.; Lagarón, J.M. Morphology and Water Barrier Properties of Nanobiocomposites of κ/ι-Hybrid
Carrageenan and Cellulose Nanowhiskers. J. Agric. Food Chem. 2010, 58, 12847–12857. [CrossRef]

39. Perez, L.M.; Piccirilli, G.N.; Delorenzi, N.J.; Verdini, R.A. Effect of different combinations of glycerol and/or trehalose on physical
and structural properties of whey protein concentrate-based edible films. Food Hydrocoll. 2016, 56, 352–359. [CrossRef]

40. Simona, J.; Dani, D.; Petr, S.; Marcela, N.; Jakub, T.; Bohuslava, T. Edible Films from Carrageenan/Orange Essential Oil/Trehalose—
Structure, Optical Properties, and Antimicrobial Activity. Polymers 2021, 13, 332. [CrossRef] [PubMed]

41. Sinha Ray, S.; Okamoto, M. Polymer/layered silicate nanocomposites: A review from preparation to processing. Prog. Polym. Sci.
2003, 28, 1539–1641. [CrossRef]

42. Slavutsky, A.M.; Bertuzzi, M.; Armada, M. Water barrier properties of starch-clay nanocomposite films. Braz. J. Food Technol. 2012.
[CrossRef]

43. Chang, P.R.; Jian, R.; Zheng, P.; Yu, J.; Ma, X. Preparation and properties of glycerol plasticized-starch (GPS)/cellulose nanoparticle
(CN) composites. Carbohydr. Polym. 2010, 79, 301–305. [CrossRef]
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