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Abstract

The BARD1 protein, which heterodimerizes with BRCA1, is encoded by a known breast can-

cer susceptibility gene. While several BARD1 variants have been identified as pathogenic,

many more missense variants exist that do not occur frequently enough to assign a clinical

risk. In this paper, whole exome sequencing of over 10,000 cancer samples from 33 cancer

types identified from somatic mutations and loss of heterozygosity in tumors 76 potentially

cancer-associated BARD1 missense and truncation variants. These variants were tested in

a functional assay for homology-directed repair (HDR), as HDR deficiencies have been

shown to correlate with clinical pathogenicity for BRCA1 variants. From these 76 variants, 4

in the ankyrin repeat domain and 5 in the BRCT domain were found to be non-functional in

HDR. Two known benign variants were found to be functional in HDR, and three known

pathogenic variants were non-functional, supporting the notion that the HDR assay can be

used to predict the clinical risk of BARD1 variants. The identification of HDR-deficient vari-

ants in the ankyrin repeat domain indicates there are DNA repair functions associated with

this domain that have not been closely examined. In order to examine whether BARD1-

associated loss of HDR function results in DNA damage sensitivity, cells expressing non-

functional BARD1 variants were treated with ionizing radiation or cisplatin. These cells were

found to be more sensitive to DNA damage, and variations in the residual HDR function of

non-functional variants did not correlate with variations in sensitivity. These findings improve

the understanding of BARD1 functional domains in DNA repair and support that this func-

tional assay is useful for predicting the cancer association of BARD1 variants.

Author summary

BARD1 is a breast cancer susceptibility gene encoding a protein that primarily interacts

with BRCA1 in DNA repair. Although several BARD1 variants are known to be
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pathogenic, many more variants do not occur frequently enough to assign a clinical risk.

In this paper, we identified 76 potentially cancer-associated BARD1 variants from analysis

of over 10,000 tissue samples from people with cancer. It has previously been shown that

if a BRCA1 variant cannot repair damaged DNA, then it is likely to cause cancer. We

tested BARD1 variants for DNA repair function and identified several non-functional var-

iants that were localized in parts of the BARD1 protein not previously associated with

DNA repair. Known benign BARD1 variants were found to be functional and known

pathogenic variants were non-functional, showing that examining DNA repair function

predicted variant pathogenicity. Cells expressing repair-defective BARD1 variants were

also more sensitive to DNA damaging agents. These findings help us better understand

how BARD1 is involved in DNA repair and show that examining the DNA repair function

of BARD1 variants is useful for predicting their cancer risk.

Introduction

Variants in BRCA1 and BRCA2 account for a plurality of hereditary breast and ovarian cancer

(HBOC) cases, and are associated with risks of 50–85% for breast cancer and 15–40% for ovar-

ian cancer [1–4]. BARD1 forms an obligate heterodimer with BRCA1, which functions as both

an E3 ubiquitin ligase [5,6] and as a direct mediator of homologous recombination for the

recruitment of RAD51 to the sites of DNA double-strand breaks [7–9]. Truncated BARD1 var-

iants have been identified in breast and ovarian cancers [10–12] and germline variants in the

BARD1 gene are associated with increased cancer risk [13]. Still, for both BRCA1 and BARD1,

the functional and clinical consequences are often unknown for sequence changes that replace

the encoded amino acid residue.

Both BRCA1 and BARD1 are tested on clinical gene panels for breast and ovarian cancer

susceptibility. Many BRCA1 variants, as well as a few BARD1 variants, have been determined

to be clinically pathogenic. However, many more variants, which are generally missense substi-

tutions, do not occur frequently enough in the population to assign a cancer risk and are classi-

fied as variants of uncertain significance (VUS). The ClinVar database [14] gathers

information on pathogenic and benign variants, but most variants in its database are VUS. A

gene panel testing 25 breast cancer-associated genes found 42% of all tests have findings of a

VUS in one or more genes, indicating many people have such variants and there is a growing

need for their classification [15]. Datasets such as the Cancer Genome Atlas (TCGA) gather

information on missense variants, but are unable to be used for the accurate prediction of the

cancer predisposition of a specific VUS. Assays examining homology-directed repair (HDR)

function have demonstrated that known pathogenic BRCA1 variants are non-functional in

HDR, while benign variants are functional [16–19]. BARD1 consists of an amino-terminal

RING domain, three ankyrin repeat domains, and two carboxy-terminal BRCT domains

[5,20]. Previous work in our lab has examined the HDR function of 29 BARD1 variants, focus-

ing on the RING and BRCT domains [21].

In this study, we identified 76 BARD1 missense and truncation variants that were poten-

tially cancer-associated from a large dataset containing exome-sequencing data on matched

germline and tumor samples [19,22], and tested them for HDR function. Several HDR-defi-

cient variants were identified in both the ankyrin repeat and BRCT domains. To examine the

effects caused by loss of HDR function, cells expressing HDR-deficient BARD1 variants were

treated with DNA damaging cisplatin or ionizing radiation. Cells expressing HDR-deficient

variants were more sensitive to DNA damage and formed significantly fewer colonies than
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cells expressing wild-type BARD1. Although cells expressing HDR-deficient variants were

more sensitive to damage than wild-type cells, quantitative variations in HDR deficiency did

not correlate with differences in sensitivity to DNA damage agents. The results of this study

reveal functional domains of BARD1 and suggest that the functional analysis of BARD1 HDR

activity is predictive of breast and ovarian cancer risk.

Results

Identification of BARD1 variants as potential cancer-associated loss of

function variants

BARD1 missense variants with potential cancer predisposition were identified in a set of

10,389 TCGA cancer samples from 33 cancer types using whole exome sequencing (Fig 1A)

[19,22]. 62 rare germline variants and 14 somatic variants were found with variant calling. The

variant allele frequency (VAF) and loss of heterozygosity (LOH) of germline variants were also

examined to identify variants that could be functionally important. Six variants—S339T,

T343I, V523A, N450H, G451fs and L239Q—were identified as having significantly higher

LOH, indicating they had an increased likelihood of being pathogenic (Fig 1B). At the begin-

ning of this study, variants were selected from a cohort of 4,034 samples [19,23] that later

became part of a larger set of 10,389 samples [22,24]. Because of changes to selection criteria

and data analysis, most, but not all, of the variants analyzed in this study were present in the

larger data set, which was used to update the variant calling (Fig 1C). While several variants

were not present in our newer data set, they are still likely present in the exome sequencing

data. Analyzed variants were present in 24 of the 33 cancer types examined, not just breast or

ovarian cancer, as might be predicted for a BRCA1 binding partner (Fig 1D).

Analysis of BARD1 variants in Homology-Directed Repair (HDR)

76 BARD1 missense variants, a majority of which were located in the ankyrin repeat and

BRCT domains or between these domains, were tested for function in the homology-directed

repair (HDR) assay (Fig 2A). For the HDR assay, a cell line that has two non-functional GFP
coding sequences integrated into its DNA is used to examine DNA repair function. One of

these GFP-encoding genes contains a recognition site for the rare-cutting restriction endonu-

clease I-SceI. When the I-SceI expression plasmid is transiently transfected into these cells, a

double-strand break is made in one of the GFP sequences. If homology-directed repair uses

the second GFP coding sequence as a template to repair across the double-strand break, then

the encoded GFP is rendered functional [16,25]. We used a HeLa-derived cell clone called

HeLa-DR, which has the GFP-encoding recombination substrate integrated at a single site.

After transfection of the I-SceI expression plasmid, 10–20% of the cells were converted to

GFP-positive [16]. Endogenous BARD1 expression was depleted in HeLa-DR cells by two

rounds of transfection of a siRNA that targets the 3’-UTR of the BARD1 mRNA. Simulta-

neously with the silencing of endogenous BARD1, BARD1 variants were expressed from tran-

siently transfected plasmids that were resistant to the siRNA. Two days following the first

transfection, the siRNA and plasmid were transfected again into the cells along with the plas-

mid that expresses the I-SceI endonuclease. Three days after the second transfection, the num-

ber of GFP-positive cells was determined using flow cytometry (S1 Table). Full HDR activity

was observed under conditions of mock depletion of BARD1 by transfection with a control

siRNA (Fig 2A, bar 1) and by depletion of BARD1 using the 3’-UTR targeted siRNA with res-

cue by transfection of a plasmid that expressed wild-type BARD1 (Fig 2A, bar 3). Cells

depleted of BARD1 and transfected with an empty vector had a 25-fold decrease in HDR
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Fig 1. Selection of BARD1 missense variants for functional analysis using sequencing data of cancer patient samples. (A) BARD1 missense variants of

interest were identified in a cohort of 4,034 samples from 12 cancer types and a larger set of 10,389 TCGA samples from 33 cancer types with whole exome

sequencing [19,22]. (B) Identification of LOH in BARD1 through comparison of VAF in tumor and normal samples. Each dot depicts one variant. The

diagonal line denotes neutral selection of the germline variant where the normal and tumor variant allele frequencies (VAFs) are identical. LOH was

considered significant at False Discovery Rate (FDR)� 0.05. (C) Number of samples containing each of the 76 BARD1 variants in the 10,389 cohort [22]. (D)

Number of samples affected by each BARD1 variant for each of the 33 cancer types.

https://doi.org/10.1371/journal.pgen.1008049.g001
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activity measured as the percentage of GFP-positive cells (Fig 2A, bar 2). We set the level of

GFP expression following a double-strand break to a value of 1 relative to wild-type rescue

(Fig 2A, bar 3) to facilitate comparison between experiments.

The 76 variants tested were from across the full coding sequence of BARD1. Variants whose

HDR activity was lower than 0.6 and whose expression was greater than or equal to endoge-

nous BARD1 were considered to be repair-deficient (Fig 2A and B). The eight variants located

in the RING domain, as well the 22 in the region between the RING and ankyrin repeat

domains, all had HDR activity similar to wild-type. Previous work in our lab [21] examined

the HDR activity of 29 BARD1 missense variants, including additional variants in the RING

domain. We combined the current HDR results with the previously published results into a

single table containing 105 variants (S1 Fig). In this previous work, the variants L44R, C53W,

and C71Y in the RING domain were found to be defective in HDR due to defective binding to

BRCA1. Surprisingly, in the current study, four of the 17 variants in the ankyrin domain,

which has no known DNA repair function, were found to express full-length BARD1 and be

defective in HDR. Variants A460T, L465F, L480S, and P530L had HDR activity lower than 0.6,

which was significantly lower than cells expressing endogenous BARD1. The five variants

located between the ankyrin repeat and BRCT domains were proficient in DNA repair with

the exception of R565C, whose HDR activity was just below the cutoff of 0.6. Of the 19 mis-

sense variants tested in the BRCT domain, which is known to be involved in recruiting and

retaining the BRCA1-BARD1 heterodimer to areas of DNA damage, five were found to be

defective in HDR [26,27]. The variants S660R and G698D had HDR function comparable to

cells transfected with empty vector. The variants T598I, P707S, and G753D had activity higher

than empty vector but still significantly lower than endogenous BARD1. A larger fraction of

residues conserved across several mammalian species were mutated in repair-deficient variants

(9/10) than in functional ones (38/55) (S2 Fig). Five truncation variants were also tested, and

all were about as equally defective as the empty vector in the HDR assay. Previous work has

suggested that filtering using high LOH could be used to identify BRCA1 variants defective in

HDR [19]. However, BARD1 variants that were found to have high LOH (Fig 1B) were all

functional, with the exception of truncation variant G451fs.

Testing the HDR function of BRCA1 variants has shown that, with the exception of variants

that impact mRNA splicing, known pathogenic variants of BRCA1 are HDR-defective, while

known benign variants are not [16,17,19]. Similarly, the BARD1 variants S241C and E361D,

which have been found in patients with breast cancer and are benign according to ClinVar, are

functional in HDR (Fig 2A, blue dots). Truncation variants V154fs, S551�, and Q564�, where

Fig 2. Functional analysis of BARD1 variants. (A) 76 BARD1 single missense substitutions were tested for function in the HDR

assay. HeLa-DR cells [16] were treated with control siRNA (lane 1) or siRNA specific to the BARD1 3’-untranslated region (UTR)

(lanes 2–80) and empty vector (lanes 1,2) or BARD1 expression plasmid (lanes 3–80). Two positive controls were used: cells

treated with empty vector and control siRNA (lane 1), and cells depleted of endogenous BARD1 with wild-type BARD1 rescue

(lane 3). Cells treated with empty plasmid and BARD1 3’UTR siRNA were used as a negative control (lane 2). HDR function was

characterized by the percentage of GFP-positive cells measured using flow cytometry. Results in each experiment (±S.E.M.) were

normalized to the WT rescue (lane 3), which was set equal to 1. Results represent three independent transfections per BARD1
plasmid. Variants that are benign and pathogenic according to ClinVar are labeled blue and red respectively. Variants with

conflicting interpretations are labeled gray. HDR-deficient variants are marked by an asterisk and classified by having HDR

function less than 0.6 and p< 0.01 when compared with endogenous BARD1 (control siRNA) using the Student’s t-test. (B)

BARD1 variants tested in the HDR assay were examined for their expression relative to endogenous BARD1. Replicates were

pooled together to examine BARD1 expression. The BARD1 protein is indicated with an arrow, as the BARD1-specific band

migrated more slowly than a cross-contaminating band. The endogenously expressed BARD1 in control transfections (lanes 1, 14,

23, 29, 33, 41, 53, 65, 77, 90, 100) and the depleted BARD1 without rescue (lanes 2, 15, 24, 30, 34, 42, 54, 66, 78, 91, 101) can be

compared with the expression of variant BARD1 proteins as indicated. A tagged BARD1 V507A plasmid was used to confirm

BARD1 expression (lanes 31 and 32, upper arrow) and migrated more slowly than endogenous BARD1 (lane 29, lower arrow). All

missense variants had expression higher than the endogenously expressed BARD1.

https://doi.org/10.1371/journal.pgen.1008049.g002
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the asterisk indicates a stop codon, are listed as pathogenic according to ClinVar and were

non-functional in the HDR assay (Fig 2A, red dots). Several other variants that were tested

have been identified in breast cancer patients and have conflicting interpretations of pathoge-

nicity (Fig 2A, gray dots).

We tested whether the level of expression of any BARD1 variants could have affected their

HDR activity. Expression of BARD1 variants was examined via immunoblot (Fig 2B). The rel-

ative expression of the endogenous BARD1 and siRNA-depleted BARD1 were shown (Fig 2B

lanes 1, 2, 14, 15, 23, 24, 29, 30, 33, 34, 41, 42, 53, 54, 65, 66, 77, 78, 90, 91, 100,101). Though

the expression levels of missense variants differed, they all expressed at higher levels than the

endogenous BARD1. As an example, BARD1 L480S (lane 63) had lower expression than the

plasmid encoded wild-type (lane 55), but both had more intensely labeled bands than the

endogenously expressed BARD1 (lane 53). The variant BARD1 H606D is present in the immu-

noblots in Fig 2B (lane 103), but is not listed in Fig 2A because full length protein was not

detected, and it was found to contain a nonsense mutation at codon 125. Similarly, BARD1

L359fs is present in Fig 2B (lane 50) and S3 Fig (lanes 5, 14) but is not listed in Fig 2A because

it was a miss-call during variant selection. Frameshift and nonsense codon variants (Fig 2B

lanes 10, 60, 81, 84, 112) lacked full length BARD1. Truncation variants G451fs, S551�, Q564�

and V767fs expressed truncated BARD1, while variant protein V154fs was not detected (S3

Fig). We infer that repair defects observed in truncation variants with poor protein expression

were due to the absence of protein instead of expressed, non-functional variant protein. We

conclude that for the missense variants, a low level of HDR activity was not due to low expres-

sion of the BARD1 protein.

Comparison of BARD1 HDR activity with sensitivity to DNA damage by

ionizing radiation and cisplatin

BARD1 variants A460T, P707S, G753D, and V767fs were selected for further analysis, as they

covered a range of HDR activities below 0.6 when transiently expressed. The selected variants

and wild-type BARD1 were tagged with the His-Biotin-Tobacco Etch Virus (HBT) tag [28]

and integrated into the FRT site of a HeLa-DR derivative cell line called HeLa-DR-FRT/TR

[29]. The advantage of these FRT site-containing cells was that the BARD1 gene was stably

expressed from a single site and should have consistent levels of expression. We tested the sta-

bly expressed variants in the HDR assay to confirm repair proficiency was the same as the tran-

siently expressed variants. The HDR activities of these variants from Fig 2 are shown in

isolation (Fig 3A). The same repair trends were observed in both transiently expressed and sta-

bly expressed BARD1 variants (Fig 3A and 3B). BARD1 A460T-integrated cells had the most

residual repair activity among these variants, and cells integrated with BARD1 P707S, G753D

and V767fs had decreasing levels of repair proficiency respectively. Expression of the inte-

grated BARD1 variants was also greater than or equal to that of endogenous BARD1 (Fig 3C).

BRCA1 expression in variant-integrated cell lines was similar in cells expressing endogenous

BARD1 and the various defective BARD1 variants (Fig 3C). Thus, none of the changes in

HDR observed with these BARD1 variants were attributable to changes in BRCA1 expression.

We examined whether the quantitative loss of HDR proficiency correlated with the sensitiv-

ity of cells to extrinsic DNA damage. Clonogenic cell sensitivity assays were performed on

HeLa-DR-FRT/TR cells expressing integrated BARD1 wild-type and variants, as well as

endogenous-only unintegrated cells. Cells were depleted of endogenous BARD1 or BRCA1

and subjected to ionizing radiation (IR) (Fig 4) or cisplatin (Fig 5). Depletion of BARD1 or

BRCA1 from the endogenous-only cells (E/siBARD and E/siBRCA) examined the effect of a

non-rescued HDR defect on sensitivity to IR and provided a baseline for DNA damage

Functional analysis of BARD1 missense variants
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sensitivity (Fig 4A, bottom). E/siBARD and E/siBRCA cells formed significantly fewer colonies

after IR than control cells (E/siCON). BARD1 variant-integrated cells depleted of endogenous

BARD1 (Variant/siBARD) all formed significantly fewer colonies following IR than the same

cells treated with control siRNA (Variant/siCON) (Fig 4A, top). For ease of comparison, we

included results from Variant/siBARD, E/siBARD, E/siBRCA and WT/siBARD cells on one

graph (Fig 4B). Immunoblots were done to confirm knockdown of endogenous BARD1 (Fig

4C). While expression of each BARD1 variant differed, it was still greater than or equal to that

of endogenous BARD1.

E/siBARD, E/siBRCA and Variant/siBARD cells formed significantly fewer colonies than

WT/siBARD cells at most irradiation concentrations (Fig 4B). It was expected that increased

HDR deficiency would result in increased sensitivity to DNA damage agents. For example, we

expected that cells expressing BARD1 V767fs, the most HDR-deficient variant, would form

the least number of colonies. Cells expressing BARD1 A460T, the variant with the most resid-

ual HDR activity, were expected to have the largest number of colonies compared with the

other variants. Interestingly, this was not the trend observed in the results. Instead, HDR-

defective BARD1 variants were all equally sensitive to IR, and as sensitive as non-rescued cells

depleted of BARD1 or BRCA1. Similarly, all four BARD1 variants were more sensitive than

wild-type to treatment with cisplatin (Fig 5A). Variant/siBARD, E/siBARD and E/siBRCA

cells formed significantly fewer colonies than Variant/siCON and E/siCON cells. Variant/

siBARD, E/siBARD and E/siBRCA cells also formed significantly fewer colonies than WT/

siBARD cells (Fig 5B). As seen with IR, all BARD1 variants and non-rescued cells depleted of

BARD1 or BRCA1 were equally sensitive to cisplatin. In addition, BARD1 variant expression

remained consistently equal to or greater than that of endogenous BARD1 in cells, indicating

that decreased colony formation was not associated with decreased variant expression (Fig

5C). While decreased HDR function resulted in decreased colony formation, quantitative dif-

ferences in the HDR activity did not correlate to quantifiable changes in sensitivity to cisplatin

or IR.

Discussion

In this study, we found: 1) from 10,389 cancer samples across 33 cancer types, 76 BARD1 mis-

sense variants were identified as potentially pathogenic and were selected for functional analy-

sis. 2) 16 of the 76 tested variants were defective for HDR, suggesting that these were

potentially pathogenic variants. 3) Four of the 17 variants tested in the ankyrin repeat domain,

for which there was no previously known DNA repair function, were deficient in homologous

recombination. 4) Five of the 19 variants tested in the BRCT domain, which does have known

DNA repair functions, were deficient in homologous recombination. 5) Variants that were

deficient in HDR rendered the cells sensitive to treatment with DNA-damaging cisplatin or

IR. 6) Quantitative differences in HDR deficiency among defective variants did not translate to

quantitatively different sensitivity to DNA damage.

The BRCA1-BARD1 heterodimer is necessary for tumor suppressor function [5,30]. Vari-

ants that affect binding between BRCA1 and BARD1 have been linked to familial breast cancer

or are non-functional in the HDR assay [21,31,32]. Loss of BARD1 has been linked to

increased susceptibility to hereditary breast and ovarian cancer (HBOC) and is associated with

loss of tumor suppressor activity [4,13,33–36]. The importance of BARD1 in cancer develop-

ment indicates how significant it is to determine whether BARD1 VUS are benign or

pathogenic.

A rise in the quantity of genomic data has led to an increasing number of VUS, uncertain

due to their low frequency and conflicting reports of pathogenicity. In this paper, potentially
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Fig 3. HBT-tagged BARD1 variants expressed from a single FRT site function similarly to transiently transfected variants in HDR.

(A) Of the 76 BARD1 variants examined for HDR functionality (Fig 2A), BARD1 A460T, P707S, G753D, and V767fs were selected for

further study based on their range of HDR activity. (B) BARD1 variants integrated into a single FRT site in HeLa-DR-FRT/TR cells [29]

functioned similarly to the same variants expressed in HeLa-DR cells by transient transfection. HBT-tagged BARD1 WT and variants were

integrated into HeLa-DR-FRT/TR cells via the FRT site for consistent single-site expression. Cells were treated with control or BARD1
3’UTR siRNA and examined via the HDR assay. Unintegrated HeLa-DR-FRT/TR cells were used as a control. For comparison, results

from transiently transfected cells were selected from Fig 2 (Fig 3A), and the results from expressing the integrated BARD1 variants are

shown. While HDR activity was lower in cells containing integrated BARD1 as compared with transiently expressed BARD1, the

integrated variants exhibited the same trend as the transiently expressed variants—BARD1 A460T was the most proficient, followed by
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pathogenic BARD1 variants were identified in a dataset of 10,389 cancer samples from 33 dif-

ferent cancers [22]. From germline and somatic samples, 76 variants from across the entire

BARD1 gene were identified as suggestive for being pathogenic. Analysis from the tumor

sequencing data indicated BARD1 S339T, T343I, V523A, N450H, G451fs, and L239Q had sig-

nificantly increased LOH, suggesting that these variants were more likely to be pathogenic.

However, with the exception of the G451fs truncation variant, the other five variants were

found to be functional in HDR. Previous work [19] has proposed that HDR-deficient BRCA1

variants could be identified using filtering based on increased LOH. In contrast, we have

found that increased LOH does not correlate with HDR deficiency for BARD1 variants. As we

are unaware of other studies regarding the relationship between LOH and HDR-deficient

BRCA1 and BARD1 variants, these contrary results suggest that increased LOH is not a reli-

able indicator of non-functional variants. Data suggest that the HDR assay is a more effective

method for identifying deficient variants. As the variant expression plasmids used only contain

the mRNA coding sequence and we do not have access to patient samples, we cannot accu-

rately examine the mRNA expression levels. However, if the mRNA expression levels of LOH

mutants are lower than wild-type BARD1, this could indicate an HDR deficiency that we do

not observe in our protein expression experiments.

In addition, the variant A460T, which was non-functional in HDR, was identified as poten-

tially pathogenic during the original analysis of exome sequencing data [19] but was not con-

sidered pathogenic after updated analysis. These differences demonstrate the importance of

empirical results, such as the HDR assay, for evaluating whether a given variant is predictive of

cancer. Conversely, the results from functional assays may provide feedback for the improve-

ment of the bioinformatic interpretation of genomic data. While large scale genomic analyses

should be used to identify functionally significant variants, functional assays must still be uti-

lized for more comprehensive characterization of these variants.

The 76 BARD1 missense variants were tested in the HDR assay to examine DNA repair

function. Variants were considered non-functional if their HDR activity was below 0.6 and sig-

nificantly different from endogenous BARD1. Previous work in our lab [21] characterized

fully non-functional variants as those with HDR activity significantly different from endoge-

nous BARD1 but not empty vector, and intermediate variants as those significantly different

from both endogenous BARD1 and empty vector. We have changed our classification stan-

dards based on the strength of the reproducibility in this study and for ease of analysis. We

now interpret variants as functional or nonfunctional and do not include the intermediate

phenotype. This interpretation is supported by the new data that the BARD1 A460T variant

would have been ranked as intermediate using the previous interpretation, but assays measur-

ing DNA damage sensitivity using IR and cisplatin indicated that BARD1 A460T was just as

sensitive as the V767fs variant, which scored similar to the empty vector in the HDR assay.

Based on BRCA1 variant function in HDR, it was anticipated that BARD1 variants with

impact on HDR function would map to the RING and BRCT domains. In this study, we tested

eight variants in the BARD1 RING domain and none of them were defective for HDR. In a

prior study [21], we had analyzed another nine variants in the BARD1 RING domain; three of

these were defective for DNA repair activity. In the current study, we tested 19 variants in the

BARD1 P707S, G753D, and V767fs. (C) Endogenous BARD1 was knocked down in treated stable cell lines, and BRCA1 and BARD1

expression were examined. HBT-tagged BARD1 variants migrated more slowly on electrophoresis gels than endogenous BARD1, as

indicated by the upper (HBT-tagged) and lower (endogenous) arrows. HBT BARD1 was unaffected by the 3’UTR-targeted siRNA, while

endogenous BARD1 was depleted. All of the BARD1 variants expressed at higher levels than the endogenously expressed BARD1 (middle).
BRCA1 protein levels were not affected in variant-integrated cells (top).

https://doi.org/10.1371/journal.pgen.1008049.g003
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Fig 4. Sensitivity of BARD1 variants to ionizing radiation. (A) Endogenous-only cells and cells expressing BARD1 WT, A460T, P707S, G753D, and V767fs

were treated with control, BARD1 3’UTR or BRCA1 3’UTR siRNA and X-ray irradiated at doses of 1, 2, 4 and 6 Gy. Colonies were counted after 12 days of

growth followed by staining with crystal violet. Results in each experiment (±S.E.M.) were carried out in triplicate and converted to logarithmic scale. In each
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PLOS Genetics | https://doi.org/10.1371/journal.pgen.1008049 March 29, 2019 11 / 21

https://doi.org/10.1371/journal.pgen.1008049


BARD1 BRCT domain, and five of these were defective. BARD1 T598I, S660R, G698D, P707S,

and G753D were found to be non-functional in the BRCT domain. The BRCT domain has

been shown to interact with the HP1 protein in order to retain both the BRCA1-BARD1 com-

plex and CtIP, which is involved in DNA end resection, at the damage site [26]. The

BARD1-HP1 interaction is also necessary for the accumulation of DNA helicase FANCJ at

sites of DNA damage [37]. BARD1 L570E/V571E and L570A/V571A variants have been

shown to inhibit the interaction between BARD1 and HP1 [26]. The BARD1 BRCT domain is

also necessary for binding poly(ADP-ribose) (PAR), allowing for rapid recruitment of the

BRCA1-BARD1 complex to areas of DNA damage [27]. The variants K619A, C645R and

V695L have been shown to disrupt BARD1-PAR interaction [27]. The T598 residue tested in

this study (T598I) is located on the surface of the protein next to K619, and could possibly

affect PAR binding. However, the relationship between BARD1-PAR binding and HDR is

unclear since the BARD1 K619A and V695L variants, as well as several others that disrupt

PAR binding, have been shown to be functional in HDR [38,39]. BRCA1 also binds to the

BARD1 BRCT domain [40], and previous work in our lab has identified that this binding is

affected by the BARD1 G623E variant [21]. Most of the non-functional variants we identified

in the BRCT domain, with the exception of T598I, are not located near known binding sites

for proteins associated with DNA repair.

To our surprise, we found four variants, BARD1 A460T, L465F, L480S, and P530L, were

identified as non-functional in the ankyrin repeat domain. Prior to this study, the ankyrin

repeat domain had no known reported function in DNA repair. Previous work has shown that

a large deletion of the ankyrin repeat domain results in chromosome instability and loss of

HDR function [38]. In addition, the BARD1 ankyrin domain has been shown to interact with

p53 to mediate apoptosis [41]. The oncoprotein Bcl-3, which interacts with BARD1, is also

involved in the regulation of NF-κB transcription via ankyrin repeat domain-associated pro-

tein interactions [42]. Our results indicate that the ankyrin repeat domain may have functions

that are necessary for DNA repair. For both the ankyrin and BRCT domains, the non-func-

tional variants identified may affect BARD1 folding and structure, which could also affect

binding to proteins such as BRCA1 or HP1. For example, the BARD1 P707 and G753 residues

are located near one another on the surface of the protein. As coding substitutions at these

amino acids result in loss of HDR they may be part of a binding pocket. The identified variants

may also indicate binding sites for proteins whose interaction with BARD1 has not yet been

discovered. The characterization of non-functional BARD1 variants in areas that are not well-

studied helps to further understand the roles of the ankyrin repeat and BRCT domains in

homology-directed repair.

Many of the BARD1 variants tested have been recorded on ClinVar as having been isolated

from patients with breast cancer or hereditary cancer-predisposing syndromes. Variants

plot, the dashed line indicates control siRNA (siCON), and the solid line indicates depletion with the BARD1 (siBARD) or BRCA1 (siBRCA) 3’UTR-targeted

siRNA. The Student’s t-test was done to examine the growth of variant and endogenous-only cell lines treated with BARD1 or BRCA1 siRNA relative to variant

and endogenous-only cells treated with control siRNA (indicated by asterisks; � = p< 0.05, �� = p< 0.01). Cells expressing the four BARD1 variants, as well as

endogenous-only cells depleted of BARD1 and BRCA1, were significantly different from variant and endogenous-only cells treated with control siRNA across

most irradiation doses. (B) Results from panel A are shown for the BARD1 WT and variant cell lines treated with BARD1 3’UTR siRNA and endogenous-only

cells treated with BARD1 or BRCA1 3’UTR siRNA. A Student’s t-test was done to compare the colony formation of BARD1 variant and BRCA1 or

BARD1-depleted cell lines to BARD1 WT cells (indicated by asterisks). Colony counts of variants and BRCA1 or BARD1-depleted cell lines were significantly

different (p< 0.01) from WT at all concentrations except siBARD 6 Gy (p< 0.05) and P707S 1 Gy, G753D 1 Gy, and G753D 2 Gy (p> 0.05). (C) An

examination of the expression of endogenous BARD1 and BRCA1 in treated BARD1 variant-expressing and endogenous-only cell lines. Cells treated with

BARD1 3’UTR siRNA had depleted endogenous BARD1 expression, while HBT BARD1 was unaffected. Cells treated with BRCA1 3’UTR siRNA showed

depletion of endogenous BRCA1 and BARD1 expression. In all cases, the band representing the expression of the variant HBT BARD1 was denser than the

faster migrating band from the endogenous BARD1 protein.

https://doi.org/10.1371/journal.pgen.1008049.g004
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Fig 5. Sensitivity of BARD1 variants to cisplatin. (A) Cells expressing BARD1 WT, A460T, P707S, G753D, and V767fs cells, as well as endogenous-only cells,

were treated with control, BARD1 3’UTR or BRCA1 3’UTR siRNA and treated with cisplatin at concentrations of 1.875, 3.75, 7.5, and 15 μM. Colonies were

counted after 12 days of growth followed by staining with crystal violet. Results in each experiment were done in triplicate and converted to logarithmic scale

(±S.E.M.). In each plot, the dashed line indicates control siRNA, and the solid line indicates depletion with the BARD1 or BRCA1 3’UTR-targeted siRNA. The
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S241C and E361D, which were functional in HDR, have been identified has likely benign, and

truncation variants V154fs, S551�, and Q564� are likely pathogenic. The variants V85L,

R194K, I258T, N326S, R565H, and R641Q, which were functional in HDR, have conflicting

reports of pathogenicity, with reports indicating they were VUS or likely benign. Since these

variants were functional in the HDR assay, we would interpret such variants as likely benign.

The non-functional truncating variant V767fs also had conflicting reports of pathogenicity,

with reports indicating that it was a VUS or likely pathogenic. The trend observed is this paper

is supplemented by the 29 variants that were previously studied [21]—variants V507M and

R658C were functional in the HDR assay and are considered benign in ClinVar, and several

other functional variants are listed as having conflicting reports of pathogenicity because

reports indicate they are VUS or likely benign. Previous work has shown that pathogenic

BRCA1 variants are non-functional in the HDR assay, and benign variants are functional

[16,17,19]. Based on the data from ClinVar, this trend appears to be true for BARD1 variants

as well, suggesting that the non-functional variants identified in this paper would be likely

pathogenic.

We also asked whether BARD1 HDR function affected cell sensitivity to DNA damage

agents. Cells expressing HDR-deficient variants A460T, P707S, G753D and V767fs, as well as

endogenous-only, non-rescued cells depleted of BRCA1 or BARD1, were more sensitive to

treatment with IR or cisplatin than cells expressing wild-type BARD1. Testing non-rescued

cells allowed us to set a standard for the effect of non-functional DNA repair on damaged cells.

We had hypothesized that the more HDR-deficient a variant was, the fewer colonies cells

expressing that variant would form after damage, indicating a quantitative sensitivity to the

DNA damage. The results did not support that expectation. Following treatment with IR or

cisplatin, HDR-defective variants were in fact more sensitive to DNA damage, but they were as

sensitive to DNA damage as cells depleted of BRCA1 or BARD1, suggesting that residual repair

did not affect sensitivity.

The HDR assay indicates which variants are functional and non-functional, but it does not

provide information on how this affects cell growth. This paper has shown that loss of homolo-

gous recombination results in increased sensitivity to DNA damage, as indicated by decreased

colony formation. The HDR results also reveal a correlation between BARD1 variants that

cause a loss of DNA repair function with those that are likely cancer predisposing. While we

examined in this study a large number of BARD1 variants across the length of the protein,

including all three functional domains, many more BARD1 VUS exist. In future work, we

hope to mutagenize the BARD1 functional domains on a larger scale, as we have previously

done with the BRCA1 N-terminus [29]. Creating a library of all potential BARD1 variants in

these functional domains and testing the HDR function of these variants would allow us to

identify additional pathogenic variants and regions of interest. The work done in this study

helps better understand the role of BARD1 in DNA repair, and how loss of homology-directed

repair affects cell growth and sensitivity.

Student’s t-test was done to examine the growth of variant and endogenous-only cell lines treated with BARD1 or BRCA1 siRNA relative to variant and

endogenous-only cells treated with control siRNA (indicated by asterisks; � = p< 0.05, �� = p< 0.01). Cells expressing the four BARD1 variants, as well as

endogenous-only cells depleted of BRCA1 and BARD1, were significantly different from variant and endogenous-only cells treated with control siRNA across

most cisplatin concentrations. (B) Results from panel A are shown for BARD1 WT, variant and endogenous-only cell lines treated with BARD1 or BRCA1
3’UTR siRNA. A Student’s t-test was done to compare the colony formation of BARD1 variant cell lines, as well as endogenous-only cells depleted of BRCA1 or

BARD1, to BARD1 WT cells. Colony counts from variants and endogenous-only cells were significantly different (p< 0.01) from BARD1 WT at most

concentrations, excepting A460T 3.75 μM, siBRCA1 3.75 μM and A460T 15 μM (p < 0.05) and A460T 1.875 μM and siBRCA 15 μM (p> 0.05). (C) An

examination of endogenous BARD1 and BRCA1 expression in treated BARD1-expressing and control cell lines. Cells treated with BARD1 3’UTR siRNA had

depleted endogenous BARD1 expression, while HBT BARD1 was unaffected. Cells treated with BRCA1 3’UTR siRNA showed depletion of endogenous BRCA1

and BARD1 expression. The band representing the expression of variant HBT BARD1 was denser than the endogenous BARD1 protein band in all cases.

https://doi.org/10.1371/journal.pgen.1008049.g005
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Materials and methods

Ethics statement

Sequencing results from de-identified tumors have already been published, and no additional

ethical approval was required.

Selection of BARD1 variants

BARD1 missense variants conferring potential cancer predisposition were identified in a

cohort of 4,034 samples from 12 cancer types [19] that was part of larger set of 10,389 TCGA

samples from 33 cancer types [22]. Germline single nucleotide variants (SNVs) were identified

with variant calling on whole exome sequencing data using GATK [43] (version 3.5, using its

haplotype caller in single-sample mode with duplicate and unmapped reads removed and

retaining calls with a minimum quality threshold of 10) and VarScan [44] (version 2.3.8 with

default parameters, except where–min-var-freq 0.10,–p value 0.10,–min-coverage 3,–strand-

filter 1) operating on a mpileup stream produced by SAMtools (version 1.2 with default

parameters, except where -q 1 -Q 13). Germline indels were identified using VarScan and

GATK (same parameters and version as above) in single-sample mode. Pindel [45] (version

0.2.5b8 with default parameters, except where -x 4, -I, -B 0, and -M 3 and excluded centromere

regions (genome.ucsc.edu)) was also applied for indel prediction. For all analyses, the

GRCh37-lite reference was used and an insertion size of 500 was specified whenever this infor-

mation was not provided in the BAM header.

All variants were limited to limited to coding regions of full-length transcripts obtained

from Ensembl release 70 plus the additional two base pairs flanking each exon that cover splice

donor/acceptor sites. SNVs were based on the union of raw GATK and VarScan calls, while

indels were required to be called by at least two out of the three variant callers (GATK, VarS-

can, Pindel). High-confidence, Pindel-unique calls (at least 30x coverage and 20% VAF) were

also included. Further, variants were required to have an Allelic Depth (AD)� 5 for the alter-

native allele. Readcount analyses for variants passing these filters were performed in both nor-

mal and tumor samples using bam-readcount (version 0.8.0 commit 1b9c52c, with parameters

-q 10, -b 15) in order to quantify the number of both reference and alternative alleles. Variants

were required to have at least 5 counts of the alternative allele and an alternative allele fre-

quency of at least 20%. Of these, rare variants were filtered for, with� 0.05% minor allele fre-

quency in 1000 Genomes and ExAC (release r0.3.1).

Variants passing manual review, with low allele frequencies (MAF < 0.05%), and signifi-

cant LOH were prioritized for characterization. These variants, their cancer type distributions

and frequencies are shown in the latest data release of the 10,389 samples [22] to the research

community on NCI Genome Data Commons (https://gdc.cancer.gov/about-data/

publications/PanCanAtlas-Germline-AWG).

Cloning of BARD1 variants

For transient expression, BARD1 (NCBI Reference Sequence: NM 000465.3) wild-type and

missense variants were cloned into a pcDNA3 vector backbone containing a rabbit β-globin

intron upstream of the BARD1 translation initiation site to drive expression of the 777 amino

acid human BARD1 transgene. Variants were cloned using the New England BioLabs Q5 Site-

Directed Mutagenesis kit. For stable integrations, BARD1 wild-type and missense variants

were cloned into a pcDNA5/FRT/TO vector backbone containing the His-Biotin-Tobacco

Etch Virus (TEV) (HBT) tag [28]. PCR reactions were done using PfuUltra II Fusion HS DNA

Polymerase. Vectors and inserts were ligated together using Gibson assembly [46]. Colonies
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with successful ligations were fully sequenced to confirm expected variants. All variants were

verified using Sanger sequencing services provided OSU Comprehensive Cancer Center

(OSUCCC) Genomics Shared Resource.

Homology-Directed Repair (HDR) assay

For examining the HDR function of transiently expressed of BARD1 variants, HeLa-DR-13-9

(HeLa-DR) cells were utilized. HeLa-DR cells contain two non-functional GFP coding

sequences, one of which is interrupted by an I-SceI restriction endonuclease site. Cells were

cultured in DMEM media containing 1% penicillin/streptomycin, 1% GlutaMAX, 10% bovine

serum, and 1.5 μg/ml puromycin. Cells were seeded in a 24-well plate and transfected with

siRNA to the BARD1 3’-UTR (5’-AGCUGAAUAUUAUACCAGAdTdT-3’) or control siRNA

(5 pmol), and BARD1 wild-type, variant, or pcDNA3 empty vector (300 ng). All transfections

were carried out using Lipofectamine 2000 per the manufacturer’s recommendations. Cells

were moved to 6-well plates 24 hours later. 48 hours after the first transfection, cells were

transfected with 25 pmol siRNA, 750 ng DNA, and 750 ng of expression plasmid containing

the restriction endonuclease I-SceI to induce a double-strand break. If HDR is functional, the

break is repaired by gene conversion with the second GFP allele, and cells become GFP-posi-

tive [16,25]. 72 hours after the second transfection, cells were collected and GFP-positive cells

were counted using the FACSCalibur in the OSUCCC Analytical Cytometry Shared Resource.

10,000 cells were counted, and the remaining cells were used for immunoblotting. Cells trans-

fected with BARD1 siRNA and BARD1 wild-type plasmid (wild-type rescue), and cells treated

with control siRNA and empty vector, served as positive controls. Cells treated with BARD1
siRNA and empty vector were used as a negative control. HDR activity, as defined by the per-

centage of GFP-positive cells, was normalized to wild-type rescue control and set to 1.

For examining the HDR function of stably integrated BARD1 variants, HeLaDR-FRT/TR

cells [29] were used. Cells integrated with pcDNA5-FRT/TO-HBT-tagged BARD1 wild-type or

variants (A460T, P707S, G753D and V767fs) were seeded in 24-well plates. Cells not integrated

with BARD1 variants were used as a negative control. Cells were transfected with siRNA to the

BARD1 3’-UTR or control siRNA. All transfections were carried out using Oligofectamine

according to the manufacturer’s recommendations. Transfections were carried out on the

same time pattern as detailed for transiently expressed BARD1. For 24-well transfections, 30

pmol siRNA was used, and for 6-well transfections, 50 pmol siRNA and 3 μg of I-SceI expres-

sion plasmid were used. Cells were collected and GFP-positive cells counted as detailed for

transiently expressed BARD1. HDR activity, as defined by the percentage of GFP-positive cells,

was normalized to cells treated with control siRNA for each individual cell line and set at 1.

Alignment of BARD1 protein sequences

Homo sapiens, Felis catus, Canis lupis familiaris, Mus musculus, Monodelphis domestica, and

Ovis aries BARD1 protein sequences were aligned using Clustal Omega [47] to examine con-

served residues.

Integration of variants into HeLaDR-FRT/TR cells

pcDNA5-FRT/TO-HBT-tagged BARD1 wild-type and variants were co-transfected with plas-

mid expressing the flippase recombinase in a 1:2 ratio into HeLa-DR-FRT/TR cells to induce

integration at the flippase recognition target site [48,49]. Transfections were done according to

Lipofectamine 2000 manufacturer’s recommendations. 24 hours after transfection, cells were

incubated at 30˚C for 24 hours and then moved back to 37˚C. Integrated cells were selected for

with 550 μg/ml Hygromycin-B.
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Immunoblotting

For BARD1 variants, replicates were combined, spun down at 1200 rpm for 5 minutes and

resuspended in 150 μl of 1X LDS-PAGE dye. Samples were sonicated at 45% for 15 seconds

three times. Sample was resolved on 6 or 8% SDS-PAGE gels and transferred to PVDF mem-

brane. Samples were probed with BARD1 (Bethyl, 1:1000) and BRCA1 (1:500) [50] antibodies.

Antibodies to RHA1 (1:20000) [50] and α-tubulin (Sigma, 1:20000) were used as loading con-

trols. Membranes were incubated with fluorescent (LI-COR, 1:20000) or chemiluminescent

(GE, 1:5000) rabbit and mouse secondary antibodies.

Clonogenic assays

HeLaDR-FRT/TR cells stably expressing pcDNA5-HBT-BARD1 WT, A460T, P707S, G753D

and V767fs, as well as control cells expressing only endogenous BARD1, were seeded in 24-well

dishes and transfected with 30 pmol of siRNA to the BARD1 3’-UTR, BRCA1 3’-UTR or control

siRNA. Transfections were done using Oligofectamine as per the manufacturer’s protocol. Cells

were transferred to 6-well dishes after 24 hours, and were treated with 50 pmol siRNA 48 hours

after the first transfection. 48 hours after the second transfection, 1000 cells of each treatment

condition were plated in 10-cm dishes. Remaining cells were saved for immunoblotting to con-

firm knockdown. After 24 hours, cells were treated with either ionizing radiation (IR) or cisplatin.

Cells that were treated with IR were subjected to 0, 1, 2, 4, or 6 Gy using the RS 2000 X-Ray Irra-

diator. For cisplatin treatment, cells were treated with 0, 1,875, 3.75, 7.5, and 15 μM of cisplatin

for 2 hours, after which cells were washed twice with 1X PBS and fresh media was added.

Untreated cells were used as a control. After two weeks of growth at 37˚C, cells were fixed with

cold methanol and stained with crystal violet. Dishes were coded to blind their treatment and

cells were counted using OpenCFU [51]. The log value of the count was used for comparison.

Statistical analysis

All BARD1 variants in the HDR and clonogenic assays were tested in triplicate. For HDR

assays using transiently expressed BARD1 variants, HDR activity was normalized to wild-type

rescue, which was set to 1. The Student’s t-test was applied to determine whether BARD1 vari-

ant HDR activity significantly differed (p < 0.01) from endogenous BARD1. Variants that

were significantly different and below the cutoff of 0.6 were considered non-functional. For

clonogenic assays, the Student’s t-test was carried out to examine whether BARD1 variant-

expressing and endogenous-only cells treated with BARD1 or BRCA1 3’-UTR siRNA formed a

significantly different number of colonies than variants treated with control siRNA and cells

expressing BARD1 wild-type (p< 0.05).

Supporting information

S1 Table. GFP expression percentages for BARD1 variant HDR assays.

(XLSX)

S1 Fig. Functional analysis of 105 BARD1 variants. 105 BARD1 single missense substitutions

were tested for function in the HDR assay. Results from Lee at al. 2015 are included with vari-

ants tested in this paper. HeLa-DR cells [16] were treated with control siRNA (lane 1) or

siRNA specific to the BARD1 3’-untranslated region (UTR) (lanes 2–109) and empty vector

(lanes 1, 2) or BARD1 expression plasmid (lanes 3–109). Two positive controls were used: cells

treated with empty vector and control siRNA (lane 1), and cells depleted of endogenous

BARD1 with wild-type BARD1 rescue (lane 3). Cells treated with empty plasmid and BARD1
3’UTR siRNA were used as a negative control (lane 2). HDR function was characterized by the
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percentage of GFP-positive cells measured using flow cytometry. Results in each experiment

(±S.E.M.) were normalized to the WT rescue (lane 3), which was set equal to 1. Results repre-

sent three independent transfections per BARD1 expression plasmid. Variants that are benign

and pathogenic according to ClinVar are labeled blue and red respectively. Variants with con-

flicting interpretations are labeled gray. HDR-deficient variants are marked by an asterisk and

classified by having HDR function less than 0.6 and p< 0.01 when compared to endogenous

BARD1 (control siRNA) using the Student’s t-test.

(TIF)

S2 Fig. BARD1 protein sequence differences between mammalian species. Human

(Homo_sapiens), domestic cat (Felis_catus), domestic dog (Canis_lupis_familiaris), mouse

(Mus_musculus), gray short-tailed opossum (Monodelphis_domestica) and domestic sheep

(Ovis_aries) BARD1 protein sequences were aligned using Clustal Omega to examine con-

served residues. Asterisks (�) indicate positions with a single, fully conserved residue. Colons

(:) indicate residue conservation between groups of strongly similar properties. Periods (.)

indicate conservation between groups of weakly similar properties. Residues that were mutated

in HDR-deficient, non-truncating variants are highlighted in yellow. Residues mutated in

HDR-functional variants are highlighted in green.

(PDF)

S3 Fig. Immunoblots of truncated BARD1 variants. Truncated BARD1 variants tested in the

HDR assay were examined for their expression relative to endogenous BARD1. Replicates were

pooled together to examine BARD1 expression. The BARD1 protein is indicated with an arrow.

The endogenously expressed BARD1 in control transfections (lanes 1, 10) and BARD1 WT rescue

(lanes 3, 12) were compared with the expression of truncated BARD1 variant proteins. Variants

were run on 4–12% Bis-Tris and 6% acrylamide gels due to a contaminating band that co-migrated

with BARD1 WT on 4–12% Bis-Tris gels. Variants G451fs (lanes 6, 15), S551� (lanes 7, 16), Q564�

(lanes 8, 17) and V767fs (9, 18) expressed truncated protein. Variant V154fs (lanes 4, 13) does not

contain the residue recognized by the BARD1 antibody used, and may express truncated protein.

(TIF)
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