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Abstract: Directly linked donor and acceptor arenes, such as phenanthrene/naphthalene/biphenyl
and 1,3-dicyanobenzene were found to work as photoredox catalysts in the photoreactions of indene,
2,3-dimethyl-2-butene, and 4-methoxyphenylacetic acid. The new stable organic photocatalyst forms
an intramolecular exciplex (excited complex) when irradiated in a polar solvent and shows redox
catalyst activity, even at low concentrations. To the best of our knowledge, this is the first example of
an intramolecular exciplex working as a redox catalyst.

Keywords: organic photoredox catalyst; exciplex-type redox catalyst; directly linking between
donor and acceptor arenes; photoinduced electron transfer reaction; cross-coupling between alkenes;
photoinduced decarboxylation

1. Introduction

Photoinduced electron transfer (PET) promoted reactions are a powerful and environmentally
friendly tool for the construction of complex organic molecules [1–5] and polymers [6,7] that cannot be
prepared by other methods. This is due to the highly reactive radical cation and anion intermediates
generated via PET, which facilitate oxidation and reduction reactions under mild conditions (e.g., at room
temperature), utilizing light as a clean and traceless reagent. PET-promoted reactions using photoredox
catalysts, such as transition-metals (Ru, Ir) [1–5,8] and Fukuzumi photocatalysts [1–5,9], are among the
recent trends in organic synthesis (Scheme 1a). The Fukuzumi photocatalyst, in particular�an electron
donor–acceptor-linked dyad (9-mesityl-10-methylacridinium ion, Acr+-Mes)�acts as an efficient organic
photoredox catalyst due to the long-lived electron-transfer state formed upon irradiation. This state
can efficiently oxidize and reduce organic molecules to produce the corresponding radical cations
and radical anions, respectively. However, these photocatalysts are expensive, have low tolerance
for acids and bases, and bear a cationic charge. Thus, a new type of neutral, simple, and stable
organic photoredox catalyst is still desirable. We have recently developed PET-promoted reactions of
a wide range of functionalized substrates by UV irradiation (313 nm), utilizing the combination of
phenanthrene (Phen) as an electron donor and 1,3- or 1,4-dicyanobenzene (DCB) as an electron acceptor
(Scheme 1b) [10–18]. Herein, we describe the synthesis of neutral and stable organic photoredox
catalysts 1, which directly link with both donor and acceptor arenes, such as Phen/naphthalene
(NP)/biphenyl (BP) and 1,3-DCB, and assess their photochemical reactivity (Scheme 1c).
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Scheme 1. (a) Examples of Ru (II), Ir (III), and Fukuzumi photoredox catalysts; (b) a summary of our 
previous work using phenanthrene (Phen) and dicyanobenzene (DCB) as photoredox catalysts; and 
(c) the new type of organic photoredox catalyst discussed in this work. 

2. Results and Discussion 

A variety of photocatalysts 1 were prepared from 1,3-DCB and a selection of arylboronic acids 3 
(Scheme 2). Initial iodination of 1,3-DCB by CH3Cu(TMP)(CN)Li2 and I2 yielded 
1,3-dicyano-2-iodobenzene 2 in a 99% yield [19]. Suzuki–Miyaura coupling [20] of 
9-phenanthrylboronic acid 3a with 2 in the presence of Pd(dba)3 and 
(4-biphenyl)dicyclohexylphosphine (PCy2Bp) produced photocatalyst 1a in moderate yield (52%). 
Similar coupling reactions of 1-naphthylboronic acid 3b, 2-naphthylboronic acid 3c, 
4-biphenylboronic acid 3d, and 2-biphenylboronic acid 3e provided photocatalysts 1b–e in moderate 
yields. 

Scheme 1. (a) Examples of Ru (II), Ir (III), and Fukuzumi photoredox catalysts; (b) a summary of our
previous work using phenanthrene (Phen) and dicyanobenzene (DCB) as photoredox catalysts; and (c)
the new type of organic photoredox catalyst discussed in this work.

2. Results and Discussion

A variety of photocatalysts 1 were prepared from 1,3-DCB and a selection of arylboronic
acids 3 (Scheme 2). Initial iodination of 1,3-DCB by CH3Cu(TMP)(CN)Li2 and I2 yielded
1,3-dicyano-2-iodobenzene 2 in a 99% yield [19]. Suzuki–Miyaura coupling [20] of 9-phenanthrylboronic
acid 3a with 2 in the presence of Pd(dba)3 and (4-biphenyl)dicyclohexylphosphine (PCy2Bp) produced
photocatalyst 1a in moderate yield (52%). Similar coupling reactions of 1-naphthylboronic acid
3b, 2-naphthylboronic acid 3c, 4-biphenylboronic acid 3d, and 2-biphenylboronic acid 3e provided
photocatalysts 1b–e in moderate yields.
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Scheme 2. Preparation of photocatalyst 1 from 1,3-DCB and arylboronic acid 3. 
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observed for other catalysts 1b–e, bearing naphthyl and biphenyl units. These results indicated that 
the rotation of the aryl-aryl σ-bonds in 1 is not completely restricted by the cyano substituents and 
that π-π interactions exist between the donor and acceptor arene units within 1. In fact, the UV 
absorption spectrum of the less sterically hindered 1d showed stronger absorption at long 
wavelengths, as compared to that of the bulkier 1a and 1e. This could be attributed to the stronger 
intramolecular interaction between the aromatic rings, due to the smooth rotation of the aryl–aryl 
σ-bonds [9,21–23]. Solvent polarity did not have any notable effect on the absorption spectra of 1a 
(Figure 2). In contrast, the use of more polar solvents, such as CH3CN and DMF, caused broadening 
of the observed fluorescence spectra, which is characteristic of an intramolecular exciplex (Figure 2). 
Compared to the fluorescence of Phen, the quenching fluorescence of the phenanthryl part by the 
DCB part in 1a and the intramolecular exciplex fluorescence were obtained in an aqueous 
acetonitrile solution (Figure 3). A similar quenching and appearance of fluorescence in 1b–e was 
observed, indicating that intramolecular exciplexes were formed (Figure 3). In addition, the exciplex 
fluorescence of 1a may be quenched by indene 4, 2,3-dimethyl-2-butene 5, and 
(4-methoxyphenyl)acetic acid 6, for which the Stern-Volmer constants kqτ were estimated to be 1.2 
× 10−1, 2.1 × 10−2, and 8.5 × 10−1/M, respectively (Figure 4). These results indicated that the donor and 
acceptor arene parts in 1 interacted, both in the ground and excited states, through the rotation of 
the aryl–aryl σ-bond and formed intramolecular exciplexes in a polar solvent, which were 
quenched by 4, 5, and 6. 
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Next, the UV absorption spectra of photocatalysts 1a–e were measured in aqueous acetonitrile
solution (CH3CN/H2O = 9:1, v/v) and are shown in Figure 1. The absorption spectrum of 1a (red)
overlapped with that of Phen (blue) and 1,3-DCB (green), and showed an extended absorption range
compared to that of Phen, indicating the existence of a π–π interaction between the Phen and DCB
moieties in the ground state of 1a [21–23]. A similar trend of extended absorption ranges was observed
for other catalysts 1b–e, bearing naphthyl and biphenyl units. These results indicated that the rotation of
the aryl-aryl σ-bonds in 1 is not completely restricted by the cyano substituents and that π-π interactions
exist between the donor and acceptor arene units within 1. In fact, the UV absorption spectrum of the
less sterically hindered 1d showed stronger absorption at long wavelengths, as compared to that of
the bulkier 1a and 1e. This could be attributed to the stronger intramolecular interaction between the
aromatic rings, due to the smooth rotation of the aryl–aryl σ-bonds [9,21–23]. Solvent polarity did
not have any notable effect on the absorption spectra of 1a (Figure 2). In contrast, the use of more
polar solvents, such as CH3CN and DMF, caused broadening of the observed fluorescence spectra,
which is characteristic of an intramolecular exciplex (Figure 2). Compared to the fluorescence of Phen,
the quenching fluorescence of the phenanthryl part by the DCB part in 1a and the intramolecular
exciplex fluorescence were obtained in an aqueous acetonitrile solution (Figure 3). A similar quenching
and appearance of fluorescence in 1b–e was observed, indicating that intramolecular exciplexes
were formed (Figure 3). In addition, the exciplex fluorescence of 1a may be quenched by indene 4,
2,3-dimethyl-2-butene 5, and (4-methoxyphenyl)acetic acid 6, for which the Stern-Volmer constants
kqτ were estimated to be 1.2 × 10−1, 2.1 × 10−2, and 8.5 × 10−1/M, respectively (Figure 4). These results
indicated that the donor and acceptor arene parts in 1 interacted, both in the ground and excited states,
through the rotation of the aryl–aryl σ-bond and formed intramolecular exciplexes in a polar solvent,
which were quenched by 4, 5, and 6.
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Figure 1. Absorption spectra of 1a–e, Phen, NP, and BP (5 × 10−5 M) in an aqueous acetonitrile 
solution (CH3CN/H2O = 9:1, v/v). 
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Figure 2. Absorption and fluorescence spectra of 1a in CH3CN, DMF, THF, and CHCl3 solution (5 × 
10−5 M) excited at 260 nm. 

Figure 1. Absorption spectra of 1a–e, Phen, NP, and BP (5 × 10−5 M) in an aqueous acetonitrile solution
(CH3CN/H2O = 9:1, v/v).
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Figure 3. Fluorescence of 1a–e, Phen, NP, and BP (5 × 10−5 M) excited at 260 nm in an aqueous
acetonitrile solution (CH3CN/H2O = 9:1, v/v).
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We attempted to evaluate the photochemical reactivity of photocatalyst 1 using indene 4 [16]
(Table 1), 2,3-dimethyl-2-butene 5 [18] (Scheme 3), and (4-methoxyphenyl)acetic acid 6 [10–15] (Scheme 4)
as substrates. Reactions were carried out in an aqueous acetonitrile solution (CH3CN/H2O = 9:1,
v/v), under an argon atmosphere, under irradiation by a 100 W high-pressure mercury lamp in Pyrex
vessels (18 × 180 mm) at room temperature. The irradiation of 4 (20 mM) for 10 h, in the presence of
1a as a photoredox catalyst, exclusively afforded alcohol 7 in a 49% yield through the formation of
a radical cation of 4 via PET between the excited state of 1a and 4 [16] (Entry 1, Table 1), along with
the unidentified products. The quantum yield of this photoinduced reaction of 4 using 1a is about
0.01. In the absence of 1a, the photoreaction of 4 under the same conditions yielded only the [2 + 2]
cycloadduct 8 through dimerization between a molecule of 4 in the excited state with another in the
ground state (Entry 2). Using a combination of Phen and 1,3-DCB as photocatalysts, the alcohol 7 was
yielded (50%), as observed in Entry 1, along with a small amount of 8 (6%) (Entry 3), indicating that
the efficiency of 1a in the photoreaction of 4 is comparable to that of the Phen/1,3-DCB system. This
suggests that the appearance of the longer absorption of 3a prevented dimerization of 4. The use of
only Phen or 1,3-DCB as the photocatalyst in the photoreaction did not work well (Entries 4 and 5).
Decreasing the concentration of 1a led to a decrease in the yield of 7 and an increase in the yield of
8 (Entries 6–9) because of the gradually diminished absorption of 1a. It should be noted, however,
that 7 was obtained even when using a very low concentration of 1a (0.1 mM, Entry 9). When the
intermolecular Phen/1,3-DCB system was subjected to the same low concentration conditions (0.1 mM)
only dimer 8 was observed (Entry 10). Thus, even at low concentrations, 1a works as a more efficient
photoredox catalyst than the Phen/1,3-DCB system because of the intramolecular system. The use of
1b,c bearing a naphthyl group also yielded alcohol 7 in similar yields to those observed for 1a and
the NP/1,3-DCB system (Entries 11–13). Interestingly, similar photoreactions of 1d and 1e, bearing
biphenyl groups, afforded 7 along with 8 (Entries 15 and 16), whereas the intermolecular BP/1,3-DCB
system exclusively gave 8 because it does not absorb at 313 nm (Entry 14). Direct linking of BP and
1,3-DCB through σ-bonding led to longer absorption, which lead to them working as a photoredox
catalyst by 313 nm light-irradiation.
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Table 1. Photoreaction of indene 4 with a photoredox catalyst.
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13 1c (10 mM) 41 0
14 BP (10 mM), 1,3-DCB (10 mM) 0 24
15 1d (10 mM) 36 14
16 1e (10 mM) 27 17

1 Isolated yield.

The photoreaction of 2,3-dimethyl-2-butene 5 (20 mM) with acrylonitrile 9 (20 mM) in the presence
of 1a (5 mM) for 5 h in aqueous acetonitrile solution (CH3CN/H2O = 9:1, v/v) provided adduct 10
in moderate yield (47%) through the formation of a radical cation of 5 [18] (Scheme 3), along with
oligomeric products. Catalysts 1b–e also worked for the photoreaction of 5 with 9 to furnish 10, although
the BP/1,3-DCB system did not act as a photoredox catalyst under these photochemical conditions.

Recently, photoinduced decarboxylation of carboxylic acids using the Phen/DCB system has
been established as a powerful method for the generation of alkyl radicals that can react with a
variety of radical acceptors to provide the respective products in high yields [10–15]. However,
photoinduced decarboxylation of carboxylic acids, such as N-Boc valine (Boc = t-butoxycarbonyl)
using 1, were unsuccessful and the starting carboxylic acids were almost recovered. The use of
(4-methoxyphenyl)acetic acid 6 (20 mM) as the substrate, which had a more easily oxidizable aromatic
ring, with 1a (10 mM) in the presence of NaOH (20 mM) yielded dimer 11. This reaction may proceed
through photoinduced decarboxylation, following the formation of a radical cation localized in the
aromatic part of 6, via PET with 1a. Thus, PET-promoted decarboxylation using 1 required substrates
bearing oxidizable aromatic rings.

Based on these results, a plausible mechanism is proposed, as shown in Scheme 5. First, the
excited state of 1 formed by absorption at 313 nm leads to the formation of an intramolecular exciplex
in a polar solvent. Even though substrates, such as 4–6 have higher oxidation potentials than those of
the corresponding radical cations of the arene moieties in 1a–e (4: +1.66 V vs. SCE in acetonitrile [24],
5: +2.08 V [18], 6: methoxybenzene +1.81 V [24], Phen: +1.50 V [13], NP: +1.70 V [13], BP: +1.85 V [18]),
PET occurs between the exciplex and 4–6 proceeds to form both the corresponding radical cations
of 4–6 and the radical anion of 1. This may occur due to the formation of a π-complex between the
exciplex and substrates 4–6, which is considered to promote electron transfer [18]. These radical cations
react with H2O and an alkene or induce decarboxylation to generate the corresponding radicals. Back
electron transfer (BET) from the radical anions of 1 to the thusly formed substrate radicals generate
anions, followed by protonation, to yield the electronically neutral products 7 and 10. In the case of 6,
the radical generated via decarboxylation dimerizes to give 11 and BET from the generated radical
anion of 1 does not occur, indicating that 1 does not work as a catalyst in this photodecarboxylation. In
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general, the intramolecular exciplex is considered an important intermediate to cycloaddition [25,26].
However, in this case, the intramolecular exciplex of 1 can work as a redox catalyst for substrates
containing alkene or aromatic ring functional groups.
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3. Materials and Methods

General Information: All reagents and solvents were used as received from commercial suppliers.
IR spectra were recorded on an FT-IR spectrometer. 1H NMR spectra were recorded in CDCl3 containing
tetramethylsilane as an internal standard and were acquired on a 500 MHz spectrometer. 13C{1H} NMR
spectra were acquired on a 125 MHz spectrometer. High-resolution mass spectra were obtained using
a double-focusing magnetic sector mass spectrometer coupled with FAB. The UV-light source was a
Riko UV-100HA high-pressure (100 W) mercury arc. Pyrex vessels (18 mm × 180 mm) were directly
attached to the light source (λ > 280 nm, Photocatalyst 1 mainly absorbs at 313 nm light). Column
chromatography was performed on Wakogel C-300, particle size 45–75 µm.

General procedure for synthesis of photocatalyst 1

To a solution of 2,2,6,6-tetramethylpiperidine (0.68 mL, 4.0 mmol) in 3 mL of anhydrous THF,
n-BuLi (2.44 M n-hexane solution, 1.64 mL, 4.0 mmol) was added at −78 ◦C under an Ar atmosphere.
The mixture was stirred for 30 min at 0 ◦C. The resulting solution was added to a suspension of copper
cyanide (183 mg, 2.0 mmol) in 5 mL of anhydrous THF at −78 ◦C under an Ar atmosphere. The mixture
was stirred at 0 ◦C for 30 min to give a solution of (TMP)2CuCNLi2 (2.0 mmol). 1,3-Dicyanobenzene
(0.105 g, 1.0 mmol) in anhydrous THF (5 mL) was then added to the resulting mixture at −78 ◦C under
an Ar atmosphere, and the mixture was stirred for 3 h at 0 ◦C. I2 (1.79 g 7.0 mmol) in anhydrous THF
(5 mL) was slowly added to the mixture at −78 ◦C, and the resulting mixture was stirred at room
temperature for 16 h before quenching with saturated aq. NH4Cl and NaHS2O3. The resultant reaction
mixture was extracted with AcOEt and dried over Na2SO4, and volatiles were removed by evaporation.
The crude product was purified by silica-gel column chromatography using hexane/EtOAc = 9:1 as
the eluent to yield 1,3-dicyano-2-iodobenzene 2 as a white solid. Compound 2 has been previously
reported [19]. 1H and 13C{1H} NMR spectra for all compounds 1, 2, 7, 8, 9, 10, and 11 can be found in
the Supplementary Materials.

1,3-Dicyano-2-iodobenzene 2: White solid; 1H NMR (500 MHz, CDCl3) δ 7.80 (d, J = 7.4 Hz, 2H),
7.65–7.62 (m, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 137.2, 129.1, 123.4, 118.2, 103.7.

A solution of 2 (0.10 g, 0.39 mmol), arylboronic acid 3 (0.47 mmol), K3PO4 (0.020 g, 0.094 mmol),
Pd2(dba)3 (0.014 mg, 1.7 mol %), and (4-biphenyl)dicyclohexylphosphine (PCy2Bp) (0.014 mg, 3.4
mol%) in toluene (6 mL) was refluxed at 130 ◦C for 24 h. After the starting material 2 was consumed,
the solvent was removed by evaporation in vacuo. The crude product was purified by silica-gel column
chromatography using hexane/EtOAc = 9:1 as the eluent to yield photocatalyst 1 as a white solid.

1,3-Dicyano-2-(9-phenanthryl)benzene 1a: White solid, m.p. 196–197 ◦C; IR (KBr, cm−1) 3065, 2227;
1H NMR (500 MHz, CDCl3) δ 8.82 (d, J = 8.0 Hz, 1H), 8.77 (d, J = 8.6 Hz, 1H), 8.06 (d, J = 8.0 Hz, 2H),
7.95 (d, J = 8.0 Hz, 1H), 7.78–7.66 (m, 5H), 7.57 (t, J = 14.5 Hz, 1H), 7.29 (d, J = 8.0 Hz, 1H); 13C{1H}
NMR (125 MHz, CDCl3) δ 148.0, 136.7, 131.2, 130.8, 130.7, 129.6, 129.4, 129.3, 129.0, 128.1, 127.4, 127.3,
125.1, 123.5, 122.8, 116.2, 116.1; HRMS (FAB) calcd. for (M + H)+ C22H12N2: 305.1079, found: 305.1070.

1,3-Dicyano-2-(1-naphthyl)benzene 1b: White solid, m.p. 195–196 ◦C; IR (KBr, cm−1) 3075, 2238; 1H
NMR (500 MHz, CDCl3) δ 8.05 (d, J = 8.0 Hz, 2H), 7.98 (d, J = 8.0 Hz, 1H), 7.79 (d, J = 7.4 Hz, 1H),
7.73–7.70 (m, 1H), 7.65–7.60 (m, 1H), 7.58–7.55 (m, 1H), 7.50–7.48 (m, 2H), 7.28 (d, J = 8.6 Hz, 1H);
13C{1H} NMR (125 MHz, CDCl3) δ 148.1, 137.3, 136.7, 131.9, 131.0, 130.9, 129.2, 129.0, 127.8, 127.4, 126.7,
125.3, 124.2, 116.2, 116.1; HRMS (FAB) calcd. for (M + H)+ C22H12N2: 255.0923, found: 255.0902.

1,3-Dicyano-2-(2-naphthyl)benzene 1c: White solid, m.p. 176–177 ◦C; IR (KBr, cm−1) 3075, 2236; 1H
NMR (500 MHz, CDCl3) δ 8.05–8.01 (m, 4H), 7.96–7.93 (m, 2H), 7.65–7.57 (m, 4H); 13C{1H} NMR (125
MHz, CDCl3) δ 148.9, 137.1, 129.4, 129.0, 128.6, 128.4, 127.9, 127.6, 127.0, 125.8, 116.7, 114.7; HRMS
(FAB) calcd. for (M + H)+ C22H12N2: 255.0923, found: 255.0903.
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1,3-Dicyano-2-(4-biphenyl)benzene 1d: White solid, m.p. 180–181 ◦C; IR (KBr, cm−1) 3060, 2227; 1H
NMR (500 MHz, CDCl3) δ 8.01 (d, J = 8.0 Hz, 2H), 7.78 (d, J = 8.0 Hz, 2H), 7.67 (d, J = 7.4 Hz, 2H),
7.63–7.60 (m, 3H), 7.50–7.47 (m, 2H), 7.42–7.39 (m, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 148.6, 143.1,
140.0, 137.2, 132.9, 129.7, 128.9, 128.4, 127.9, 127.7, 127.3, 116.7, 114.4; HRMS (FAB) calcd. for (M + H)+

C20H13N2: 281.1079, found: 281.1068.

1,3-Dicyano-2-(2-biphenyl)benzene 1e: White solid, m.p. 187–188 ◦C; IR (KBr, cm−1) 3065, 2238; 1H
NMR (500 MHz, CDCl3) δ 7.80–7.77 (m, 2H), 7.63–7.60 (m, 1H), 7.55–7.52 (m, 2H), 7.47–7.44 (m, 1H),
7.40–7.39 (m, 1H), 7.22–7.16 (m, 5H); 13C{1H} NMR (125 MHz, CDCl3) δ 149.5, 141.9, 139.5, 137.2, 136.3,
133.1, 130.8, 130.5, 129.8, 129.7, 129.1, 128.2, 128.0, 127.8, 127.3, 123.4, 118.2, 116.3, 115.6; HRMS (FAB)
calcd. for (M + H)+ C20H13N2: 280.1079, found: 280.1068.

General procedure for the photoreaction of 4, 5, and 6 with 1

An aqueous CH3CN solution (CH3CN 45 mL, H2O 5 mL) of 1 (10 mM), 4 (20 mM), NaOH (20 mM)
in Pyrex vessels (18 mm x 180 mm) was purged with Ar for 10 min. The mixture was irradiated with a
100 W high-pressure mercury lamp for 10 h and then the solvent was removed under reduced pressure.
The crude product was purified by silica-gel column chromatography using hexane/EtOAc = 9:1 as
the eluent to yield alcohol 7 along with dimer 8. Similar photoreactions of 5 and 6 were carried out
under the similar conditions to yield 10 and 11.

2-Hydroxyindane 7: Compound 9 has been previously reported [16]. White solid, 1H NMR (500 MHz,
CDCl3) δ 7.21 (m, 4H), 4.70 (s, 1H), 3.22 (dd, J = 8.3, 3.0 Hz, 2H), 2.92 (dd, J = 8.3, 1.2 Hz, 2H), 1.68 (d,
J = 5.2 Hz, 1H); 13C{1H} NMR (125 MHz, CDCl3) δ 140.8, 126.7, 125.0, 73.2, 42.7

Cyclobutadiindene 8: Compound 8 has been previously reported [16]. White solid, 1H NMR (500 MHz,
CDCl3) δ 7.41 (d, J = 7.4 Hz, 2H), 7.31 (d, J = 6.9 Hz, 2H), 7.29–7.22 (m, 4H), 3.70 (d, J = 5.2 Hz, 2H), 3.19
(dd, J = 8.5, 3.8 Hz, 1H), 2.94 (d, J = 8.3 Hz, 2H), 2.78–2.76 (m, 2H); 13C{1H} NMR (125 MHz, CDCl3) δ
146.6, 144.0, 126.9, 126.8, 125.5, 125.2, 54.0, 43.2, 39.4

5-Hydroxy-4,4,5-trimethylhexanenitrile 10: Compound 10 has been previously reported [18]. Colorless
oil, 1H NMR (500 MHz, CDCl3): δ 2.41 (t, J = 8.0 Hz, 2H), 1.80 (t, J = 8.0 Hz, 2H), 1.39 (s(br), 1H), 1.20
(s, 6H), 0.92 (s, 6H); 13C{1H} NMR (125 MHz, CDCl3): δ 121.2, 75.5, 39.9, 33.8, 25.9, 21.9, 13.6.

1,2-Di(4-methoxyphenyl)ethane 11: Compound 11 has been previously reported [27]. White solid, 1H
NMR (500 MHz, CDCl3) δ 7.08 (d, J = 8.2 Hz, 4H), 6.82 (d, J = 8.2 Hz, 4H), 3.80 (s, 6H), 2.83 (s, 4H);
13C{1H} NMR (125 MHz, CDCl3): δ 157.9, 134.1, 129.4, 113.8, 55.3, 37.4.

4. Conclusions

This study has led to the development of PET-promoted reactions using a new class of organic
photoredox catalysts 1 wherein donor and acceptor arenes are directly linked. The intramolecular
exciplex of 1 functions as a photoredox catalyst for the photoreactions of 4, 5, and 6 in an aqueous
acetonitrile solution, even at low concentrations. Further investigations on the application of catalyst 1
to other PET-promoted reactions and the elucidation of the detailed mechanism are underway.

Supplementary Materials: 1H and 13C{1H} NMR spectra for all compounds 1, 2, 7, 8, 9, 10, and 11.
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