
SOFTWARE TOOL ARTICLE

 GFF Utilities: GffRead and GffCompare [version 2; peer

review: 3 approved]

Geo Pertea1,2, Mihaela Pertea 1,2

1Center for Computational Biology, Johns Hopkins University, Baltimore, MD, 21218, USA
2Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, 21218, USA

First published: 28 Apr 2020, 9:304
https://doi.org/10.12688/f1000research.23297.1
Latest published: 09 Sep 2020, 9:304
https://doi.org/10.12688/f1000research.23297.2

v2

Abstract
Summary: GTF (Gene Transfer Format) and GFF (General Feature
Format) are popular file formats used by bioinformatics programs to
represent and exchange information about various genomic features,
such as gene and transcript locations and structure. GffRead and
GffCompare are open source programs that provide extensive and
efficient solutions to manipulate files in a GTF or GFF format. While
GffRead can convert, sort, filter, transform, or cluster genomic
features, GffCompare can be used to compare and merge different
gene annotations.
Availability and implementation: GFF utilities are implemented in
C++ for Linux and OS X and released as open source under an MIT
license (https://github.com/gpertea/gffread,
https://github.com/gpertea/gffcompare).

Keywords
gene annotation, transcriptome analysis, GTF and GFF file formats

This article is included in the International

Society for Computational Biology Community

Journal gateway.

Open Peer Review

Reviewer Status

Invited Reviewers

1 2 3

version 2

(revision)
09 Sep 2020

version 1
28 Apr 2020 report report report

Andreas Stroehlein , The University of

Melbourne, Parkville, Australia

1.

Michael I. Love , University of North

Carolina-Chapel Hill, Chapel Hill, USA

2.

Rob Patro, University of Maryland, College

Park, USA

3.

Any reports and responses or comments on the

article can be found at the end of the article.

Page 1 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

https://f1000research.com/articles/9-304/v2
https://orcid.org/0000-0003-0762-8637
https://doi.org/10.12688/f1000research.23297.1
https://doi.org/10.12688/f1000research.23297.2
https://github.com/gpertea/gffread
https://github.com/gpertea/gffcompare
https://f1000research.com/gateways/iscb
https://f1000research.com/gateways/iscb
https://f1000research.com/gateways/iscb
https://f1000research.com/gateways/iscb
https://f1000research.com/articles/9-304/v2
https://f1000research.com/articles/9-304/v1
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
jar:file:/work/f1000research/webapps/ROOT/WEB-INF/lib/service-1.0-SNAPSHOT.jar!/com/f1000research/service/export/pdf/#
https://orcid.org/0000-0001-9432-9816
https://orcid.org/0000-0001-8401-0545
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.23297.2&domain=pdf&date_stamp=2020-09-09

Corresponding author: Mihaela Pertea (mpertea@jhu.edu)
Author roles: Pertea G: Conceptualization, Methodology, Software, Validation, Visualization, Writing – Original Draft Preparation;
Pertea M: Conceptualization, Funding Acquisition, Methodology, Project Administration, Supervision, Validation, Visualization, Writing –
Original Draft Preparation, Writing – Review & Editing
Competing interests: No competing interests were disclosed.
Grant information: This work was supported in part by the National Science Foundation [DBI-1759518], and the U.S. National Institutes
of Health [R01-HG006677].
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
Copyright: © 2020 Pertea G and Pertea M. This is an open access article distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
cited.
How to cite this article: Pertea G and Pertea M. GFF Utilities: GffRead and GffCompare [version 2; peer review: 3 approved]
F1000Research 2020, 9:304 https://doi.org/10.12688/f1000research.23297.2
First published: 28 Apr 2020, 9:304 https://doi.org/10.12688/f1000research.23297.1

Page 2 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

mailto:mpertea@jhu.edu
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.12688/f1000research.23297.2
https://doi.org/10.12688/f1000research.23297.1

Introduction
Many biomedical research applications employ pipelines to systematically analyze the gene content in a genome.
Due to the explosion in transcriptomic data available, these pipelines routinely involve processing enormous
amounts of data, and therefore require efficient bioinformatics tools that can handle multiple annotation and
sequence files in order to speed up the genomic analysis. Such tools usually exchange and employ information
about genes, transcripts or other genomic features in a tab-delimited text file format commonly known as GFF
(General Feature Format). This format describes the exact coordinates and attributes of genes, transcripts, and other
features such as start and stop codons, coding sequences etc. As such, a typical line in the GFF format specifies a
given feature by using the following fields:

<seqname> <source> <feature> <start> <end> <score> <strand> <frame> <attributes>

where <seqname> provides the sequence name of the feature’s location, <source> is the program that gener-
ated that feature, <feature> gives the actual type of the feature, <start> and <end> are the start and end
coordinates of the feature on the sequence, <score> is a floating-point number that represents the score attributed
to that feature, <strand> gives the strand of the feature on the sequence, <frame> is used for a coding fea-
ture to indicate where the next codon begins relative to the 5’ end, and <attributes> specify additional
characteristics for the feature that depend on the specific version of the GFF format used and usually include
at least a unique identifier for that feature.

GFF has many versions, including its latest version GFF31 and the older GTF (Gene Transfer Format), some-
times also referred to as GTF22. While the older GTF format is limited to the representation of gene and tran-
script locations and their structures, the newer GFF3 format can represent many more genomic features and
annotations in a hierarchical fashion. Some transcript data or genome annotation is available from the source in
only one of these formats, but an application may require the other format as input. The GffRead and GffCompare
utilities can automatically recognize and work with both these file formats seamlessly, extract and select transcript
features from data rich GFF3 annotation files, perform conversions from one format to another, and even convert
files from and to other formats such as BED3 or FASTA4.

Annotation data from different sources may use different naming conventions for chromosomes and contigs,
and GffRead can help with mapping such genomic sequence names and thus converting annotation from one
reference naming convention to another. Gene prediction programs and transcript (RNA-Seq) assembly programs
usually output their results in GTF or GFF3 format, and in such cases there is often a need to assess the accuracy
of the predicted/assembled transcripts. GffCompare is designed to systematically compare one or more sets of
transcript predictions to a reference annotation at different levels of granularity (base level, exon level, transcript
level etc.), and in the process to provide a way to “annotate” such transcript predictions based on their overlaps or
proximity to reference annotation transcripts. When multiple transcript files (samples) are provided, GffCompare
generates a non-redundant combined set of transcripts, tracking structurally equivalent transcripts across multiple
samples and classifying them according to their relationship to reference transcripts.

Due to their efficiency and user-friendly nature, both GffRead and GffCompare have already been used in
many bioinformatics projects as integral parts of pipelines for genome annotation5–7, novel gene discoveries and
characterizations8–18, gene structure reconstruction accuracy19–21, and gene annotation comparisons22–25 among
others. In this paper we provide detailed descriptions of the specific functions provided by our GFF utilities.

Methods
Implementation
Both our utilities share a code base built around a C++ class called GffObj that implements many of the common
GFF parsing and indexing functions. Because the GFF format has no requirements for grouping and sorting of

           Amendments from Version 1
This new version contains minor text edits to address observed typos and clarify the meaning of some wordings as
suggested by the reviewers.
Any further responses from the reviewers can be found at the end of the article

REVISED

Page 3 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

https://github.com/gpertea/gffread
https://github.com/gpertea/gffcompare

Table 1. GffRead options controlling the filtering of the input GFF3 data (transcripts).

-i <maxintron> discard transcripts having an intron larger than <maxintron>
-l <minlen> discard transcripts shorter than <minlen> bases
-r <chr>:<start>-<end>[<strand>] only show transcripts overlapping coordinate range <start>..<end>

on reference sequence <chr> (on strand <strand> if provided)
-R for -r option discard all transcripts that are not fully contained

within the given range
-U discard single-exon transcripts
-C coding only: discard transcripts that do not have CDS features
--nc non-coding only: discard transcripts that have CDS features
-V discard any coding transcripts having in-frame stop codons

(requires -g)
-N discard multi-exon mRNAs that have any intron with a non-canonical

splice site consensus (i.e. not GT-AG, GC-AG or AT-AC)
-J discard any transcripts that either lack initial START codon or the

terminal STOP codon, or have an in-frame stop codon (i.e. only print
mRNAs with a complete, valid CDS)

--no-pseudo discard genes and their transcripts having features or attributes
indicating a ‘pseudogene’

-M/--merge cluster the input transcripts into loci, discarding
“duplicated” transcripts (those with the same exact introns and fully
contained or equal boundaries)

-K for -M option: also discard as redundant the shorter, fully contained
transcripts (intron chains matching a part of the container)

-Q for -M option, no longer require boundary containment when
assessing redundancy (can be combined with -K); only introns have
to match for multi-exon transcripts, and >=80% overlap for single-
exon transcripts

hierarchically linked genomic features (e.g. a transcript feature can have one of its exons at the beginning of the
file and another at the end of the file), the parser has to keep transcript data in memory until the whole file is
parsed. Feature identifiers (like transcript IDs) are kept in string hashes for fast identification of hierarchical
relationship between features. Reference sequence names and GFF attribute names are also stored in global string
hashes with numeric IDs associated, while pointers to the genomic feature objects (GffObj) are stored in dynamic
arrays sorted by the genomic location such that a binary search can be used for quick overlap verification. The
code shared by these utilities also implements functions to test and classify the structural similarities and
overlaps between transcripts in the same location on the genome.

GffRead. We initially implemented the GffRead utility as a fast tool for verification, filtering and conversion of
the most popular annotation file formats, GTF and GFF3, and for quick extraction of transcript sequences from the
genome sequence. With its many features added over time, GffRead is now a complex and versatile tool that
can sort, filter, remap and even cluster transcripts into loci (based on exon overlaps) while optionally discarding
“redundant” transcripts from an input GFF data. Different examples for the command lines used to perform all
these functions are offered in the Use Cases section below.

GffRead parses the input records given in GTF, GFF3 or BED format, and stores them into an internal
collection of GffObj data structures that can be easily sorted and filtered according to different criteria. For
instance, GffRead can output only the subset of the input transcripts that are multi-exonic, or do not belong to
pseudogenes (see Table 1 for a complete set of filtering options). Besides conversions between different GFF
formats, GffRead has many additional output options (see Table 2). Among these is a user-defined tab-delimited
format, with a line for each transcript and the columns defined by a custom list of some of the GFF columns

Page 4 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

Table 2. GffRead output options; default output consists of transcripts only, shown as GFF records with
only the basic attributes kept (ID, Parent, geneID and gene_name if found).

-F preserve all original GFF attributes (for non-exon features); repetitive/redundant
exon/CDS attributes are merged into the parent transcript attributes

--keep-exon-attrs for -F option, do not attempt to reduce redundant
exon/CDS attributes

--keep-genes in transcript-only mode (default), also preserve gene records
-P add transcript level GFF attributes about the coding status of each transcript,

including partialness or in-frame stop codons (requires -g)
--force-exons make sure that output transcripts have “exon” features generated when they were

not explicitly given in the input (e.g. CDS-only transcripts)
--gene2exon for single-line genes not parenting any transcripts, add an exon feature spanning

the entire gene (treat it as a transcript)
-Z merge very close exons into a single exon (when intron size<4)
-w write a FASTA file with spliced exons for each transcript
-x write a FASTA file with spliced CDS for each GFF transcript
-y write a protein FASTA file with the translation of CDS for each record
-T main output is GTF instead of GFF3
--bed main output is in BED format instead of GFF3
--table output a simple tab delimited format instead of GFF, with columns having the

values of GFF attributes given in <attrlist>; special pseudo-attributes (prefixed by
@) are recognized:
@id, @geneid, @chr, @start, @end, @strand, @numexons, @exons,@cds, @covlen,
@cdslen
If any of -w/-y/-x output files are enabled, the same fields (excluding @id) are
appended to the definition line of corresponding FASTA records

Output sorting options (by default the output is sorted by feature coordinates per reference sequence, with reference
sequences shown in the order they were first encountered in the input):
--sort-alpha reference sequences are sorted alphabetically
--sort-by <refseq.lst> sort the reference sequences by the order their names are given in the

<refseq.lst> file

and attributes in the input annotation file. If a genome sequence is provided, GffRead can also generate multiple
additional sequence data files in FASTA format such as: (1) a file with the transcript sequences produced by
extracting and concatenating all of the exon sequences of each transcript; (2) a file with all the protein-coding
sequences in each transcript; or (3) a file with the amino-acid translations of the coding sequence of each tran-
script. If a FASTA index file (such as the one created by the samtools utility26) is not present in the same directory
with the genomic sequence, GffRead will first create one in order to accelerate the retrieval of the specific tran-
script sequences. If the transcripts in the annotation file have coding sequences (represented as CDS features in
the file), GffRead can check their validity and add specific annotations to the output file, indicating if either
the START or the STOP codons are missing in these transcripts or if there are in-frame STOP codons.

The transcript clustering functions of GffRead can group each set of input transcripts into a locus, where all
transcripts in a locus are on the same strand, and any two transcripts in that locus have at least one exonic interval
overlap. When clustering is enabled, the GFF output will have a new ‘locus’ feature for each cluster with attributes
listing all the transcript IDs (and gene IDs, if available) that belong to that cluster. Optionally, GffRead can
identify transcripts that are structurally “matching” or “equivalent”, defined as transcripts that share all their introns,
or have more than 80% of their length overlap in the case of single exon transcripts. GffRead can also discard
redundant transcripts (either matching or contained within other transcripts) from the output, providing the user
with the ability to choose among merging strategies with different levels of stringency when assessing redundancy
in such cases.

Page 5 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

http://www.htslib.org/

Figure 1. Transcript classification codes based on their relationship to reference transcripts, as generated
by GffCompare. Reference exons and transcripts are shown in black, transcripts to be classified are shown in blue,
and hashed regions represent repeated regions in the genome. For example, the transcript in blue on the uppermost
left panel is labeled “=” because all of its introns precisely match the annotation in black.

GffCompare. GffCompare is a generic, standalone tool for merging and tracking transcript structures across
multiple samples and comparing them to a reference annotation. Initially written based on the CuffCompare
utility program included with the Cufflinks suite27, GffCompare has the following main functions:

1) merge structurally equivalent transcripts and transcript fragments (transfrags) across multiple samples;

2) assess the accuracy of the assembled transcripts from an RNA-Seq sample by comparing it to known
annotation; and

3) track, annotate, and report all structurally distinct transfrags across multiple samples.

The last two purposes require the user to provide a known reference annotation file that GffCompare then uses to
classify all the transcripts in the input samples according to the reference transcript that they most closely
overlap (Figure 1). To assess the accuracy of transcriptome assemblies, GffCompare reports several accuracy
metrics previously employed for gene prediction evaluation28. These metrics include sensitivity and precision
as well as the number of novel or missed features, and the metrics are computed at various levels (base, exon,
intron chain, transcript, or locus). More details about how to obtain the different reports provided by GffCompare
can be found in the Use Cases section.

Some pipelines can produce a very large number of transcripts that need to be evaluated; e.g. when merging
the transcript assemblies from tens or hundreds of RNA-Seq experiments. Because GffCompare always loads
the entire transcript data into memory for clustering, running GffCompare on such large GTF/GFF files could be

Page 6 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

http://cole-trapnell-lab.github.io/cufflinks/cuffcompare/
http://cole-trapnell-lab.github.io/cufflinks/

slow and memory intensive. One may be interested only in how these transcripts overlap the reference
annotation, and then only wish to further analyze those transcripts that have specific types of overlaps with the refer-
ence annotation transcripts. GffCompare also only produces the best match of a transcript to a reference annotation,
but for each transcript we might want to know all possible reference matches. In order to address these needs, we
built TrMap (“Transcript vs. reference Mapping”), a program that we distribute along with GffCompare and
that was designed to avoid using a large amount of memory by streaming the input transcript data. TrMap first loads
the reference annotation into an interval tree data structure29, and then for each query transcript it reports all the
reference transcripts that overlap it, along with their overlap classification codes. These are the same
classification codes described in Figure 1, with the exception of codes p, r, and u which are reserved for transcripts
that do not overlap reference transcripts and represent transcripts that are single exon and nearby genes (p),
repeats outside of genes (r), and intergenic (u).

Operation
This software can be built on a Linux or MacOS system with no other library dependencies. A GNU C++
compiler (g++) is required for compilation (on Linux at least g++ version 4.5 is required). The release pack-
ages on Github include precompiled binaries for Linux and MacOS that can be used directly instead of having to
build the programs from source. Linux compatibility goes back as far as RedHat Enterprise Linux 5, while on
MacOS the programs can run on systems as old as OS X 10.7 (Lion). We also provide the gffread,
gffcompare and trmap executables. These are supposed to be used as command line programs, in a
Linux/Unix shell, in a terminal or a script. All programs take GFF3, GTF or BED files as their (main) input
files. Both packages require the shared code provided in GCLib (https://github.com/gpertea/gclib30).

Use cases
The following sections illustrate different use cases for our utilities. All the files used in the examples below
as well as their output are included in the gffread and gffcompare Github release packages (https://
github.com/gpertea/gffread31, https://github.com/gpertea/gffcompare32) so that the interested user can try these
examples for themselves.

Basic usage examples of the GffRead utility
The program GffRead can be used to validate, filter, convert and perform various other operations on GFF files
(see Table 1 and Table 2 for the full list of usage options). For instance, GffRead can be used to simply read an
annotation file in a GFF format, and print it in either GFF3 (default) or GTF2 format (with the -T option), while
optionally discarding any non-essential attributes, and fixing some potential issues with the input file. The
command line for such a quick cleanup and a quick visual inspection of a given GFF file would be:

gffread -E annotation.gff -o ann_simple.gff

This will show the minimalist GFF3 re-formatting of the transcript records found in the input file
(annotation.gff in this example) which could be given in either GFF3 or GTF2 format. The -E option
directs GffRead to “expose” (display warnings about) any potential issues encountered while parsing the input file.

In order to obtain the GTF2 version of the same transcripts, the -T option should be added:

gffread annotation.gff -T -o annotation.gtf

GffRead can be used to generate a FASTA file with the DNA sequences for all transcripts in a GFF file. For this
operation a FASTA file with the genomic sequences have to be provided as well. This can be accomplished with
a command line like this:

gffread -w transcripts.fa -g genome.fa annotation.gff

The file genome.fa in this example would be a multi-FASTA file with the chromosome/contig sequences of
the target genome. This also requires that every contig or chromosome name found in the 1st column of the input
GFF file (annotation.gtf in this example) must have a corresponding sequence entry in the genome.fa
file.

Basic usage example of the GffCompare utility
The program GffCompare can be used to compare, merge, annotate and estimate accuracy of one or more
GTF/GFF files (the “query” files), when compared with a reference annotation (also provided as GTF/GFF). A
basic command line to compare a list of GTF files to a reference annotation file is:

Page 7 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

https://github.com/gpertea/trmap
https://github.com/gpertea/gclib
https://github.com/gpertea/gffread
https://github.com/gpertea/gffread
https://github.com/gpertea/gffcompare

Table 3. GffCompare options.

-i <input_gtf_list> provide a text file with a list of (query) GTF/GFF files to process instead of expecting
them as command line arguments (useful when a large number of GTF files should
be processed)

-r <reference.gff> provides reference annotation file (GTF/GFF)
-R for -r option, consider only the reference transcripts that overlap any of the input

transfrags (Sensitivity correction)
-Q for -r option, consider only the input transcripts that overlap any of the reference

transcripts (Precision correction); this will discard all novel loci
-M discard (ignore) single-exon transfrags and reference transcripts
-N discard (ignore) single-exon reference transcripts
-D discard “duplicate” query transfrags (i.e. those with the same intron chain) within a

single sample
-S like -D, but stricter duplicate checking: only discard matching query or reference

transcripts (same intron chain) if their boundaries are fully contained within other,
larger or identical transfrags

--no-merge disable close-exon merging (default: merge exons separated by “introns” shorter than
5 bases)

-s <genome_file> path to genome sequences (optional); this can be either a multi-FASTA file or a directory
containing single-FASTA files (one for each contig); repeats must be soft-masked (lower
case) in order to be able to classify transfrags as repeats

-T do not generate .tmap and .refmap files for each input file
-e max. distance (range) allowed from free ends of terminal exons of reference transcripts

when assessing exon accuracy (default: 100)
-d max. distance (range) for grouping transcript start sites (default: 100)
-V verbose processing mode (also shows GFF parser warnings)
--chr-stats the .stats file will show summary and accuracy data for each reference contig/

chromosome separately
-p <cprefix> the name prefix to use for consensus transcripts in the <outprefix>.combined.

gtf file (default: 'TCONS')
--debug enables -V and generates additional files: <outprefix>.Q_discarded.lst,

<outprefix>.missed_introns.gff, <outprefix>.R_missed.lst

Options for the combined GTF output file:
-o <outprefix> provides a prefix for all output files
-C discard matching and “contained” transfrags in the GTF output (i.e. collapse intron-

redundant transfrags across all query files)
-A like -C but does not discard intron-redundant transfrags if they start with a different

5’ exon (keep alternate TSS)
-X like -C but also discard contained transfrags if transfrag ends stick out within the

container’s introns
-K for -C/-A/-X, do NOT discard any redundant transfrag matching a reference

gffcompare -r annotation.gff transcripts.gtf

The reference annotation is specified in the annotation.gff file and transcripts.gtf represents the
query file (more than one query file can be provided). Unless the -o option was provided, the output will be
found in multiple files with the prefix “gffcmp.”. A list of the more important options for the GffCompare
utility is provided in Table 3.

Page 8 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

Transcript accuracy estimation with GffCompare
GffCompare can be used to assess the accuracy of transcriptome assemblies produced by programs like
StringTie19 with respect to a known reference annotation. To this end, GffCompare reports various statistics related
to the accuracy of the input transcripts compared to the reference annotation in the <outprefix>.stats file.
Among these statistics are sensitivity and precision values computed at various levels (base, exon, intron
chain, transcript, locus), which are calculated as:

 Sensitivity = TP/(TP+FN)

 Precision = TP/(TP+FP)

where TP stands for “true positives”, or query features (bases, exons, introns, transcripts, etc.) that agree with
the corresponding reference annotation features; FN means “false negatives”, i.e. features that are found in the
reference annotation but are not present in the input data; FP (“false positives”) are features present in the input
data but not confirmed by any reference annotation data. Notice that FP+TP amounts to the whole input set of
query features in the input file. If multiple query GTF/GFF files are given as input, these metrics are computed
separately for each sample.

Sensitivity and Precision values are estimated at various levels, which are largely an increasingly stringent
way of evaluating the accuracy/correctness of a set of predicted transcripts (transfrags), when compared to the
reference annotation provided with the -r option. The six different levels that GffCompare uses are described
below:

1) Base level. At the base level, TP represents the number of exon bases that are reported at the same coordinate
on both the query transcripts and any reference transcript, FN is the number of bases in reference data exons
that are not covered at all by any of the query exons, and FP is the number of bases which are covered by
predicted transcripts’ exons but not covered by any reference transcript exons.

2) Exon level. We define the TP, FN, and FP values at the exon level similar to the base level, but now
the unit of comparison is the exon interval on the genome, i.e. if an exon of the predicted transcript overlaps
and matches the boundaries of a reference transcript exon, then it is counted as a TP.

3) Intron Level. Intron intervals are the units that are matched at the intron level, therefore each intron of
the predicted transcript is checked against any introns of the reference transcripts in the same region and if
there is one with the same exact start-end coordinates, it is counted as a TP.

4) Intron chain level. At this level we count as a TP any query transcript for which all of its introns can be
found, with the same exact intron coordinates as in a reference transcript that has the same number of introns.
Matching all the introns at this level implies that all the internal exons also match, but this might not be true
for the external boundaries of the terminal exons.

5) Transcript level. Note that intron chain level values are calculated only by looking at multi-exon transcripts,
so it completely ignores the single-exon transcripts, which can be quite numerous in a RNA-Seq experiment
(possibly due to a lot of transcriptional and alignment noise). The transcript level considers single-exons
as well. A TP at this level is defined as a full exon chain match between the predicted transcript and a reference
transcript, where all internal exons match and the outer boundaries of the terminal query exons can only slightly
differ from the reference exons (with at most 100 bases by default). Also GffCompare considers single-exon
transcripts as matching an overlapping single-exon reference transcript if there is a significant overlap between
the two (more than 80% of the longer transcript by default).

6) Locus level. At this level GffCompare considers that an observed locus, defined as a cluster of exon-
overlapping transcripts, matches a similarly built reference locus if at least one predicted transcript has a transcript
level match with a reference transcript in the corresponding reference locus.

Other statistics reported by GffCompare are the number of missed or novel exons, missed or novel introns and
missed or novel loci. Note that in order to properly evaluate precision and sensitivity when comparing two sets
of transcripts, special care must be taken for duplicated (or redundant) entries within each set. GffCompare uses
different levels of stringency of what to consider duplicated transcripts, depending on the option given in its input
(see options -D, -S, -C, -A, -X in Table 3).

Merging structurally equivalent transcripts with GffCompare
When multiple input GTF/GFF files are provided, GffCompare reports a GTF file named
<outprefix>.combined.gtf containing the union of all transfrags in each sample. If a transfrag with the
same exact intron chain is present in both samples, it is thus reported only once in the output file.

Page 9 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

http://ccb.jhu.edu/software/stringtie/

Table 4. Transcript classification codes (listed in decreasing order of priority).

Code Relationship to reference transcript

= complete, exact intron chain match

c contained in reference transcript (intron compatible)

k contains reference transcript (reverse containment)

m retained intron(s) compared to reference, full intron chain match
everywhere else

n completely overlaps intron from reference transcript, partial or no intron
chain match everywhere else

j multi-exon with at least one junction match

e single exon that partially covers an intron from reference

o other same strand overlap with reference exons

s intron match on the opposite strand (likely a mapping error)

x exonic overlap on the opposite strand

i fully contained within a reference intron

y contains a reference within its intron(s)

p possible polymerase run-on (close to reference but no overlap)

r repeat (at least 50% bases are soft-masked)

u none of the above (unknown, intergenic)

The “super-locus” concept
A super-locus is a region of the genome where predicted transcripts and reference transcripts get clustered
together by exon overlaps. When multiple GFF files are provided as input to GffCompare, this cluster-
ing is performed across all the input files. Due to the transitive nature of this clustering, these super-loci can
occasionally get very large, sometimes merging a few distinct reference gene regions together, especially if
there is a lot of transcription or alignment noise around the individual gene regions. For each super-locus,
GffCompare assigns a unique identifier with the XLOC_ prefix.

Annotating transcripts with GffCompare
One can run GffCompare on a single GTF/GFF input file using with the -r option (which provides a reference
annotation), and without any specific options to remove redundant transfrags (such as the -D, -S, -C, -A, -
X options) to produce a GTF file called <outprefix>.annotated.gtf that contains all the input transcripts
annotated with several additional attributes: xloc, tss_id, cmp_ref, and class_code. The xloc attribute
specifies the super-locus a specific transcript belongs to. The tss_id attribute uniquely identifies the
transcription start for that transcipt, and using this value the user can quickly see which transcripts use the same
transcription start, or how many different transcription starts are present in a locus. The cmp_ref gives the closest
reference transcript (where applicable), while the relationship to this reference transcript is given by the
class_code attribute. The possible values for the class_code attribute are listed in Table 4.

Tracking transcripts with GffCompare
GffCompare can also be used to track all transcripts that are structurally equivalent among the different input
files. GffCompare considers transcripts matching (or structurally equivalent) if all their introns are identical. Note
that matching transcripts are allowed to differ on the length of the first and last exons, since these lengths can usually
vary across samples for the same biological transcript. A list of all matching transcripts is reported in a file called
<outprefix>.tracking in which each row represents a transcript. The first column in this file represents
a unique id assigned to that transcripts. The second file represents the super-locus that contains that transcript.

Page 10 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

Table 5. Description of the columns in the <outprefix>.tracking generated by GffCompare when run
on N≥1 input files.

Column
number

Column name Example Description

1 Query transfrag id TCONS_00403479 A unique internal id for the transfrag

2 Query locus id XLOC_006534 A unique internal id for the super-locus
containing these transcripts across all
samples and the reference annotation

3 Reference gene id
and transcript id

TCEA3|rna-XM_006710864.2 The gene name and transcript ID of
the reference record associated to this
transcript (separated by ‘|’), or ‘-’ if no such
reference transcript is available

4 Class code j The type of overlap or relationship between
the reference transcripts and the transcript
structure represented by this row

5..N Corresponding
transcript in input
file n

q1:STRG.377|STRG.377.2|10
|0.304785|0.760185|2.2052
39|2767

qn:<gene_id>|<transcript_id>|<num_exons>|
<FPKM>|<TPM>|<cov>|<len>

Table 6. Description of the columns in the <outprefix>.<input_file>.refmap file.

Column
number

Column
name

Example Description

1 Reference
gene name

Myog The gene_name attribute of the reference GTF
record for this transcript, if present. Otherwise
gene_id is used.

2 Reference
transcript id

uc007crl.1 The transcript_id attribute of the reference
GTF record for this transcript.

3 Class code c The type of match between the query
transcripts in column 4 and the reference
transcript. One of either ‘c’ for partial match, or
‘=’ for full match.

4 Matches STRG.223|STRG.223.1,STRG.224|
STRG.224.1

A comma separated list of transcripts
matching the reference transcript.

If GffCompare was run with the -r option, the 3rd and 4th columns contain the reference annotation transcript
that was found to be closest to the transcript and the classification code (as specified by Table 4) that specifies
the relationship between these two transcripts, respectively. The rest of the columns show the corresponding
transcript from each input file in order. An example and a brief description for each column are given in
Table 5.

In order to quickly see which reference transcripts match which transcripts from a sample file, two other files,
called <outprefix>.<input_file>.refmap and <outprefix>.<input_file>.tmap are also
created for each query <input_file>file>le>. The <outprefix>.<input_file>.refmap file is a tab-delimited
file that has a row for each reference transcript that either fully or partially matches a transcript from the given input
file. Its columns are described in Table 6. Conversely, the <outprefix>.<input_file>.tmap file has a
row for each input transcript, while the columns in this file (as detailed in Table 7) describe the most closely
matching reference transcript for that transcript.

Overlap classification for a large set of transcripts with TrMap
The utility TrMap was designed for large scale overlap analysis of streaming transcript prediction data
(millions of transcripts) with a reference annotation data set. Particularly, TrMap performs detection and
classification of all the overlaps found between the streamed transcripts and the reference annotation transcripts.

Page 11 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

The program trmap is distributed with GffCompare and a basic usage for it is shown below:

trmap [-S] [-o] <ref_gff> <query_gff>
Positional arguments:
 <ref_gff> reference annotation file name (GFF/BED format)
 <query_gff> query file name (GFF/BED format) or "-" for stdin
Options:
 -o <outfile> write output to <outfile> instead of stdout
 -S report only simple reference overlap percentages, without
 classification (one line per query)

The default output is a pseudo-FASTA format showing a record for each query transcript that had at least one
reference overlap. The query transcript is shown in the header of the record, with space delimited fields show-
ing the genomic location and strand. Each reference overlap follows, as a line with tab delimited fields, starting
with the “classification code” for the overlap and then providing the genomic location of the transcript
(chromosome, strand, transcript-start, transcript-end, reference_transcriptID, exons).

The exons for both query and reference transcripts are shown as comma delimited lists of intervals. These are
all 1-based coordinates like in the GTF/GFF format (even when input is BED).

Conclusions
GffRead and GffCompare provide comprehensive features for converting, filtering, manipulating, clustering,
combining and classifying transcript data from GFF files. Due to their ability to process hundreds or even thousands
of transcript files at the same time, they can be used for large scale genome data analysis by many
bioinformatics analysis pipelines.

Data availability
Underlying data
All data underlying the results are available as part of the article and no additional source data are required.

Table 7. Description of the columns in the <outprefix>.<input_file>.tmap file.

Column
number

Column name Example Description

1 Reference gene
name

Myog The gene_name attribute of the reference GTF record for this
transcript, if present. Otherwise gene_id is used.

2 Reference
transcript id

uc007crl.1 The transcript_id attribute of the reference GTF record for this
transcript

3 Class code c The type of relationship between the query transcripts in
column 4 and the reference transcript (as described in the Class
Codes section below)

4 Query gene id STRG.23567 The query (e.g., Stringtie) internal gene id

5 Query transcript
id

STRG.23567.0 The query internal transcript id

6 Number of
exons

7 The number of exons in the query transcript

7 FPKM 1.4567 The expression of this transcript expressed in FPKM

8 TPM 0.000000 the estimated TPM for the transcript, if found in the query input
file

9 Coverage 3.2687 The estimated average depth of read coverage across the
transcript.

10 Length 1426 The length of the transcript

11 Major isoform ID STRG.23567.0 The query ID of the gene’s major isoform

12 Reference match
length

4370 The length of the longest overlap with a reference, ‘-’ if there is
no such exonic overlap

Page 12 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

References

Software availability
The source packages for the latest release, with precompiled binaries and online manuals, are available at http://
ccb.jhu.edu/software/stringtie/gff.shtml.

Source code available from: https://github.com/gpertea/gffread

Archived source code at time of publication: http://doi.org/10.5281/zenodo.375568631

License: MIT

Source code available from: https://github.com/gpertea/gffcompare

Archived source code at time of publication: http://doi.org/10.5281/zenodo.375571532

License: MIT

Source code available from: https://github.com/gpertea/gclib

Archived source code at time of publication: http://doi.org/10.5281/zenodo.375874130

License: Artistic License 2.0

Acknowledgments
Authors want to thank Cole Trapnell for direction and guidance leading to the writing of CuffCompare - the initial
version of GffCompare. They also thank Steven Salzberg for proofreading the manuscript.

1. Generic Feature Format Version 3 (GFF3).
Reference Source

2. GTF2 format (Revised Ensembl GTF).
Reference Source

3. BED File Format.
Reference Source

4. What is FASTA format?
Reference Source

5. Pertea M, Shumate A, Pertea G, et al.: CHESS: a new human
gene catalog curated from thousands of large-scale RNA
sequencing experiments reveals extensive transcriptional
noise. Genome Biol. 2018; 19(1): 208.
PubMed Abstract | Publisher Full Text | Free Full Text 

6. Yoshimura J, Ichikawa K, Shoura MJ, et al.: Recompleting the
Caenorhabditis elegans genome. Genome Res. 2019; 29(6):
1009–1022.
PubMed Abstract | Publisher Full Text | Free Full Text 

7. Zimin AV, Cornish AS, Maudhoo MD, et al.: A new rhesus 
macaque assembly and annotation for next-generation
sequencing analyses. Biol Direct. 2014; 9(1): 20.
PubMed Abstract | Publisher Full Text | Free Full Text 

8. Boschiero C, Lundquist PK, Roy S, et al.: Identification and
Functional Investigation of Genome-Encoded, Small, Secreted
Peptides in Plants. Curr Protoc Plant Biol. 2019; 4(3): e20098.
PubMed Abstract | Publisher Full Text 

9. Chang TC, Mendell JT: High-Throughput Characterization of
Primary microRNA Transcripts. Methods Mol Biol. 2018; 1823:
1–9.
PubMed Abstract | Publisher Full Text 

10. Han L, Li L, Muehlbauer GJ, et al.: RNA Isolation and Analysis of
LncRNAs from Gametophytes of Maize. Methods Mol Biol. 2019;
1933: 67–86.
PubMed Abstract | Publisher Full Text 

11. Jain P, Sharma V, Dubey H, et al.: Identification of long non-
coding RNA in rice lines resistant to Rice blast pathogen
Maganaporthe oryzae. Bioinformation. 2017; 13(8): 249–255.
PubMed Abstract | Publisher Full Text | Free Full Text 

12. Liu X, Ma Y, Yin K, et al.: Long non-coding and coding

RNA profiling using strand-specific RNA-seq in human
hypertrophic cardiomyopathy. Sci Data. 2019; 6(1): 90.
PubMed Abstract | Publisher Full Text | Free Full Text 

13. Lv Y, Liang Z, Ge M, et al.: Genome-wide identification and
functional prediction of nitrogen-responsive intergenic and
intronic long non-coding RNAs in maize (Zea mays L.). BMC
Genomics. 2016; 17: 350.
PubMed Abstract | Publisher Full Text | Free Full Text 

14. Sablok G, Sun K, Sun H: NAMS: Noncoding Assessment of long
RNAs in Magnoliophyta Species. Methods Mol Biol. 2019; 1933:
257–264.
PubMed Abstract | Publisher Full Text 

15. Song F, Wang L, Zhu W, et al.: Long noncoding RNA and mRNA
expression profiles following igf3 knockdown in common carp,
Cyprinus carpio. Sci Data. 2019; 6: 190024.
PubMed Abstract | Publisher Full Text | Free Full Text 

16. Sreenivasamurthy SK, Madugundu AK, Patil AH, et al.: Mosquito-
Borne Diseases and Omics: Tissue-Restricted Expression and
Alternative Splicing Revealed by Transcriptome Profiling of
Anopheles stephensi. OMICS. 2017; 21(8): 488–497.
PubMed Abstract | Publisher Full Text 

17. Stroehlein AJ, Young ND, Korhonen PK, et al.: The small RNA
complement of adult Schistosoma haematobium. PLoS Negl Trop
Dis. 2018; 12(5): e0006535.
PubMed Abstract | Publisher Full Text | Free Full Text 

18. Sun HX, Chua NH: Bioinformatics Approaches to Studying
Plant Long Noncoding RNAs (lncRNAs): Identification and
Functional Interpretation of lncRNAs from RNA-Seq Data Sets.
Methods Mol Biol. 2019; 1933: 197–205.
PubMed Abstract | Publisher Full Text 

19. Kovaka S, Zimin AV, Pertea GM, et al.: Transcriptome assembly 
from long-read RNA-seq alignments with StringTie2. Genome
Biol. 2019; 20(1): 278.
PubMed Abstract | Publisher Full Text | Free Full Text 

20. Manchanda N, Portwood JL 2nd, Woodhouse MR, et al.:
GenomeQC: a quality assessment tool for genome assemblies
and gene structure annotations. BMC Genomics. 2020; 21(1):
193.
PubMed Abstract | Publisher Full Text | Free Full Text 

Page 13 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

http://ccb.jhu.edu/software/stringtie/gff.shtml
http://ccb.jhu.edu/software/stringtie/gff.shtml
https://github.com/gpertea/gffread
http://doi.org/10.5281/zenodo.3755686
https://github.com/gpertea/gffread/blob/master/LICENSE
https://github.com/gpertea/gffcompare
http://doi.org/10.5281/zenodo.3755715
https://github.com/gpertea/gffcompare/blob/master/LICENSE
https://github.com/gpertea/gclib
http://doi.org/10.5281/zenodo.3758741
https://github.com/gpertea/gclib/blob/master/LICENSE.txt
http://github.com/The-Sequence-Ontology/Specifications/blob/master/gff3.md
http://mblab.wustl.edu/GTF2.html
http://ensembl.org/info/website/upload/bed.html
https://zhanglab.ccmb.med.umich.edu/FASTA/
http://www.ncbi.nlm.nih.gov/pubmed/30486838
http://dx.doi.org/10.1186/s13059-018-1590-2
http://www.ncbi.nlm.nih.gov/pmc/articles/6260756
http://www.ncbi.nlm.nih.gov/pubmed/31123080
http://dx.doi.org/10.1101/gr.244830.118
http://www.ncbi.nlm.nih.gov/pmc/articles/6581061
http://www.ncbi.nlm.nih.gov/pubmed/25319552
http://dx.doi.org/10.1186/1745-6150-9-20
http://www.ncbi.nlm.nih.gov/pmc/articles/4214606
http://www.ncbi.nlm.nih.gov/pubmed/31479208
http://dx.doi.org/10.1002/cppb.20098
http://www.ncbi.nlm.nih.gov/pubmed/29959669
http://dx.doi.org/10.1007/978-1-4939-8624-8_1
http://www.ncbi.nlm.nih.gov/pubmed/30945179
http://dx.doi.org/10.1007/978-1-4939-9045-0_4
http://www.ncbi.nlm.nih.gov/pubmed/28959093
http://dx.doi.org/10.6026/97320630013249
http://www.ncbi.nlm.nih.gov/pmc/articles/5609289
http://www.ncbi.nlm.nih.gov/pubmed/31197155
http://dx.doi.org/10.1038/s41597-019-0094-6
http://www.ncbi.nlm.nih.gov/pmc/articles/6565738
http://www.ncbi.nlm.nih.gov/pubmed/27169379
http://dx.doi.org/10.1186/s12864-016-2650-1
http://www.ncbi.nlm.nih.gov/pmc/articles/4865003
http://www.ncbi.nlm.nih.gov/pubmed/30945190
http://dx.doi.org/10.1007/978-1-4939-9045-0_15
http://www.ncbi.nlm.nih.gov/pubmed/30778253
http://dx.doi.org/10.1038/sdata.2019.24
http://www.ncbi.nlm.nih.gov/pmc/articles/6380219
http://www.ncbi.nlm.nih.gov/pubmed/28708456
http://dx.doi.org/10.1089/omi.2017.0073
http://www.ncbi.nlm.nih.gov/pubmed/29813122
http://dx.doi.org/10.1371/journal.pntd.0006535
http://www.ncbi.nlm.nih.gov/pmc/articles/5993326
http://www.ncbi.nlm.nih.gov/pubmed/30945186
http://dx.doi.org/10.1007/978-1-4939-9045-0_11
http://www.ncbi.nlm.nih.gov/pubmed/31842956
http://dx.doi.org/10.1186/s13059-019-1910-1
http://www.ncbi.nlm.nih.gov/pmc/articles/6912988
http://www.ncbi.nlm.nih.gov/pubmed/32122303
http://dx.doi.org/10.1186/s12864-020-6568-2
http://www.ncbi.nlm.nih.gov/pmc/articles/7053122

21. Shao M, Kingsford C: Accurate assembly of transcripts through
phase-preserving graph decomposition. Nat Biotechnol. 2017;
35(12): 1167–1169.
PubMed Abstract | Publisher Full Text | Free Full Text 

22. Azlan A, Obeidat SM, Yunus MA, et al.: Systematic identification
and characterization of Aedes aegypti long noncoding RNAs
(lncRNAs). Sci Rep. 2019; 9(1): 12147.
PubMed Abstract | Publisher Full Text | Free Full Text 

23. Chow EYC Zhang J, Qin H, et al.: Characterization of
Hepatocellular Carcinoma Cell Lines Using a Fractionation-
Then-Sequencing Approach Reveals Nuclear-Enriched HCC-
Associated lncRNAs. Front Genet. 2019; 10: 1081.
PubMed Abstract | Publisher Full Text | Free Full Text 

24. Niknafs YS, Pandian B, Iyer HK, et al.: TACO produces robust
multisample transcriptome assemblies from RNA-seq. Nat
Methods. 2017; 14(1): 68–70.
PubMed Abstract | Publisher Full Text | Free Full Text 

25. Vadnal J, Granger OG, Ratnappan R, et al.: Refined ab initio gene
predictions of Heterorhabditis bacteriophora using RNA-seq.
Int J Parasitol. 2018; 48(8): 585–590.
PubMed Abstract | Publisher Full Text | Free Full Text 

26. Li H, Handsaker B, Wysoker A, et al.: The Sequence Alignment/Map

format and SAMtools. Bioinformatics. 2009; 25(16): 2078–9.
PubMed Abstract | Publisher Full Text | Free Full Text 

27. Trapnell C, Williams BA, Pertea G, et al.: Transcript assembly and 
quantification by RNA-Seq reveals unannotated transcripts
and isoform switching during cell differentiation. Nat
Biotechnol. 2010; 28(5): 511–5.
PubMed Abstract | Publisher Full Text | Free Full Text 

28. Burset M, Guigó R: Evaluation of gene structure prediction
programs. Genomics. 1996; 34(3): 353–67.
PubMed Abstract | Publisher Full Text 

29. Cormen T, Leiserson C, Rivest R, et al.: Introduction to 
Algorithms, 3rd Edition. The MIT Press. 2009.
Reference Source

30. Pertea G: gpertea/gclib: v0.11.9 (Version v0.11.9). Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.3758741

31. Pertea G, Rozenberg A: gpertea/gffread: v0.11.8 (Version
v0.11.8). Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.3755686

32. Pertea G, Kirchner R: gpertea/gffcompare: v0.11.6 (Version
v0.11.6). Zenodo. 2020.
http://www.doi.org/10.5281/zenodo.3755715

Page 14 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

http://www.ncbi.nlm.nih.gov/pubmed/29131147
http://dx.doi.org/10.1038/nbt.4020
http://www.ncbi.nlm.nih.gov/pmc/articles/5722698
http://www.ncbi.nlm.nih.gov/pubmed/31434910
http://dx.doi.org/10.1038/s41598-019-47506-9
http://www.ncbi.nlm.nih.gov/pmc/articles/6704130
http://www.ncbi.nlm.nih.gov/pubmed/31781161
http://dx.doi.org/10.3389/fgene.2019.01081
http://www.ncbi.nlm.nih.gov/pmc/articles/6857473
http://www.ncbi.nlm.nih.gov/pubmed/27869815
http://dx.doi.org/10.1038/nmeth.4078
http://www.ncbi.nlm.nih.gov/pmc/articles/5199618
http://www.ncbi.nlm.nih.gov/pubmed/29530648
http://dx.doi.org/10.1016/j.ijpara.2018.02.001
http://www.ncbi.nlm.nih.gov/pmc/articles/6004328
http://www.ncbi.nlm.nih.gov/pubmed/19505943
http://dx.doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pmc/articles/2723002
http://www.ncbi.nlm.nih.gov/pubmed/20436464
http://dx.doi.org/10.1038/nbt.1621
http://www.ncbi.nlm.nih.gov/pmc/articles/3146043
http://www.ncbi.nlm.nih.gov/pubmed/8786136
http://dx.doi.org/10.1006/geno.1996.0298
https://edutechlearners.com/download/Introduction_to_algorithms-3rd Edition.pdf
http://www.doi.org/10.5281/zenodo.3758741
http://www.doi.org/10.5281/zenodo.3755686
http://www.doi.org/10.5281/zenodo.3755715

Open Peer Review
Current Peer Review Status:

Version 1

Reviewer Report 02 June 2020

https://doi.org/10.5256/f1000research.25718.r62867

© 2020 Patro R. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Rob Patro
Department of Computer Science, University of Maryland, College Park, MD, USA

In this manuscript, the authors describe the GFF Utilities suite, which is comprised of the GffRead,
GffCompare, and trmap utilities. These tools long predate the article and have been in relatively
widespread use for some time. For example, GffRead is commonly used to convert files to proper
GFF3 format (and to record or catalog formatting errors), as well as to extract the sequences of
transcripts (or related features) from a GFF file and associated genome. GffCompare is commonly
used as a standard tool in the evaluation of genome-guided assembly, to compare predicted
transcripts against an annotation, as well as to merge transcriptome assemblies across multiple
samples while discarding duplicates. It is valuable, I think, to have an article describing these tools
that can also be cited as they are used and built upon in the community. I found the visual
description of the different transcript classification codes (Figure 1) particularly useful. I was able
to download and build the source easily according to the instructions in the respective README
files. In addition to the source and pre-compiled builds, it is worth noting that both GffRead and
GffCompare are available through Bioconda, though I am not sure if the authors of the current
manuscript are the Bioconda maintainers for these packages.

 Overall, the article is clear and describes the tools well. I have only very minor comments.

 pg 6: "produced by programs like StringTie in respect to" -> "produced by programs like
StringTie with respect to"

○

 I tried compiling both GffRead and GffCompare under multiple versions of G++. With
G++5.5.0, everything worked well with only two warnings (a strict overflow warning in
gfoAdd() and an unused variable warning for isCodonTableReady). However, when I
compiled with G++9.2.0, there were multiple warnings in the GVec class about potentially
incorrect uses of memset, which should actually not be an issue as the uses are present in a
branch that first checks that the type being set is "primitive". Peeking into the Makefile, I
noticed that a particular flag is set to disable this warning under newer versions of G++
(presumably, it does not occur in earlier versions). However, in the line of the makefile that
checks this, `g++` is hard-coded, rather than making use of the potentially modified `${CXX}`

○

Page 15 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

https://doi.org/10.5256/f1000research.25718.r62867
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

variable. Changing `g++` to `${CXX}` in the lines of the makefiles defining the `GCCV8`
variable resolved this behavior.

Finally, this is not an issue with the current manuscript, but rather a general note. In
addition to powering the GffRead and GffCompare tools, the Gff utilities source code
provides a powerful programmatic interface (API) to parse, manipulate and process GFF and
GTF files in the C++ language. If the authors feel it appropriate, a similar note or article
describing the features and capabilities of that library may be of interest to a related
(though admittedly smaller) part of the community.

○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 13 May 2020

https://doi.org/10.5256/f1000research.25718.r62863

© 2020 Love M. This is an open access peer review report distributed under the terms of the Creative Commons
Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the
original work is properly cited.

Michael I. Love
Department of Biostatistics, University of North Carolina-Chapel Hill, Chapel Hill, NC, USA

This software tool article motivates and describes the use of GffRead and GffCompare, two utility
programs for manipulating GFF and GTF files, including a comparison of one set of transcripts to a

Page 16 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

https://doi.org/10.5256/f1000research.25718.r62863
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-8401-0545

reference. The article is well written and clearly describes the use cases for the software. I have
downloaded the two programs onto a laptop running OS X and have used the precompiled
Mac binaries as well as building the tools from source. I ran GffRead to change a Gencode GTF file
to GFF, and to extract spliced transcript sequences from a genome FASTA. I ran GffCompare to
compare two Gencode releases of a GTF file. The programs were easy to run, took at most a few
minutes on a laptop (for comparison), and are both well documented. I have only minor
comments (spelling/formatting):

RNA-Seq is used twice, while RNA-seq is used once.

○

Table 1 has "(strand)" with a space (angle brackets not allowed in the report, so I use
parens).

○

Table 2 row two, column two has a line break.

○

Transfrags are defined in this article but not in the online documentation.

○

Under "Use Cases", there is a "fasta" not capitalized.

○

Under "Transcript accuracy estimation with GffCompare", perhaps "with respect to a known
reference annotation".

○

Under "Annotating transcripts with GffCompare", should be "this reference transcript".

○

Under "Tracking transcripts with GffCompare", "(input_file)" is italicized.

○

Is the rationale for developing the new software tool clearly explained?
Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: RNA-seq bioinformatics, biostatistics, open source scientific software

Page 17 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

development

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

Reviewer Report 12 May 2020

https://doi.org/10.5256/f1000research.25718.r62865

© 2020 Stroehlein A. This is an open access peer review report distributed under the terms of the Creative
Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium,
provided the original work is properly cited.

Andreas Stroehlein
Department of Veterinary Biosciences, Melbourne Veterinary School, Faculty of Veterinary and
Agricultural Sciences, The University of Melbourne, Parkville, Vic, Australia

The authors provide a concise and useful summary of two widely-used tools for genomic analysis,
GffRead and GffCompare. The paper is written well and provides clear guidelines and examples on
how to use those tools. I only have very minor suggestions and overall have no objections to this
work being approved for indexing:

Ref. 1: This is a great reference that describes the GFF3 format in detail. Nevertheless, I
think the present paper would benefit from a concise, technical summary of the format in
the Introduction section and maybe a sentence about issues surrounding different
definitions of the format and the availability of GFF3 validators.

○

Page 2, first paragraph, “rich GFF3 annotation files”: Does this mean “data-rich”? Maybe
reword to clarify. What does “rich” entail?

○

The same paragraph, “perform conversions from one from to another”: I think this is meant
to read” from one format to another”.

○

Page 6, “Basic usage example of the GffCompare utility”
This paragraph states that query input can be GFF or GTF (text says GFF and example uses a
GTF file), but Table 3 states for the -i option “provide a text file with a list of (query) GTF
files”. Could you please clarify whether the -i option also accepts GFF files (similar to the
description for -r option)?

○

Page 8, “The “super-locus” concept”, “When multiple GFF files with are provided as input to
GffCompare”: This seems to be a typo, or there is a word missing in the sentence? Remove
“with”?

○

Page 8, “Annotating transcripts with GffCompare”, 3rd line: Change “produce an GTF file
called” to “produce a GTF file called”.

○

Is the rationale for developing the new software tool clearly explained?

Page 18 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

https://doi.org/10.5256/f1000research.25718.r62865
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
http://orcid.org/0000-0001-9432-9816

Yes

Is the description of the software tool technically sound?
Yes

Are sufficient details of the code, methods and analysis (if applicable) provided to allow
replication of the software development and its use by others?
Yes

Is sufficient information provided to allow interpretation of the expected output datasets
and any results generated using the tool?
Yes

Are the conclusions about the tool and its performance adequately supported by the
findings presented in the article?
Yes

Competing Interests: No competing interests were disclosed.

Reviewer Expertise: Genomics, Bioinformatics, Parasitology

I confirm that I have read this submission and believe that I have an appropriate level of
expertise to confirm that it is of an acceptable scientific standard.

The benefits of publishing with F1000Research:

Your article is published within days, with no editorial bias•

You can publish traditional articles, null/negative results, case reports, data notes and more•

The peer review process is transparent and collaborative•

Your article is indexed in PubMed after passing peer review•

Dedicated customer support at every stage•

For pre-submission enquiries, contact research@f1000.com

Page 19 of 19

F1000Research 2020, 9:304 Last updated: 09 SEP 2020

mailto:research@f1000.com

