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A B S T R A C T   

Background: TNFRSF4 plays a significant role in cancer progression, especially in hepatocellular 
carcinoma (HCC). This study aims to investigate the prognostic value of TNFRSF4 expression in 
patients with HCC and to develop a predictive pathomics model for its expression. 
Methods: A cohort of patients with HCC retrieved from the TCGA database was analyzed using 
RNA-seq analysis to determine TNFRSF4 expression and its impact on overall survival (OS). 
Additionally, hematoxylin-eosin staining analysis was performed to construct a pathomics model 
for predicting TNFRSF4 expression. Then, pathway enrichment analysis was conducted, immune 
checkpoint markers were investigated, and immune cell infiltration was examined to explore the 
underlying biological mechanism of the pathomics score. 
Results: TNFRSF4 expression was significantly higher in tumor tissues than in normal tissues. 
TNFRSF4 expression also exhibited significant correlations with various clinical variables, 
including pathologic stage III/IV and R1/R2/RX residual tumor. Furthermore, elevated TNFRSF4 
expression was associated with unfavorable OS. Interestingly, in the subgroup analysis, elevated 
TNFRSF4 expression was identified as a significant risk factor for OS in male patients. The newly 
developed pathomics model successfully predicted TNFRSF4 expression with good performance 
and revealed a significant association between high pathomics scores and worse OS. In male 
patients, high pathomics scores were also associated with a higher risk of mortality. Moreover, 
pathomics scores were also involved in specific hallmarks, immune-related characteristics, and 
apoptosis-related genes in HCC, such as epithelial-mesenchymal transition, Tregs, and BAX 
expression. 
Conclusions: Our findings suggest that TNFRSF4 expression and the newly devised pathomics 
scores hold potential as prognostic markers for OS in patients with HCC. Additionally, gender 
influenced the association between these markers and patient outcomes.   
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1. Introduction 

Hepatocellular carcinoma (HCC) is a primary liver malignancy and ranks as the third leading cause of cancer-related deaths 
worldwide [1]. Despite the presence of effective treatment methods such as surgical resection and liver transplantation for patients 
with HCC, postoperative recurrence remains common [2]. Furthermore, current traditional prognostic indicators—i.e., clinical, 
pathological characteristics, diagnostic markers like alpha-fetoprotein (AFP), and imaging techniques (e.g., CT, MRI, ultrasound)—are 
not sufficient to meet the clinical demands of precision medicine [3]. Therefore, it is imperative to identify improved prognostic 
markers to guide clinical decision-making and identify high-risk patient subgroups [4]. 

TNF receptor superfamily member 4 (TNFRSF4), also known as OX40, is a co-stimulatory receptor expressed on activated T cells 
[5]. A previous study has suggested that this protein could inhibit cellular apoptosis via the PI3K/AKT signaling pathway [6]. Another 
study involving 1699 patients with HCC from six international multicenter cohorts found that the expression of the immune checkpoint 
TNFRSF4 was associated with infiltration of immune cells such as intra-tumoral B cells, CD4+/CD8+ T cells, and neutrophils, dis-
playing an "immune hot" tumor phenotype that is more responsive to immune checkpoint inhibitors [7]. Therefore, investigating the 
role of TNFRSF4 expression as a prognostic marker in HCC could provide valuable insights into the disease’s underlying biology and 
potentially guide therapeutic strategies. 

Currently, TNFRSF4 expression can be detected through various approaches. However, these methods have limitations in terms of 
accuracy, cost, and practicality. For instance, peripheral blood cytokine detection provides real-time information but is expensive and 
fails to reflect the actual tumor condition. Techniques such as qPCR, RNA-sequencing (RNA-seq), Western blotting analysis, and flow 
cytometry for mRNA and protein levels require fresh tissue specimens, which are challenging to collect and can be influenced by 
operator and antibody effects. Furthermore, detection based on paraffin-embedded tissue specimens, including immunohistochem-
istry, fluorescence, and high-throughput sequencing, also has limitations related to operators, antibodies, and cost. Hematoxylin-eosin 
(H&E) staining is routinely used for clinical diagnosis and provides easily accessible imaging data [8]. Moreover, advancements in 
artificial intelligence (AI) have revolutionized the field of pathology [9], exemplified by the emerging field of pathomics. This 
AI-driven approach converts pathological images into high-throughput data [10], offering the potential for predicting treatment 
outcomes, disease prognosis, and molecular expression in various cancers [11–13]. Specifically, in the context of HCC, pathomics 
analysis has yielded promising results by uncovering prognostic signatures and gene mutations [14,15]. Furthermore, pathomics 
models have demonstrated the capability to predict RNA-seq expression from whole slide images [16]. These findings suggest that AI 
analysis of H&E staining slides could facilitate the detection of TNFRSF4 expression. 

In light of the above, this study proposed an innovative approach to predict the expression of TNFRSF4 in HCC tissues using 
pathomics technology. Simultaneously, bioinformatics analysis was conducted to explore the molecular mechanisms underlying the 
newly devised pathomics score. 

2. Materials and methods 

2.1. Data collection and processing 

RNA-seq data from the TCGA-LIHC [liver hepatocellular carcinoma] project were downloaded and organized from the TCGA 
database (https://portal.gdc.cancer.gov) [17]. The data were obtained using the STAR [Spliced Transcripts Alignment to a Reference] 
pipeline, which is a widely used tool for aligning RNA-seq reads to a reference genome [18]. RNA-seq data were retrieved in the TPM 
[Transcripts Per Million] format, which provides normalized expression values. Besides, clinical information was collected, including 
ablation embolization, AFP, age, gender, hepatic inflammation, histologic grade, pathologic stage, pharmaceutical therapy, residual 
tumor, and vascular invasion. 

After obtaining the RNA-seq and clinical data, a rigorous sample selection and filtering process was performed. We specifically used 
01A tumor tissue samples for our study. In cases where there were duplicates, we utilized the average value to represent each patient’s 
transcriptional level, ensuring that each patient was represented by a single data point in our analysis. In total, we obtained data from 
377 liver cancer patients in the TCGA database. We then selected patients who met the following criteria: (1) newly diagnosed and 
untreated, (2) overall survival time greater than one month, and (3) available RNA-seq data. Exclusion criteria included samples with 
incomplete survival status or survival time data, survival times of less than a month, and lacking essential clinical data. After applying 
these filters, we included 295 patients in our study. Additionally, we retrieved high-quality pathological images for 339 cases from the 
TCGA-LIHC pathology database. The intersection of patients with available clinical data, high-quality pathological images, and RNA- 
seq data comprised a subset of 267 individuals. 

2.2. TNFRSF4 expression and prognostic analysis 

Differences in TNFRSF4 expression between tumor and normal tissues were determined using the Wilcoxon rank-sum test and 
visualized via the “ggplot2” package of R v4.2.1. The R package "survminer" was employed to determine the optimal cutoff value for 
TNFRSF4 expression. The cutoff value of 1587 was selected to classify patients into TNFRSF4 high- and low-expression groups. Then, 
the correlation between TNFRSF4 expression and clinical variables was assessed. Furthermore, "survminer" was utilized to summarize 
and visualize the results of survival analysis performed using the R package "survival". Log-rank test was conducted to determine the 
significance of differences in overall survival (OS) between groups. 

To assess the impact of these factors on OS, a univariate Cox regression analysis was conducted using the R packages “survival” and 
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“forestplot”. Hazard ratios (HRs) with corresponding 95 % confidence intervals (CIs) were calculated to estimate the strength and 
direction of the association. The significance level was set at α = 0.05. To account for potential confounding variables, a multivariate 
analysis was performed. 

To investigate the prognostic effect of TNFRSF4 expression in different subgroups of patients with HCC, subgroup analyses were 
performed using univariate Cox regression analysis with the “survival” R package. The TNFRSF4 high- and low-expression groups were 
compared within each subgroup. Furthermore, the potential interaction between TNFRSF4 expression and other covariates was 
examined using the "cmprsk" package in R. Moreover, Likelihood ratio tests were performed to assess the significance of the 
interactions. 

2.3. Image acquisition, segmentation, and feature extraction 

Histopathological tissue sections embedded in formalin and paraffin, in SVS format, were obtained by downloading pathological 
images from the TCGA database. The images were captured at either 20 × or 40 × magnifications [19,20]. 

The tissue regions of the pathological slides were obtained using the OTSU algorithm sourced from the OpenCV library (https:// 
opencv.org/). The OTSU algorithm, also referred to as the maximum interclass variance method, effectively performs image thresh-
olding by dividing the image into two distinct components: the undesired background and the essential tissue region for subsequent 
analysis [21]. For images at 40 × magnification, segmentation involved partitioning the images into multiple sub-images of 1024 ×
1024 pixels in size, whereas images at 20 × magnification were divided into sub-images of 512 × 512 pixels in size, which were 
subsequently upsampled to 1024 × 1024 pixels. Following segmentation, the pathologists reviewed the segmented sub-images to 
exclude those with deficient image quality, such as those with contamination, blurriness, or blank areas exceeding 50 %. A total of 20 
random sub-images were selected from each pathological image for further analysis. 

The PyRadiomics open-source package (https://pyradiomics.readthedocs.io/en/latest/) was employed to standardize the sub- 
images and extract a comprehensive set of 93 original features, encompassing both first- and second-order features. In addition, 
high-order features such as Wavelet (LL, LH, HL, HH), LoG (kernel size: 1, 2, 3, 4, 5), Square, SquareRoot, Logarithm, Exponential, 
Gradient, and LBP2D were extracted. This resulted in a total of 1488 features. To ensure robustness, features of 10 sub-images were 
individually extracted for each patient, and the corresponding average values were subsequently calculated. These average values 
served as the histopathological features for each sample, thereby facilitating subsequent data analysis [12,22,23]. 

2.4. Dataset partitioning 

The dataset was randomly divided into training and validation sets in a 7:3 ratio using the “caret” package in R. The histopath-
ological features extracted by the “pyradiomics” package, comprising a total of 1488 features, were normalized by z-score within the 
training set. Subsequently, the validation set was standardized using the mean and standard deviation values obtained from the 
training set. To analyze intergroup differences in clinical variables between the training and validation sets, the “CBCgrps” package in 
R was utilized. 

2.5. Feature selection 

To improve the analysis outcomes and reduce dataset dimensionality, a feature selection process was conducted. First, features 
with zero variance were removed as they lacked discriminatory information. Next, to reduce redundancy and multicollinearity, one 
feature from each highly correlated pair (correlation coefficient >0.9) was removed. To determine the optimal feature subset, the 
minimum Redundancy Maximum Relevance (mRMR) and Recursive Feature Elimination (RFE) algorithms were employed, using the 
“mRMRe” package in R [24]. These algorithms select features with high relevance to the target variable while minimizing redundancy. 

2.6. Model construction and evaluation 

The “caret” package in R was utilized to construct a gradient boosting model (GBM) for predicting TNFRSF4 expression based on 
the selected pathomics features. GBM is a popular ensemble machine learning algorithm known for its predictive performance. In this 
study, it operates by training a sequence of weak classifiers, each informed by the negative gradient of the current model’s loss 
function, and sequentially integrates these trained classifiers in an additive manner to construct the predictive model. We chose GBM 
for its robustness and effectiveness in handling various types of data, including non-linear and complex interactions between features. 
Additionally, GBM has been shown to perform well with imbalanced datasets, which is particularly relevant to biomedical research 
where certain classes of data may be underrepresented. The advantages of using GBM in our pathomics model include its ability to 
model complex interactions between features, handle missing data, and provide importance scores for each feature, thereby providing 
useful insights into the underlying biological mechanisms. Moreover, GBM tends not to require extensive data preprocessing, such as 
normalization or scaling, and is less sensitive to outliers in the data than other algorithms. In our application, the GBM model was 
tuned using a grid search approach to optimize hyperparameters, including the number of trees, tree depth, learning rate, and sub-
sample size. The final model was then cross-validated to ensure generalizability and prevent overfitting. The performance of the 
developed GBM model was assessed using various evaluation metrics. The classification ability of the model was evaluated by plotting 
a receiver operating characteristic (ROC) curve using the “pROC” package in R. The ROC curve helps in assessing the trade-off between 
sensitivity and specificity at various thresholds. In addition to the ROC curve, the precision-recall (PR) curve was employed to evaluate 
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the performance of the predictive model. The PR curve demonstrates the relationship between precision (positive predictive value) and 
recall (sensitivity) across different classification thresholds. The PR curve can provide a more comprehensive evaluation in scenarios 
where class imbalance exists. To evaluate the calibration of the predictive model, a calibration curve was plotted using the “rms” 
package in R. Additionally, the Hosmer-Lemeshow goodness-of-fit test was conducted using the “ResourceSelection” package to assess 
the calibration of the predictive model. To demonstrate the potential clinical utility of the predictive model, a decision curve analysis 
(DCA) was performed using the “rmda” package. The DCA curve illustrates the net benefit of the predictive model in a clinical context. 

2.7. Pathomics score analysis 

The model provided a probability value, herein referred to as the “pathomics score”. To investigate the differences in pathomics 
scores between TNFRSF4 high- and low-expression groups, statistical analysis using the “ggpubr” package in R was performed. 

To further analyze the relationship between the pathomics score and various clinical variables, a cutoff value for the pathomics 
score using the “survminer” package in R was determined. The cutoff value was set at 0.373, which divided the patients into two 
groups: the high-pathomics score group (n = 158) and the low-pathomics score group (n = 109). 

To assess the correlation between the pathomics score and different clinical variables, the “survminer” package in R was used. 
Kaplan-Meier survival curves were plotted to demonstrate the relationship between different groups for each variable (such as 
pathomics score) and patient survival. Log-rank test was conducted to examine the statistical significance of survival differences 
between the groups. 

The impact of the pathomics score and clinical variables on OS was assessed via univariate and multivariate Cox regression analyses 
using the R packages “survival” and “forestplot”. To investigate the prognostic effect of the pathomics score in different subgroups of 
patients with HCC, subgroup analyses were performed using univariate Cox regression analysis with the “survival” package in R. The 
high- and low-pathomics score groups were compared within each subgroup. Furthermore, the potential interaction between the 
pathomics score and other covariates was examined using the "cmprsk" package in R. Likelihood ratio tests were performed to assess 
the significance of the interactions. 

2.8. Gene set enrichment analysis (GSEA) 

After dividing the samples into high- and low-pathomics score groups, a differential gene analysis was conducted to explore the 
differences between these groups. GSEA was employed to identify significantly enriched Kyoto Encyclopedia of Genes and Genomes 
(KEGG) and Hallmark gene sets within either the high- or low-pathomics score group [25]. The KEGG gene set contains a collection of 
known biological pathways, while the Hallmark gene set represents a curated set of gene sets that reflect specific biological states or 
signaling pathways. To visualize the enriched pathways from the GSEA analysis, the top 20 pathways ranked by their enrichment 

Fig. 1. Analysis flowchart.  
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scores were selected for visualization. 

2.9. Correlation analysis of immune checkpoint expression, immune cell infiltration, and apoptosis-related gene expression 

The Spearman correlation analysis was performed to assess the relationship between the pathomics score and the expression of 
immune checkpoint markers. 

To evaluate immune cell infiltration in each sample, the RNA-seq expression matrix was uploaded to the CIBERSORTx website 
(https://cibersortx.stanford.edu/). This database utilizes computational algorithms to estimate the proportions of immune cell types 
within a given sample [26]. Correlation analysis between the pathomics score and immune cell infiltration was conducted using the 
“corrplot” package in R. 

To explore the differential expression of apoptosis-related genes between the high- and low-pathomics score groups, a statistical 
analysis using the Wilcoxon rank-sum test was performed. 

2.10. Statistical analysis 

All statistical analyses were performed using R v4.1.0 and its relevant packages. Descriptive statistics were used to summarize the 
patient characteristics and clinical variables. Student’s t-test or Mann-Whitney U test was applied for continuous variables, and chi- 
square or Fisher’s exact test was used for categorical variables, as appropriate. Statistical significance was defined as P < 0.05. 

Fig. 2. Expression and prognosis value of TNFRSF4 and other clinical variables. A, TNFRSF4 expression differences between hepatocellular car-
cinoma (HCC) tissues and normal tissues. B–H, Kaplan-Meier analysis demonstrating a significant association between worsened overall survival 
(OS) and high expression of TNFRSF4 (B), unknown ablation embolization (C), unknown AFP (D), unknown hepatic inflammation (E), pathologic 
stage III/IV (F), R1/R2/RX residual tumor (G), and unknown vascular invasion (H). ***, P < 0.001. 
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3. Results 

3.1. Study cohort and data integrity 

The analysis flowchart in Fig. 1. To ensure the integrity and relevance of the data for our study, rigorous inclusion and exclusion 
criteria were applied. This yielded a final set of 295 samples for RNA-seq analysis and 267 samples for pathology image analysis. 
Subsequent analysis showed a significantly higher TNFRSF4 expression in tumor tissues than in normal tissues (Fig. 2A). Based on a 
cutoff value of 1.587 for TNFRSF4 expression, the patients were divided into two groups: TNFRSF4 high-expression group (n = 128) 
and TNFRSF4 low-expression group (n = 167). The distribution of vascular invasion showed a significant difference between the 
TNFRSF4 high-expression group and the TNFRSF4 low-expression group (P = 0.006, Table 1). 

3.2. Prognostic significance of TNFRSF4 expression 

A Kaplan-Meier curve was used to illustrate the relationship between several factors (including TNFRSF4 expression and clinical 
variables) and OS in the studied cohort. Elevated TNFRSF4 expression was found to be a prognostic marker for unfavorable OS 
(Fig. 2B). The results showed a median OS time of 84.7 months for the TNFRSF4 low-expression group, as well as 46.2 months for the 
TNFRSF4 high-expression group. Moreover, unknown ablation embolization (Fig. 2C), unknown AFP (Fig. 2D), unknown hepatic 
inflammation (Fig. 2E), pathological Stage III/IV (Fig. 2F), R1/R2/RX residual tumor (Fig. 2G), and unknown vascular invasion 
(Fig. 2H) were significantly correlated with a deterioration in OS, suggesting their potential as predictive biomarkers in patients with 
HCC. However, No correlation between age, gender, histologic grade, pharmaceutical therapy, and OS was observed (Fig. S1). 

3.3. Risk factors for overall survival 

Univariate Cox regression analysis revealed multiple risk factors for OS. High TNFRSF4 expression was shown to be a risk factor for 
OS (HR = 1.939, 95 % CI 1.307− 2.877, P = 0.001), even after adjustment for multiple factors (HR = 1.803, 95 % CI 1.173− 2.773, P =
0.007). Additionally, pathological Stage III/IV was identified as a risk factor for OS in the univariate analysis (HR = 2.679, 95 % CI 
1.802− 3.982, P < 0.001), which remained after adjustment for multiple factors (HR = 2.614, 95 % CI 1.697− 4.025, P < 0.001). 

Table 1 
The association of TNFRSF4 and clinical variables.  

Variables Total (n = 295) Low (n = 167) High (n = 128) p 

Gender, n (%)    0.055 
Female 92 (31) 44 (26) 48 (38)  
Male 203 (69) 123 (74) 80 (62)  

Age, n (%)    1 
~59 142 (48) 80 (48) 62 (48)  
60~ 153 (52) 87 (52) 66 (52)  

AFP, n (%)    0.277 
~399 159 (54) 89 (53) 70 (55)  
400~ 74 (25) 47 (28) 27 (21)  
Unknown 62 (21) 31 (19) 31 (24)  

Pathologic_stage, n (%)    0.796 
I/II 220 (75) 126 (75) 94 (73)  
III/IV 75 (25) 41 (25) 34 (27)  

Histologic_grade, n (%)    0.482 
G1/G2 183 (62) 107 (64) 76 (59)  
G3/G4 112 (38) 60 (36) 52 (41)  

Ablation_embolization, n (%)    0.251 
NO 224 (76) 127 (76) 97 (76)  
Unknown 50 (17) 25 (15) 25 (20)  
YES 21 (7) 15 (9) 6 (5)  

Vascular_invasion, n (%)    0.006 
None 167 (57) 108 (65) 59 (46)  
Micro/Macro 88 (30) 40 (24) 48 (38)  
Unknown 40 (14) 19 (11) 21 (16)  

Hepatic_inflammation, n (%)    0.18 
None 101 (34) 62 (37) 39 (30)  
Mild/Severe 100 (34) 59 (35) 41 (32)  
Unknown 94 (32) 46 (28) 48 (38)  

Pharmaceutical_therapy, n (%)    0.851 
NO 265 (90) 151 (90) 114 (89)  
YES 30 (10) 16 (10) 14 (11)  

Residual_tumor, n (%)    0.64 
R0 273 (93) 153 (92) 120 (94)  
R1/R2/RX 22 (7) 14 (8) 8 (6)   
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Further, the presence of residual tumor R1/R2/RX emerged as a risk factor for OS (HR = 2.631, 95 % CI 1.398− 4.953, P = 0.003), 
which also remained after adjustment for multiple factors (HR = 2.271, 95 % CI 1.086− 4.749, P = 0.029) (Fig. 3). 

3.4. Gender-specific analysis 

In the subgroup analysis, elevated TNFRSF4 expression was identified as a significant risk factor for OS in males (HR = 2.542, 95 % 
CI 1.538− 4.2, P < 0.001) but not in females (HR = 1.142, 95 % CI 0.624− 2.092, P = 0.67). Furthermore, a significant interaction was 
observed between gender and the association of TNFRSF4 expression with patient OS (P = 0.047) (Fig. 4). 

3.5. Data preprocessing for HCC pathological images 

HCC histopathological images were obtained from the TCGA database (Fig. 5A) and subjected to segmentation, preprocessing, and 
feature extraction (Fig. 5B). The dataset was then split into a training set (188 cases) and a validation set (79 cases) in a 7:3 ratio. 

To assess the comparability between the training and validation sets, an intergroup differences analysis was conducted. The results 
demonstrated an insignificant difference for each clinical variable (P > 0.05), indicating similar baseline characteristics of patients in 
both sets. This similarity assures comparability between the two sets (Table 2). 

Furthermore, the mRMR and RFE methods were utilized to screen relevant features. These methods independently identified the 
top 30 features based on their respective criteria (Fig. 6A). To determine the most robust and informative set of features, the inter-
section of the top 30 features for both the mRMR and RFE methods was selected. As a result, four features were obtained, which 
demonstrated consistent importance across both methods (Fig. 6B). 

3.6. Pathomics model and its performance 

To predict TNFRSF4 expression, a pathomics model that demonstrated good predictive performance was constructed. As shown in 
the PR curves, the model achieved an area under the curve (AUC) value of 0.773 in the training set (Fig. 6C) and 0.638 in the validation 
set (Fig. 7A). Similarly, based on the ROC curves, the model achieved an AUC value of 0.787 in the training set (Fig. 6D) and 0.723 in 
the validation set (Fig. 7B). Additionally, the calibration curve and Hosmer-Lemeshow goodness-of-fit test indicated consistency 
between the predicted probabilities of high gene expression by the predictive model and the actual values (P > 0.05) (Figs. 6E and 7C). 
This indicates that the model accurately predicts high expression of TNFRSF4. Furthermore, the DCA curve demonstrated a high degree 
of clinical utility of the model, as depicted in Figs. 6F and 7D. 

Fig. 3. Comprehensive univariate and multivariate Cox regression analyses of the correlation between TNFRSF4 expression and clinical variables 
with OS. Each risk factor’s hazard ratio (HR), 95 % confidence interval (95 % CI), and the corresponding statistical significance (P-value) are 
represented. 

Z. Yan et al.                                                                                                                                                                                                            



Heliyon 10 (2024) e31882

8

3.7. Pathomics score characteristics 

The pathomics score distribution significantly differed between TNFRSF4 high- and low-expression groups, both in the training and 
validation sets. In the TNFRSF4 high-expression group, the pathomics scores were higher (Figs. 6G and 7E). Moreover, no significant 
differences in the distribution of clinical variables were observed between the high- and low-pathomics score groups, as shown in 
Table 3. This suggests that the difference in pathomics scores is primarily attributed to the expression of TNFRSF4. 

Furthermore, the median OS in the high-pathomics score group was 52 months compared to 82.87 months in the low-pathomics 

Fig. 4. Subgroup analysis of TNFRSF4 expression and overall survival (OS) stratified by ten clinical variables.  

Fig. 5. Representative examples of histopathological hematoxylin-eosin (H&E)-stained images and patch segmentation. A, Histopathological H&E 
slides showing tissue morphology. B, Visualization of the image patch segmentation, demonstrating the subdivision of the image into 
smaller patches. 
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score group. The Kaplan-Meier curve analysis demonstrated a significant association between high pathomics scores and worse OS 
(Fig. 7F). This indicates that patients with high pathomics scores have a poorer prognosis than those with low pathomics scores. 

The results of the univariate Cox regression analysis revealed a high pathomics score as a risk factor for OS (HR = 1.579, 95 % CI 
1.029− 2.422, P = 0.036). After adjustment for multiple factors, the high pathomics score remained a significant risk factor for OS (HR 
= 1.94, 95 % CI 1.206− 3.123, P = 0.006). Additionally, independent risk factors for OS included pathologic stage III/IV (HR = 2.546, 
95 % CI 1.634− 3.967, P < 0.001), histologic grade G3/G4 (HR = 1.618, 95 % CI 1.033− 2.532, P = 0.035), and residual tumor R1/R2/ 
RX (HR = 3.293, 95 % CI 1.557− 6.962, P = 0.002) (Fig. 8). 

In the subgroup analysis, an elevated pathomics score was identified as a significant risk factor for OS in male patients (HR = 2.437, 
95 % CI 1.319− 4.501, P = 0.004). Furthermore, the interaction test indicated a significant interaction between gender and the as-
sociation of the pathomics score with patient OS (P = 0.012) (Fig. 9). 

In the KEGG gene set, the differentially expressed genes in the low-pathomics score group were significantly enriched in signaling 
pathways such as the WNT pathway (Fig. 10A). Conversely, in the Hallmark gene set, the differentially expressed genes in the high- 
pathomics score group were significantly enriched in signaling pathways associated with epithelial-mesenchymal transition (EMT). By 
contrast, the differentially expressed genes in the low-pathomics score group were significantly enriched in the PI3K-AKT-mTOR 
signaling pathway (Fig. 10B). 

A significant positive correlation was observed between the pathomics score and the expression of immune checkpoint markers, 
including TNFRSF4 (Fig. 11A). Additionally, we investigated the immune cell infiltration in HCC and observed a significant positive 
correlation between the pathomics score and the extent of T regulatory cell (Tregs) infiltration (Fig. 11B). Lastly, in the high-pathomics 
score group, a significant upregulation in the expression of BAX and BIRC3 was observed (Fig. 11C). These findings suggest a potential 
association between the pathomics score and immune-related characteristics in HCC. 

Table 2 
The clinical variables in training set and test set.  

Variables Total (n = 267) Train (n = 188) Validation (n = 79) p 

TNFRSF4, n (%)    1 
Low 153 (57) 108 (57) 45 (57)  
High 114 (43) 80 (43) 34 (43)  

Gender, n (%)    0.669 
Female 81 (30) 59 (31) 22 (28)  
Male 186 (70) 129 (69) 57 (72)  

Age, n (%)    0.153 
~59 129 (48) 85 (45) 44 (56)  
60~ 138 (52) 103 (55) 35 (44)  

AFP, n (%)    0.731 
~399 138 (52) 99 (53) 39 (49)  
400~ 69 (26) 46 (24) 23 (29)  
Unknown 60 (22) 43 (23) 17 (22)  

Pathologic_stage, n (%)    0.623 
I/II 203 (76) 145 (77) 58 (73)  
III/IV 64 (24) 43 (23) 21 (27)  

Histologic_grade, n (%)    0.053 
G1/G2 164 (61) 123 (65) 41 (52)  
G3/G4 103 (39) 65 (35) 38 (48)  

Ablation_embolization, n (%)    0.413 
NO 203 (76) 146 (78) 57 (72)  
Unknown 45 (17) 28 (15) 17 (22)  
YES 19 (7) 14 (7) 5 (6)  

Vascular_invasion, n (%)    0.182 
Micro/Macro 76 (28) 56 (30) 20 (25)  
None 153 (57) 110 (59) 43 (54)  
Unknown 38 (14) 22 (12) 16 (20)  

Hepatic_inflammation, n (%)    0.665 
Mild/Severe 86 (32) 61 (32) 25 (32)  
None 93 (35) 68 (36) 25 (32)  
Unknown 88 (33) 59 (31) 29 (37)  

Pharmaceutical_therapy, n (%)    0.828 
NO 240 (90) 168 (89) 72 (91)  
YES 27 (10) 20 (11) 7 (9)  

Residual_tumor, n (%)    0.722 
R0 246 (92) 172 (91) 74 (94)  
R1/R2/RX 21 (8) 16 (9) 5 (6)  

OS, n (%)    0.847 
Alive 173 (65) 123 (65) 50 (63)  
Dead 94 (35) 65 (35) 29 (37)  
OS.time, Median (Q1,Q3) 20.7 (12.3, 42.77) 20.95 (12.72, 46.79) 20.5 (12.07, 36.17) 0.415  
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4. Discussion 

HCC is the most common type of liver cancer that exhibits aggressive growth and poor prognosis [27]. The present study inves-
tigated the implications of TNFRSF4 expression in patients with HCC and developed a pathomics model to predict its expression. Our 
results demonstrated that TNFRSF4 expression and pathomics scores were risk factors for OS in patients with HCC. Moreover, 
pathomics scores were related to the immune microenvironment and apoptosis in HCC. The findings might provide insights into 
potential prognostic markers and therapeutic targets for HCC. 

Our results demonstrated that elevated TNFRSF4 expression was associated with a significant reduction in OS in the HCC popu-
lation. This finding supports previous research that has indicated TNFRSF4 expression as a prognostic marker in various cancers, 

Fig. 6. Analysis of feature selection and model performance. A, Top 30 features identified by mRMR and RFE methods independently. B, Final set of 
four features consistently identified as important by both methods. C, Precision-recall (PR) curves showing the model’s predictive performance in 
the training set, with an area under the curve (AUC) value of 0.773. D, Receiver operating characteristic (ROC) curves depicting the model’s 
performance in the training set, yielding an AUC value of 0.787. E, Calibration curve and Hosmer-Lemeshow goodness-of-fit test indicating the 
consistency between predicted probabilities of high TNFRSF4 expression and actual values. F, Decision curve analysis (DCA) displaying the clinical 
utility of the model. G, Distribution of pathomics scores in the TNFRSF4 high- and low-expression groups in the training set. ****, P < 0.0001. 
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including HCC [28,29]. The association between TNFRSF4 expression and OS remained significant even after adjusting for multiple 
clinical factors, indicating that TNFRSF4 expression can independently predict patient outcomes. These results are consistent with 
previous studies that have reported TNFRSF4 expression as an independent risk factor for poor survival in patients with cancer [30,31]. 
Moreover, our subgroup analysis revealed a significant interaction between gender and the association of TNFRSF4 expression with OS 
in patients with HCC. Specifically, elevated TNFRSF4 expression was found to be a significant risk factor for OS in male patients but not 
in female patients. This gender-specific difference in the prognostic value of TNFRSF4 expression may be attributed to hormonal and 
molecular differences between men and women [32]. 

The mechanism via which TNFRSF4 may contribute to HCC progression and worse outcomes in patients could be multifactorial. 
First, the activation of TNFRSF4 can lead to the proliferation of effector T cells, which, in a cancerous environment, could contribute to 
an immunosuppressive tumor microenvironment through the expansion of Tregs [33]. Our study observed increased TNFRSF4 
expression correlating with the presence of Tregs, suggesting that TNFRSF4 may facilitate an immune escape mechanism for HCC. 
Second, pathway enrichment analysis revealed associations between TNFRSF4 expression and genes involved in EMT. EMT is a process 
via which epithelial cells lose their cell polarity and adhesion, gaining migratory and invasive properties and contributing to cancer 
metastasis [34]. The link between TNFRSF4 expression and EMT markers might shed light on the aggressive behavior of HCC in 
patients with high TNFRSF4 levels. Furthermore, our study found a significant correlation between TNFRSF4 expression and 
apoptosis-related genes, such as BAX. The balance between cell proliferation and apoptosis is critical to cancer development. Thus, the 
observed correlation suggests that TNFRSF4 may be involved in the dysregulation of apoptosis in HCC. 

Pathomics is a thriving research field. In the context of HCC, significant research achievements have been made utilizing AI al-
gorithms. Cheng et al. [35] developed four different deep-learning models to assist pathologists in classifying HCC nodular lesions. 
Saillard et al. [36] employed whole slide images and established two deep-learning algorithms to predict the prognosis of patients with 
HCC after surgical resection. Chen et al. [37] utilized a multiple-instance learning model to evaluate the microvascular invasion status 
of patients with HCC on H&E-stained histopathology slide images. Through establishing a pathomics model for predicting TNFRSF4 

Fig. 7. Validation of model performance and clinical correlations. A, Precision-recall (PR) curves illustrating the model’s performance in the 
validation set, with an area under the curve (AUC) value of 0.638. B, Receiver operating characteristic (ROC) curves representing the model’s 
performance in the validation set, resulting in an AUC value of 0.723. C, Calibration curve and Hosmer-Lemeshow goodness-of-fit test showing the 
consistency between predicted probabilities of high gene expression and actual values in the validation set. D, Decision curve analysis (DCA) 
demonstrating the clinical utility of the model in terms of decision-making. E, Distribution of pathomics scores in the TNFRSF4 high- and low- 
expression groups in the validation set. F, Kaplan-Meier curve analysis demonstrating a significant association between high pathomics scores 
and worse overall survival (OS). ***, P < 0.001. 
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expression, this study investigated the impact of pathomics scores on OS in patients with HCC. Our results showed that high pathomics 
scores were associated with a worse prognosis, consistent with previous studies suggesting the prognostic value of pathomics scores in 
different cancers [38,39]. Furthermore, the association between pathomics scores and OS remained significant after adjusting for 
multiple clinical factors, highlighting the independent prognostic value of pathomics scores in HCC. Similarly, the subgroup analysis 
revealed a significant interaction between gender and the association of pathomics scores with OS. 

Our study also explored the underlying molecular pathways associated with different pathomics scores in HCC. The enrichment 
analysis revealed that differentially expressed genes in the high-pathomics score group were significantly associated with EMT, a 
critical process involved in cancer metastasis and drug resistance [40]. This finding suggests that high pathomics scores may reflect a 
more aggressive phenotype characterized by increased EMT. Moreover, differentially expressed genes in the low-pathomics score 
group were enriched in the PI3K-AKT-mTOR signaling pathway, which has been implicated in HCC progression and represents a 
potential therapeutic target [41,42]. 

Furthermore, our study identified a significant positive correlation between pathomics scores and immune checkpoint marker 
expression, particularly TNFRSF4. This finding suggests that high pathomics scores may be associated with immune evasion and 
immunosuppression in HCC. Notably, an increase in Tregs infiltration was observed in patients with high pathomics scores. Tregs play 
a crucial role in immune tolerance and tumor immune escape, which can contribute to tumor progression and poor prognosis [43,44]. 
The immune-related characteristics associated with pathomics scores support the growing interest in immunotherapy as a potential 
treatment strategy for HCC [45]. Moreover, the elevated apoptosis-related genes in the high-pathomics score group indicate its po-
tential involvement in cellular apoptosis. 

While our study provides important insights into the implications of TNFRSF4 expression and pathomics scores in HCC, the 
following limitations should be acknowledged. First, our study relied on publicly available datasets, which may introduce selection 
bias and limit the generalizability of our findings. Second, the retrospective nature of the study limits our ability to establish causality 
between TNFRSF4 expression, pathomics scores, and patient outcomes. Prospective studies with larger cohorts are needed to confirm 
our findings and evaluate the clinical utility of TNFRSF4 expression and pathomics scores as prognostic markers in HCC. 

5. Conclusions 

In conclusion, our study demonstrated that elevated TNFRSF4 expression and high pathomics scores are associated with 

Table 3 
The association of pathomics score and clinical variables.  

Variables Total (n = 267) Low (n = 109) High (n = 158) p 

Gender, n (%)    0.141 
Female 81 (30) 39 (36) 42 (27)  
Male 186 (70) 70 (64) 116 (73)  

Age, n (%)    0.59 
~59 129 (48) 50 (46) 79 (50)  
60~ 138 (52) 59 (54) 79 (50)  

AFP, n (%)    0.399 
~399 138 (52) 60 (55) 78 (49)  
400~ 69 (26) 29 (27) 40 (25)  
Unknown 60 (22) 20 (18) 40 (25)  

Pathologic_stage, n (%)    0.635 
I/II 203 (76) 85 (78) 118 (75)  
III/IV 64 (24) 24 (22) 40 (25)  

Histologic_grade, n (%)    0.099 
G1/G2 164 (61) 60 (55) 104 (66)  
G3/G4 103 (39) 49 (45) 54 (34)  

Ablation_embolization, n (%)    0.593 
NO 203 (76) 86 (79) 117 (74)  
Unknown 45 (17) 17 (16) 28 (18)  
YES 19 (7) 6 (6) 13 (8)  

Vascular_invasion, n (%)    0.056 
None 153 (57) 69 (63) 84 (53)  
Micro/Macro 76 (28) 31 (28) 45 (28)  
Unknown 38 (14) 9 (8) 29 (18)  

Hepatic_inflammation, n (%)    0.304 
None 93 (35) 43 (39) 50 (32)  
Mild/Severe 86 (32) 30 (28) 56 (35)  
Unknown 88 (33) 36 (33) 52 (33)  

Pharmaceutical_therapy, n (%)    0.146 
NO 240 (90) 102 (94) 138 (87)  
YES 27 (10) 7 (6) 20 (13)  

Residual_tumor, n (%)    0.668 
R0 246 (92) 99 (91) 147 (93)  
R1/R2/RX 21 (8) 10 (9) 11 (7)   
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Fig. 8. Comprehensive univariate and multivariate Cox regression analyses of the correlation between pathomics scores and clinical variables with 
overall survival (OS). Each risk factor’s hazard ratio (HR), 95 % confidence interval (CI), and the corresponding statistical significance (P-value) are 
represented. 

Fig. 9. Subgroup analysis of pathomics scores and overall survival (OS) stratified by ten clinical variables.  
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unfavorable outcomes in patients with HCC. TNFRSF4 expression and pathomics scores may serve as independent prognostic markers 
and guide personalized treatment strategies in HCC. Further research is warranted to validate our findings and explore the mechanisms 
underlying the association between TNFRSF4 expression, pathomics scores, and patient outcomes in HCC. 
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TNFRSF4 TNF receptor superfamily member 4 
RNA-seq RNA-sequencing 
H&E Hematoxylin-eosin 
AI Artificial intelligence 
HRs Hazard ratios 
CIs Confidence intervals 
GBM Gradient boosting model 
ROC: Receiver operating characteristic 

Fig. 11. Correlation analysis of pathomics score with immune microenvironment and apoptosis. A, Positive correlation between the pathomics 
score and the expression of immune checkpoint markers. B, Positive correlation between the pathomics score and immune cell infiltration. C, 
Apoptosis-related gene expression between low- and high-pathomics score groups. *, P < 0.05; **, P < 0.01. 
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PR Precision-recall 
DCA Decision curve analysis 
GSEA Gene Set Enrichment Analysis 
KEGG Kyoto Encyclopedia of Genes and Genomes 
AUC Area under the curve 
EMT Epithelial-mesenchymal transition 
Tregs T regulatory cell 
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