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Background. Manual analysis of tissue sections, such as for pathological diagnosis, requires an analyst with substantial knowledge
and experience. Reproducible image analysis of biological samples is steadily gaining scientific importance. The aim of the present
study was to employ image analysis followed by machine learning to identify vascular endothelial growth factor (VEGF) in
kidney tissue that had been subjected to hypoxia. Methods. Light microscopy images of renal tissue sections stained for
VEGF were analyzed. Subsequently, machine learning classified the cells as VEGF+ and VEGF- cells. Results. VEGF was
detected and cells were counted with high sensitivity and specificity. Conclusion. With great clinical, diagnostic, and research
potential, automatic image analysis offers a new quantitative capability, thereby adding numerical information to a mostly
qualitative diagnostic approach.

1. Introduction

The manual analysis of tissue sections, such as the analysis
performed for pathological diagnosis, requires an analyst
with substantial knowledge and experience [1, 2]. Usually,
the tissue sections are stained to unequivocally identify
nuclei and cytoplasm [3]. In most biological tissue analyses,
e.g., immunohistochemistry, cells are counted manually [4].

However, manual tissue analysis and cell counting are
considered subjective, tedious, and time consuming, result-
ing in intra-analyst variance [4–8]. In pathology, a rather
qualitative diagnostic science, the need for quantitative anal-
ysis of histopathological images has been recognized [9], and
pathologists have been aiming to combine the quantitative
nature of the analysis with reproducibility and precision [10].

For biological analyses of tissue, many cells should be
observed to correlate a certain cellular morphology with a

biological process. In terms of image analysis of biological
samples, many images are needed [11]. The importance of
reproducible image analysis of biological samples, i.e., an
automated process for identifying objects of interest and
performing a subsequent quantitative per-object analysis, is
steadily being recognized by the scientific community [11, 12].

The use of software for automated analysis of tissue
enables fast analysis and cell counting [4]. The available
software includes CellProfiler (CP) and CellProfiler Analyst
(CPA) for image analysis and statistical processing, respec-
tively. Both programs are freely available. CP allows auto-
mated cellular identification and the analysis of hundreds
of parameters to gain a plethora of information about
intensity, morphology, and texture [13]. Furthermore, the
software offers simultaneous analysis of different images
(Carpenter et al., 2006) and a reproducible analysis [14,
15]. The CPA software has a machine learning-based

Hindawi
Journal of Immunology Research
Volume 2019, Article ID 7232781, 7 pages
https://doi.org/10.1155/2019/7232781

http://orcid.org/0000-0001-6932-401X
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2019/7232781


classifier that can be used, e.g., to identify and count different
cell types or cells in different phases of the cell cycle [13].

The classification and subsequent counting of cells
using machine learning are steadily gaining scientific atten-
tion [16]. As a further advantage, the use of open software
allows the verification of results by almost every laboratory
in the world [17].

The aim of the present study was to employ image
analysis and subsequent machine learning to identify vas-
cular endothelial growth factor (VEGF) in kidney tissue
that had been subjected to hypoxia.

2. Methods

2.1. Ethical Approvement and Consent. Ethical approval was
obtained by the Federal University of Espírito Santo (UFES)
(CEUA/UFES (Protocol no. 050/2013)).

2.2. Preparation of Slides

2.2.1. Immunohistochemistry Staining. Four-micrometer
serial paraffin sections of the kidney were stained with
monoclonal mouse anti-rat VEGF (ab1316) antibody
(Abcam, UK, 1 : 200). The staining was visualized with the
peroxidase reaction with 3,3′-diaminobenzidine tetrahydro-
chloride (DAB; Sigma Chemical Co., USA). The specimens
were then lightly counterstained with Mayer’s hematoxylin,
dehydrated, and mounted in xylene under glass cover slips.
The human placenta was used for the positive control
sample, while the sample material incubated with antibody
diluent only was used for the negative control.

2.2.2. Material. Seven slides with tissue sections were used
for the present study. The tissue was hypoxic kidney
tissue sections of Wistar rats that had been subjected
to hypoxia.

2.2.3. Animals. The rats were randomly divided for the
experimental set-up (control or sham and hypoxic kidneys).
During the entire experiment, the cages were housed in a
controlled environment: temperature (20-22°C), light/dark
cycle (12 h), and ventilation at UFES animal facility. The
animals had free access (ad libitum) to water and food
(Labina, Purina®).

In order to induce hypoxia, intraperitoneal (ip) admin-
istration of ketamine and xylazine (1.0ml/kg) was given
according to the weight of each animal. Once the pain
reflexes were absent (tested by squeezing the toes with
tweezers), the rat was placed on a temperature-controlled
heating surgical table (37°C) and had its arms and legs fixed
by tapes. Immediately before the operation, Temgesic® (sc)
was administrated (0.1mg/kg). Following disinfection and
shaving of the skin, an incision of approximately 2.0 cm
was made in the abdomen. The visceral organs were placed
by side and covered with surgical gaze moisture in NaCl
0.9%. The kidney was carefully exposed and decapsulated,
and the entire renal pedicle (artery, vein, and nerve) was
gently isolated from the adjacent tissues close to its
take-off from the abdominal aorta with fine 45° angled for-
ceps (tip width 0.40mm, 9 cm) and fine curved serrated
forceps (tip width 0.60mm, 7 cm). Thoroughly, the pedicle
was faintly suspended assisted by a blunt hook 12 cm and a
nonabsorbable sterilized 4/0 silk black suture was placed
slowly under it by using 45° angled forceps as a leading
guide. The blood flow occlusion was done by ligating the
pedicle for 40 minutes, causing the ischemia phenomena.
Successful obstruction is confirmed by a color change from
vivid red to pale, at first instance, and later dark red. Dur-
ing this time, the incision was temporarily closed to prevent
drastic temperature changes and dehydration. Additionally,
100-200μl of prewarmed (37°C) NaCl was given.

The rats were sacrificed at the 3rd day after they
underwent surgeries (control or hypoxia) with overdose of
ketamine (10.0mg/ml) and xylazine (2.0 g/ml) solution.

Table 1: Pipeline programmed for image analysis with CP.

Module Operation

(1) LoadImages Identify and load images in .tiff

(2) ColorToGray Conversion method: split

(3) Morph Operation: invert

(4) IdentifyPrimaryObjects

(a) Identify an object of interest: core
(b) Maximum and minimum area: 13-40
(c) Threshold strategy: adaptive
(d) Threshold method: MCT

(5) IdentifySecondaryObjects

(a) Object name: cell
(b) Method to identify the secondary objects: propagation
(c) Threshold strategy: adaptive
(d) Threshold method: kapur

(6) IdentifyTertiaryObjects Object name: cytoplasm

(7) MeasureObjectSizeShape Measurement object: cytoplasm

(8) MeasureObjectIntensity Measurement object: cytoplasm

(1) Load user-defined images. (2) Convert the original images to grayscale images. (3) Invert intensities to have bright nuclei. (4) Identify the primary object of
interest (in this case, the nucleus). (5) Identify the secondary object (in this case, the entire cell). (6) Create the tertiary object (cytoplasm) by subtracting
the primary object from the secondary object, i.e., subtracting the nucleus from the cell. (7) Analyze morphologic parameters in the object called
cytoplasm. (8) Calculate intensity parameters in the object called cytoplasm.
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2.3. Imaging. Images of the slides were taken using a
ZeissAxioVert. A1 microscope (40x objective) equipped
with a digital camera (AxioCam MRC Zeiss). Images were
manually taken without defining an exposure time; no
filters were used. The NA of the objective was 0.85. Images
were saved in ∗.tiff-format using appropriate names.

2.4. Image Analysis. Image analysis was conducted using CP
(version 2.1.1) [18].

CellProfiler has different modules, and the combination
of different modules used to conduct image analysis is
called a pipeline. Table 1 depicts the pipeline used for the
present study, which contains eight modules.

VEGF protein is expressed in the cytoplasm; therefore,
VEGF is the only object that is the subject of analysis.
Figure 1 shows the identification or creation of the three
objects (nucleus, cell, and cytoplasm).

2.5. Machine Learning. After the image analysis was
finished, the data were exported to a database (SQLite

format) for further analysis using CPA (version 2.0), which
was previously downloaded from the homepage of the
developers [19].

The machine learning process was supervised, i.e., the
user assembled the training set actively. To this end, single
objects displayed by the CPA software showed single iden-
tified objects. By double-clicking a single object, the entire
image was displayed with the object of interest being
highlighted. This process enabled a control of every identi-
fied/classified object.

The classification was based on grouping the objects
based on their similarities, i.e., VEGF+ cells were grouped,
and VEGF- cells were grouped. Initially, randomly shown
objects were separated (VEGF+ and VEGF- cells) to create
a training set (Figure 2). With the objects distributed into
their respective classes, the “train classifier” tool was acti-
vated to initiate the machine learning process (boosting)
with the goal of automated identification and subsequent
counting of the objects of the different classes (Sommer
and Gehrlich, 2013). After adding new cells to the training

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 1: Identification of the objects: the pipeline of CellProfiler. (a) Original image. (b) Image (a) converted to grayscale. (c) Image (b) with
inverted intensities. (d) Identified nuclei. (e) Identified nuclei. Different colors indicate different objects. (f) Identified cells. Different colors
indicate different objects. (g) Identified cytoplasm (i.e., cellular area minus nuclear area). Different colors indicate different objects.
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set, the “train classifier” tool was used to improve the
automated classification. Another tool to evaluate the
progress of the machine learning is the “check progress”
tool (Figure 3). An accuracy above 80% is considered
appropriate [20].

The machine learning process can also be assessed with
the “score image” tool, which shows the classification of the
machine of each identified object on an entire image
(Figure 4).

3. Results

More than 18,000 objects were identified; approximately
74% were classified as VEGF+ and 26% as VEGF-. The sen-
sitivity and specificity are listed in Table 2. The positive
predictive value (PPV) was 0.95 and the negative predictive
value (NPV) was 0.88.

A Bland-Altman test (Figure 5) was used to assess the
similarity between the manual and automated counts. The
mean difference between the two counts was -70 (middle
line). A large number of events were within ±1.96 standard
deviations of the average (lower and upper lines). There were
no systematic biases in the comparisons because there were

both positive and negative results, i.e., the automated count
was either the same, higher, or lower than the manual count.

The receiver operating characteristic (ROC) curve
(Figure 6) was generated to assess the machine learning
process. Initially, 10 objects from each group were added
to the training set. Ten more objects were added to each
class of the training set, and the sensitivity was recalculated.
This process was repeated until the training set contained
100 objects in each group. The area under the curve
(AUC) was 86%.

4. Discussion

Automated analysis of cells and/or tissue is gaining scien-
tific importance. Görtler et al. [21] stated about the func-
tion of automated analysis as a tool to enhance medical
doctors’ work. Kayser et al. [22] highlighted the importance
of automated analysis in time-related measurements in
order to describe and interpret biological functions in living
organisms at the cellular level. An increasing number of
studies have highlighted the importance of automated
image analysis and subsequent image classification [23–
26]. According to Deroulers et al. [27], quantitative histol-
ogy is a promising new area that combines cellular mor-
phometry, computers, and statistical analysis of tissues. A
quantitative approach is important not only for clinical
and diagnostic applications (e.g., to reduce intra-analytic
variations) but also for understanding specific diagnoses
and for research purposes [9].

Automated quantitative image analysis has recently
gained substantial attention [28]. This new approach nota-
bly differs from most of the microscopy approaches used in
the last few years [29]. This computational approach is
effective and able to objectively analyze images and subse-
quently recognize patterns. According to Shamir et al.
(2008), the machine learning-based recognition of patterns
allows the differentiation of different groups of cells.

Krajewska et al. [30] characterized cellular processes
associated with cell death using image analysis. Dordea
et al. [17] automatically quantified rat retinal ganglion cells
using the free open-source software programs CP and CPA.
The authors found that the automated method made their
analyses approximately 10 times faster.

For the present study, the programs CP and CPA were
used because the software offers image analysis, machine
learning, and subsequent classification (i.e., diagnosis)
without the need to download and install further plug-ins
and is relatively easy to use (Carpenter et al., 2006).

The present study demonstrated that automatic image
analysis can be used to identify and quantify VEGF in tis-
sue. Other studies identified HIF1a-positive cells [31] and
TUNEL-positive cells [32] in renal tissue sections. Diem
et al. [4] used automatic image analysis to count CD4+

and CD8+ T cells in human tissue and stated that even
for images with a high cell density the automated counting
was approximately 10 minutes faster than manual counting.
Notably, automatic counting provides faster processing and
analysis of samples. Images appropriately saved on hard

Figure 2: Interface of CellProfiler Analyst. Objects on the left side of
the training set were classified as VEGF-, and objects on the right
side were considered VEGF+.
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Figure 3: Progress of machine learning.
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disks can be reanalyzed numerous times, which may be
important for forensic purposes.

5. Conclusion

With great clinical, diagnostic, and research potential, auto-
matic image analysis offers a new quantitative capability,
thereby adding numerical information to a mostly qualitative
diagnostic approach.

This technique, as already described, provides the user
with a fast, accurate, and reproducible analysis and is capable
of greatly reducing intra-analytic variability.

Abbreviations

AUC: Area under the curve
CP: CellProfiler
CPA: CellProfiler Analyst
ROC: Receiver operating characteristic
TUNEL: TdT-mediated dUTP-biotin nick end labeling
VEGF: Vascular endothelial growth factor.

(a) (b)

Figure 4: “Score image” classifier of CellProfiler Analyst. (a) Original image stained with Harris hematoxylin and DAB. Orange indicates
VEGF+ cells. (b) Classification of the “score image” tool. Objects with blue points are classified as VEGF+, and objects with orange points
are identified as VEGF-.

Table 2: Results of the machine learning-based classification in
terms of sensitivity and specificity.

Sample ID Sensitivity Specificity % VEGF+ % VEGF-

1 0.86 0.92 69% 31%

2 0.95 0.88 79% 21%

3 0.98 0.89 75% 25%

4 1 0.84 83% 17%

5 0.97 0.87 59% 41%

6 0.99 0.91 83% 17%

7 1 0.81 73% 27%
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Figure 5: The Bland-Altman test to compare the manual and
automated counts.
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