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T Cell Immune Regulator 1, ATPase H + Transporting V0 Subunit A3 (TCIRG1 gene provides
instructions for making one part, the a3 subunit, of a large protein complex known as a
vacuolar H + -ATPase (V-ATPase). V-ATPases are a group of similar complexes that act as
pumps to move positively charged hydrogen atoms (protons) across membranes. Single
amino acid changes in highly conserved areas of the TCIRG1 protein have been linked to
autosomal recessive osteopetrosis and severe congenital neutropenia. We used multiple
computational approaches to classify disease-prone single nucleotide polymorphisms (SNPs)
in TCIRG1. We used molecular dynamics analysis to identify the deleterious nsSNPs, build
mutant protein structures, and assess the impact of mutation. Our results show that fifteen
nsSNPs (rs199902030, rs200149541, rs372499913, rs267605221, rs374941368,
rs375717418, rs80008675, rs149792489, rs116675104, rs121908250, rs121908251,
rs121908251, rs149792489 and rs116675104) variants are likely to be highly deleterious
mutations as by incorporating them into wild protein they destabilize the wild protein structure
and function. They are also located in the V-ATPase I domain, which may destabilize the
structure and impair TCIRG1 protein activation, as well as reduce its ATPase effectiveness.
These mutants have not yet been identified in patients suffering from CN and osteopetrosis
while (G405R, R444L, and D517N) reported in our study are already associated with
osteopetrosis. Mutation V52L reported in our study was identified in a patient suspected
for CN. Finally, these mutants can help to further understand the broad pool of illness
susceptibilities associated with TCIRG1 catalytic kinase domain activation and aid in the
development of an effective treatment for associated diseases.
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1 INTRODUCTION

A precise balance between bone creation by osteoblasts and
resorption by osteoclasts is required for bone development and
homeostasis. Osteopetrosis is a hereditary disease defined by a
clinically and genetically heterogeneous group of bone resorption
diseases. The three primary types based on hereditary patterns are
the age of onset, severity, and type (Tolar et al., 2004). All of these
variants have increased bone density, which can cause fractures,
osteomyelitis, deformity, dental anomalies, bone marrow failure,
and cranial nerve compression, among other phenotypical features
(Stark and Savarirayan, 2009). Osteopetrosis is a rare condition,
occurring in about one in every 250,000 births, compared to one in
every 20,000 births for autosomal dominant osteopetrosis (Loría-
Cortés et al., 1977). These conditions are more common in some
geographical places, such as Costa Rica, the Middle East, Russia’s
Chuvash Republic, and Northern Sweden’s Västerbotten Province.
This spread is aided by the founder effect, geographical isolation,
and severe maternal consanguinity (Sobacchi et al., 2013a).
Numerous forms of osteopetrosis cases in humans have been
linked to changes in at least ten genes (Stark and Savarirayan,
2009). Autosomal recessive osteopetrosis renders bones more
sensitive to hematological damage and neurological deficit as a
result of a smaller bone marrow cavity and nerve compression
(blindness or deafness). In a study published in 2000, changes in
T Cell Immune Regulator 1, ATPase H + Transporting V0 Subunit
A3 were identified to be a primary source of human autosomal
recessive osteopetrosis (Sobacchi et al., 2013a). As a result of the
molecular analysis, six new genes (TNFSF11, TNFRSF11A,
CLCN7, OSTM1, SNX10, and PLEKHM1) have been discovered
to be associated with human ARO. More than half of all autosomal
recessive osteopetrosis patients had TCIRG1 mutations (Sobacchi
et al., 2001). According to a study, mice with a targeted disruption
of Atp6i developed severe osteopetrosis (Li et al., 1999). Despite
tremendous progress in our understanding of disease mechanisms
in osteoporotic diseases, the genetic basis for 30% of cases is unclear
(Sobacchi et al., 2013b). According to the study, TCIRG1mutations
include missense, nonsense, small deletions/insertions, splice-site
mutations, significant genomic deletions, and intronic mutations
(Frattini et al., 2000; Kornak et al., 2000; Sobacchi et al., 2013b;
Sobacchi et al., 2014; Palagano et al., 2015). There is still a link
between autosomal recessive osteopetrosis 1 and premature
infertility deaths. This issue can be detected as early as the age
of 10 days. The most prevalent signs of the illness are pathologic
fractures, bone marrow failure, and cranial nerve compression,
which are caused by impaired bone turnover, metabolism, and
failure to widen cranial nerve foramina (Chávez-Güitrón et al.,
2018). High bone density can occur from a bone resorption fault
caused by osteoclast dysfunction, which can lead to severe
abnormalities. Some of the defects that appear early in fetal
development include microcephaly, progressive deafness,
blindness, hepatosplenomegaly, and severe anemia. Deafness and
blindness are common side effects of secondary cranial nerve
hypertension (Susani et al., 2004). Sever Congenital Neutropenia
is a hematological condition characterized by low blood neutrophil
counts (ANC) of less than 0.5 109/L and recurrent bacterial
infections that usually start in childhood. In 1956, Kostmann

was the first to describe an autosomal recessive form of sever
congenital neutropenia (KOSTMANN, 1956). A recessive type of
sever congenital neutropenia is considered to be caused by
mutations in HAX1, a gene related to the Bcl-2 family (Carlsson
and Fasth, 2001; Klein et al., 2007). Mutations in the ELA2 gene,
which codes for the protein neutrophil elastase, an enzyme present
in themajor granules of neutrophils, are themost common cause of
sever congenital neutropenia (Horwitz et al., 1999; Dale et al.,
2000). Other genes which can induce neutropenia, include such as
those involved in glucose homeostasis (SLC37A4, G6PC3),
lysosomal function (LYST, RAB27A, ROBLD3/p14, AP3B1,
VPS13B), ribosomal proteins (SBDS, RMRP), mitochondrial
proteins (HAX1, AK2, TAZ), immunological functions (STK4,
GFI1, CXCR4), and Xlinked (WAS) (Boztug and Klein, 2009).
In contrast, many families with autosomal dominant sever
congenital neutropenia have no identifiable mutation, showing
that there are more sever congenital neutropenia genes. After
high-density SNP chips were used to detect IBD regions across
affected in a large SCN family, exome sequencing was utilized to
find coding single nucleotide variants (SNVs) in the IBD regions
(Makaryan et al., 2014). SNPs (single nucleotide polymorphisms)
are genetic markers found in the human genome at each 200–300
base pair (Lee et al., 2005). There are roughly 0.5 million SNPs in
the human genome’s coding region (Rajasekaran et al., 2008).
Substituting amino acids is conserved areas can change the
structure, stability, and function of proteins. Nonsynonymous
SNPs (nsSNPs) are known to alter protein function and have a
higher chance of causing disease in humans (George Priya Doss
et al., 2008; Chitrala and Yeguvapalli, 2014; Shinwari et al., 2021).
Evidently, several studies have shown that nsSNPs are responsible
for 50% of the variations related to heredity genetic disorders
(Ramensky et al., 2002; Doniger et al., 2008; Radivojac et al., 2010).
Alignment methods based on matrix and data tree structure
computation are being used by the instruments (Kamatani et al.,
2004; Rajasekaran et al., 2008). We described the structural and
functional impacts of high-risk nsSNPs on the TCIRG1 protein
using a series of prediction algorithms.

2 METHODS

2.1 SNP Retrieval
The nsSNP information for the human TCIRG1 gene was
obtained utilizing a variety of web-based data sources,
including OMIM (Online Mendelian Inheritance in Man)
(Hamosh et al., 2005), NCBI dbSNP (Sherry et al., 2001), and
the UniProt database (UniProtKB ID O15072) (UniProt
Consortium, 2010).

2.2 Gene Mania
Gene MANIA (https://genemania.org/) (accessed 10 February
2021 using a search strategy for TCIRG1 in the search box)
(Warde-Farley et al., 2010) was used to confirm the TCIRG1
gene’s linkage and analyze its connection through other genes
in order to anticipate the impact of nsSNPs on specific linked
genes. GeneMANIA predicts gene-gene connections using
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pathways, co-expression, co-localization, genetics, protein
interaction, and protein domain similarity.

2.3 SIFT and PolyPhen2 Predication
The deleterious/damaging or tolerated nature of isolated
nsSNPs will be established first using the SIFT and
PolyPhen2 tools. SIFT analyzes protein homology sequences
and aligns natural nsSNPs with orthologous and paralogous
protein sequences to predict detrimental nsSNPs. If the SIFT
score of nonsynonymous SNPs is less than 0.05, they have a
deleterious impact on protein function (Ng and Henikoff,
2003). PolyPhen2 assesses a protein’s structural and
functional effects by analyzing its sequence and amino acid
alterations. When an amino acid is substituted or a mutation in
a protein domain is discovered, it divides SNPs into three
groups: possibly damaging (probabilistic score >0.15),
probably damaging (probabilistic score >0.85), and benign
(probabilistic score >0.85). PolyPhen2 can determine the PSIC
(position-specific independent count) value of protein
variations. If mutants have a direct functional impact on
protein function, the diversity in PSIC scores among
variations implies that (Adzhubei et al., 2010).

2.4 Sequence-Based Prediction and
Disease Phenotype Prediction
In-silico tools, PON-P, Mutation Assessor, P-Mut, SNAP2,
SNGP-GO, PON-P2, PANTHER, PHD-SNP, SNAP2,
PROVEAN, and VarCards algorithms predicted functional
implications of the missense mutation as well as confirmatory
analysis of the sift and PolyPhen tools. In TCIRG1 protein
sequences, to forecast the negative effects of nsSNPS, the
PROVEAN algorithm was used. In the case of homologous
sequences, a technique like this employs delta alignment
scores based on the variant version and a protein sequence
comparison. A score of equivalent to or less than 2.5 suggests
deleterious nsSNP alignment (Choi et al., 2012). SNAP2 is a
neural network-focused classifier. It was used to anticipate how
single amino acid alterations in the TCIRG1 protein might affect
the protein’s function. This server takes a FASTA sequence and
produces a prediction score (range from 100 strong neutral
predictions to +100 strong effect prediction) that indicates
how likely a mutation is to influence native protein function
(Bromberg et al., 2008). PMUT uses neural networks to
accurately predict the presence of single amino acid point
mutations that cause disease (with an 80 percent success rate
in humans). When a FASTA sequence was input into the PMut
server, the difference between neutral variants and illness-linked
protein sequence was discovered. A score of more than 0.5
indicates that nsSNPs are potentially harmful (Ferrer-Costa
et al., 2005). SNP-GO, SNP-PhD (Calabrese et al., 2009)
(http://snps.biofold.org/phdsnp/phd-snp.html) are a machine-
learning-based approach that uses the conservation scores of
multiple sequence alignments to make decisions. The ClinVar
dataset was used to create and test the PhD-SNP tool, which
typically contains 36,000 harmful and benign SNVs, provides an
accuracy index score, and assesses if an SNP effect is deleterious

or neutral. PANTHER-PSEP (Tang and Thomas, 2016)
(PANTHER -position-specific evolutionary preservation,
http://pantherdb.org/apparatuses/csnpScoreForm.jsp) employs
a metric that is comparable to, but not identical to,
“evolutionary preservation,” in which homologous proteins are
employed to retrieve potential ancestral protein sequences at
phylogenetic tree nodes. Each amino acid’s roots can be
followed to determine how long it has been held in its
ancestors in its current state. The PSEP score was categorized
into three parts: “probably damaging” (preservation time >450
my), “possibly damaging” (preservation time 200 my), and
“probably benign” (preservation time 200 my). VarCARD was
used to obtain findings from the MCAP and FATHMM tools.
-MKL-coding-pred, LRT, METALR, FATHMM-pred, META
SVM, Mutation Assessor, CAAD, DANN, Mutation Taster,
META SVM, Mutation Assessor, CAAD, DANN, Mutation
Taster. Varcards is a consolidated genetic and medical
database that covers human genome coding variants. A
number of genomic techniques and databases have been
developed to aid in the understanding of genetic variants,
notably in nonsynonymous. Varcards, on the other hand,
make it easier for scientists, researchers, general practitioners,
and geneticists to collect data on a single variant or from a
number of different web platforms or databases (Li et al., 2018).

2.5 MutPred Predicts Disease-Related
Amino Acid Substitutions and Phenotypes
The MutPred internet server (http://mutpred.mutdb.org/) can
be used as a search engine to forecast the molecular mechanism
of disease caused by amino acid substitutions in mutant
proteins. It makes use of a variety of structural, functional,
and evolutionary features of proteins. PSI-BLASAT, SIFT, and
Pfam profiles, as well as TMHMM, MARCOIL, and DisProt
algorithms, were used with three servers. These are some
projections for structural damage. The more the scores of
all three servers are aggregated, the higher the forecast
accuracy (Pejaver et al., 2020).

2.6 Structure-based Prediction
I-Mutant 3.0 https://gpcr2.biocomp.unibo.it/cgi/predictors/I-
Mutant3.0/I-Mutant3.0.cgi). The ΔΔG Mut dataset from
ProTherm was used to pre-train the algorithm. The ΔΔG
value (kcal/mol) can be used to determine a single-site
mutation that is dependent on a protein structure or
sequence. A ΔΔG value less than zero indicates that the
variant alters the structure or sequence of a protein.
(Capriotti et al., 2005).

2.7 Identification of Mutant nsSNPs Position
in Different Domains
The InterPro (http://www.ebi.ac.uk/interpro/) tool was used for
identification of different conserved domains in the TCIRG1
protein and also mapping of nsSNPs positions in different
domains (Hunter et al., 2009). Protein sequence in FASTA
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format or protein ID was inserted as a query to predict domains
and motifs.

2.8 Conserved Residues and Sequence
Motifs Identification
The human TCIRG1 UniProt protein sequence was BLASTed
against the UniprotKB/Swiss-Prot database in NCBI (http://blast.
ncbi.nlm.nih.gov/Blast.cgi) and significant alignment was discovered
up to 100 sequences. Clustal Omega was used to perform further
computational analysis on sequences havingmore than 50% identity
and an E-value of less than 1.00E-20 (Sievers et al., 2011). The amino
acid identities were colored using the Clustal color scheme, and
Jalview supplied the conservation index at each alignment site
(Waterhouse et al., 2009).

2.9 ConSurf’s Conservation Predictions for
Amino Acids (ConSurf.tau.ac.il)
The evolutionary conservation of amino acids within a protein
sequence is calculated using empirical Bayesian inference. Color
palettes and conservation scores are included. A score of 1 was
given to variable amino acids, while a score of nine was given to
the most conserved amino acid. The FASTA sequence of the
TCIRG1 protein was submitted for ConSurf analysis (Berezin
et al., 2004).

2.10 Project HOPE Analysis
Project HOPE is a web server that investigates the structural
consequences of the desired mutation. The Hope project provides
the changed protein in an observable 3D structure by cooperating
with UniProt and DAS prediction algorithms. The protein
sequence is used as an input source in Project HOPE, and
then a structural comparison with the wild type is performed.
Project HOPE is a web server that investigates the structural
consequences of the desired mutation. The Hope project provides
the changed protein in an observable 3D structure by cooperating
with UniProt and DAS prediction algorithms. The protein
sequence is used as an input source in Project HOPE, and
then a structural comparison with the wild type is performed
(Venselaar et al., 2010).

2.11 NetSurfP’s Secondary Structure
Prediction
Information about amino acid surface and solvent accessibility is
needed to determine the interaction interfaces or active sites in a fully
folded protein. Binding affinity is affected, and if the protein is an
enzyme, catalytic activity is disrupted, when amino acid alterations at
such sites are detected (Klausen et al., 2019). NetSurfP-2.0
successfully assesses surface and solvent accessibility, structural
disorder, backbone dihedral angles, and secondary structure for
amino acid residues. The input is FASTA-formatted protein
sequences, and the output is deep neural networks trained on
solved protein structures (Klausen et al., 2019). NetSurfP-2.0 is
available at http://www.cbs.dtu.dk/services/NetSurfP/.

2.12 PTM Sites Prediction
Protein post-translational modifications (PTM) are utilized to
predict the protein’s function (Deng et al., 2017). GPSMSP v3.0
(http://msp.biocuckoo.org/online.php) was used to predict
methylation sites in the TCIRG1 protein. We used NetPhos 3.
177 (https://www.cbs.dtu.dk/services/NetPhos/) (Blom et al.,
1999) and GPS 5.078 (https://gps.biocuckoo.cn/) (Xue et al.,
2005) to predict possible sites for phosphorylation. The
NetPhos 3.1 service predicts Serine, Threonine, and Tyrosine
phosphorylation sites in proteins using ensembles of neural
networks. Residues in the protein with a score greater than 0.5
indicate phosphorylation. A higher GPS 5.0 score, on the other
hand, indicates a higher chance of getting phosphorylated. To
estimate probable methylation, ubiquitylation sits, we utilized
GPS-MSP 1.0 (Xue et al., 2005) (https://msp.biocuckoo.org/),
UbPred (Radivojac et al., 2010) (https://www.ubpred.org), and
BDMPUB (https://www.bdmpub.biocuckoo.org). Glycosylation
is another important method used by NetOglyc4.0 to predict
glycosylation sites (Steentoft et al., 2013). (See http://www.cbs.
dtu.dk/services/NetOGlyc/for more information.) Glycosylation
sites with a score greater than 0.5 are more likely to be
glycosylated.

2.13 The FTSite Server (http://FTSite.bu.
edu/) Predicts Ligand-Binding Sites
The server FTSite predicted the ligand-binding site in the 3D
protein structure. The binding site has been identified in over 94
percent of apoproteins, and the site’s prediction is based on
energy. PDB data is used as input for ligand-binding hotspot
prediction.

2.14 Candidate Variant Filtering
Whole Exome Sequence data of a patient suspected with
congenital neutropenia was analyzed for candidate variant
filtering and was performed by using BWA, GATK4, and
VCF-tools software (Pedersen et al., 2021).

2.15 Predicting the Structure of 3D Proteins
Protein modeling is important in the drug development process.
Structure prediction from a given sequence with accuracy similar
to experimentally resolved structures is the goal of homology
modeling (Cavasotto and Phatak, 2009). The inclusion of inserts
and loop sequences, which cannot be reliably anticipated in the
absence of a three-dimensional (3D) crystal structure, is a
limitation of this technique (Ohlson et al., 2004). In the
pharmaceutical sector, computational approaches are
frequently used to predict 3D protein models (57). To
overcome this problem, these methods aid in the prediction of
a protein’s tertiary structure based on its amino acid sequence
(Katsila et al., 2016). These methods can be classified as either de
novo or homology modeling, depending on the information
available. The most reliable method is template-based
modeling, also known as homology modeling or comparative
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modeling (Cavasotto and Phatak, 2009). Because there were no
resolved crystal structures of TCIRG1 available at the time of this
research, SWISS-MODEL and HHPred were used to create a
homology model for the mutant protein (Schwede et al., 2003;
Hildebrand et al., 2009). The 3D structure for the TCIRG1 was
also predicated through Phyre2 which is a 3D homology
modeling application that predicts 3D models for proteins
(http://www.sbg.bio.ic.ac.uk/phyre 2/html/page.cgi?xml:id=
index). As 3D models, the wild type and 22 mutants linked to
the most harmful nsSNPs were generated (Kelley et al., 2015).
Confirmatory molding was conduct ofWild andMutant TCIRG1
protein through Alpha fold2 which is a highly accurate protein
structure predication (Jumper et al., 2021). To compare wild-type
TCIRG1 and selected mutations, researchers employed TMalign
(https://zhang lab. ccmb.med.umich.edu/TM-align/). Template
Modelling score (TMscore), root mean square deviation (RMSD),
and structural superposition are all predicted. The TM scores

range from 0 to 1, with a higher value indicating more structural
similarity. The higher the RMSD values, the greater the difference
between mutant and wild-type structures (Carugo and Pongor,
2001). Three mutants with greater RMSD values were submitted
to the ITASSER (https://zhang lab.ccmb.med.umich.edu/
I-TASSER R/) for further protein 3D structure comparisons
(Zhang, 2008; Roy et al., 2010; Yang et al., 2015). Chimera v1.
11 to investigate molecular characteristics and interactive
visualization of the resulting protein structure (Pettersen et al.,
2004). PROCHECK was used to validate the 3D models
(Laskowski et al., 1993).

2.16 Molecular Dynamic Simulation
For 100 nanoseconds, Desmond, a software from Schrödinger
LLC, was used to model molecular dynamics (Bowers et al., 2006;
Ferreira et al., 2015). By integrating Newton’s classical equation of

FIGURE 1 | Flowchart for methodology.
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motion, MD simulations typically compute atom movements
over time. Simulations were used to predict the stability of the
protein in the physiological environment. (Hildebrand et al.,
2019; Rasheed et al., 2021).

2.17 Statistical Analysis
SPSS v23 and MS Excel were used to conduct a correlation
study on the predictions made by computational in silico
technologies. The significance differences predicted by the
various computational techniques were assessed using the
Student’s t-test. Significant was defined as a p-value of less
than 0.01.

3 RESULTS

The entire approach, tools, and databases used to discover the
harmful SNPs in human TCIRG1 and their structural/functional
repercussions owing to mutation are summarized in Figure 1.

3.1 SNP Annotation
The NCBI database (http://www.ncbi.nlm.nih.gov/) revealed
SNPs in the TCIRG1 gene. It contains 5627 SNPs that were
present in Homo sapiens, with 811(1.909%) in coding
nonsynonymous regions (missense) and 463 (1.089%) in
synonymous sections, as illustrated in Figures 2A,B.

FIGURE 2 | (A). Distribution of SNPs present in the TCIRG1 gene. (B). Prediction results of the 64 SIFT and PolyPhen2 deleterious nsSNPs in the TCIRG1 gene
analyzed by the eighteen computational tools.
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3.2 Gene Mania
The TCIRG1 gene codes for a protein that can be found in the
extracellular matrix of proteins, as well as other compounds. The
TCIRG1 protein plays a crucial role in the formation of the
lymphatic system. It helps immature lymphangioblasts grow
(differentiate) and migrate (migrate), finally forming the lining
(epithelium) of lymphatic channels. Our findings revealed that
TCIRG1 is co-expressed with 12 genes (MAN2C1, INPPL1,
TRADD, ARPC1B, TIMP1, LSP1, TYMP, HLA-A, MVP,
ARSA, PCSK7, and MAP3K11) and shared a domain with
only three genes (ATP6VOA4, ATP6VO2A, and ATP6VOA1),
Physical interaction with seven genes (KCNK1, TRADD,
ERLEC1, SLC30AS, ATP6AP2, ATP6VOA2, ATP6VOA1), and
co-localization with two genes (ARSA, TYMP) Table 1and
Figures 3A,B.

3.3 SIFT and POLYPHEN
A total of 5627 nsSNPs were investigated to see if they influenced
protein structure or function in any way. The first step is to figure
out which of the nsSNPs is causing the amino acid substitution.
SIFT calculates the effect of an nsSNP on protein structure and
assesses if the induced amino acid is acceptable at that site. SIFT
and PolyPhen predicted 64 nsSNPs that produced amino acid
substitutions out of a total of 811 nsSNPs (Table 2 and
Supplementary Table S1).

3.4 The Most Deleterious SNPs Identified in
TCIRG1
3.4.1 Functional SNPs in Coding AreasWere Identified
The various computational prediction tools that were used in this
study, are illustrated in Figure 2B to identify significant nsSNPs
in TCIRG1. The nsSNPs in table 3 are variations that are
predicted to be deleterious by all algorithms. FATHMM-MKL.
While they are regarded as high-risk pathogenic nsSNPs, SNP-
GO, PHD-SNP, PANTHER, SNAP2, P-MUT PROVEAN,
FATHMM, LRT, M-CAP, CAAD, META SVM, METALR,
Mutation Assessor, and Mutation Taster are considered high-
risk pathogenic nsSNPs. There are a variable number of

deleterious SNPs in each technique. SIFT classed 118 and
PolyPhen 64 nsSNPs as harmful or deleterious, although
PolyPhen did not show any of the 58 nsSNPs that were
deleterious. Sift classified deleterious with a threshold of >0.5,
and both SIFT and Polyphen confirmed 34 as deleterious. In a
total of 118 unique predicted nsSNPs in the TCIRG1 gene, VEST
three indicated the fewest six nsSNPs (10%) as destructive or
detrimental, and 51 as tolerated. PolyPhn, FATHMM, M-CAP,
and PANTHER had the largest percentage of harmful
predictions. Using the SNAP2 technique, 41 were found to be
harmful (71%) and 16 were found to have no effect (SNAP2 score
of 100). The deleterious and damaging effects of 54 (92%) nsSNPs
on TCIRG1 protein were predicted using the PANTHER
program, with 48 nsSNPs being probably damaging, six
nsSNPs being possibly damaging, and three nsSNPs being
probably benign (time >450my possibly damaging” (450my >
time >200my, “probably benign” (time 200my). PROVEAN is a
program that predicts the impact of SNPs on a protein’s biological
function. 22 (38 percent) nsSNPs in the TCIRG1 gene were
projected to be severely detrimental, while 35 nsSNPs were
neutral, according to PROVEAN’s criterion (>-2.667). With a
threshold of (>0.65 (5.545 to 5.975 (higher score > more
damaging), the Mutation Assessor classified 24 nsSNPs as
deleterious, with 12 high, 17 medium, five low, and 19 as no
findings. FATHNMMand FATHMM-MKK (<0.5), CADD (>15)
DANN (>0.5), Mutation Taster (<0.5), and with respective scores
show all above than (75–90%) nsSNPs as deleterious/damaging.
while P-Mut predicated 45 (75.21%) deleterious, 07 neutral, and 5
with no result with a cut off (<0.5). LRT predicted 42 (77%)
deleterious nsSNPs with a score (>0.001) and 13 as Neutral. PhD-
SNP, SNP-GO, andM-CAP identified 47 (82%), 35 (61%), and 54
(94.73%) as deleterious, respectively. MetalR and MTA-SVM
identified 10 (17%) and 37 (64%) nsSNPs as deleterious. Based
on the substitution position-specific scores using PANTHER,
PROVEAN score, SIFT score, SNPs&GO, FATHMM, LRT,
M-CAP, VEST3, CAAD, METALR, Mutation Assessor,
Mutation Taster, FATHMM-MKL, PHD-SNP score and
PolyPhen server, PSIC score (>0.5). A group of 15 nsSNPs
P572L, M546V, I721N, F610S, A732T, F51S, A717D, E722K,

TABLE 1 | Gene-mania shows the TCIRG1 gene co-expression and shard domain.

Gene symbol Description Co-Expression Shared Domain

MAN2C1 Mannosidase alpha class 2C member 1 Yes No
INPPL1 Inositol polyphosphate phosphatase like 1 Yes No
TRADD TNFRSF1A associated via death domain Yes No
ARPC1B Actin related protein 2/3 complex subunit 1B Yes No
TIMP1 TIMP metallopeptidase inhibitor 1 Yes No
LSP1 Lymphocyte-specific protein 1 Yes No
TYMP Thymidine phosphorylase Yes No
HLA-A Major histocompatibility complex, class I, A Yes No
MVP Major vault protein Yes No
ARSA Arylsulfatase A Yes No
PCSK7 Proprotein convertase subtilisin/kexin type 7 Yes NO
MAP3K11 Mitogen-activated protein kinase kinase kinase 11 Yes No
ATP6V0A4 ATPase H+ transporting V0 subunit a4 No Yes
ATP6V0A2 ATPase H+ transporting V0 subunit a2 No Yes
ATP6V0A1 ATPase H+ transporting V0 subunit a1 No Yes
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R57H, R109W, R191H, S532C, G192S, F529L, H804Q were all
considered highly deleterious by all state-of-the-art methods.
While only LRT disagrees with the result of A717D by other
tools. All of the prediction algorithms’ findings were found to be
statistically significant and strongly correlated. The p-value for
the Student t-test between the tools was 0.001. Results of
prediction tools and their significance are shown in
(Supplementary Table S2).

3.5 MutPred2 Predicts Pathogenic Amino
Acid Substitutions
MutPred2 assesses a variety of molecular characteristics of amino
acid residues in humans to identify whether a substitution is
disease-related or not. It assigns a score based on the chance that a
change in amino acid will affect the protein’s function. A
MutPred2 score of 0.8 or higher is considered highly
confidential, while the pathogenicity prediction cutoff is 0.5.
The prediction score for all of the substitutions was less than
0.5. The MutPred2 results are available in (Supplementary
Table S6).

3.6 I-Mutant 3.0 Predicts the Stability of the
Mutated Protein due to SNPs
The effects of TCGIR1 high-risk nsSNPs on protein stability and
function were predicted using the web program I-Mutant 3.0
(Supplementary Table S3) The results showed that (G405R,
S474W, and A778V) have increased stability while (P572L,
M546V, I730N, F610S, A732T, F51S, A717D, E722K, R57H,
R109W, R191W, S532C, G192S, F529L, H804Q, G458S,
R444L, R56P, G379S, R757C, N730S, V375M, T314M, D517N,
R92W, T368M, A417T, R363C, R56W, and R50C) showed
decreased stability.

3.7 Identification of Domains in TCIRG1
InterPro tool was used to locate domain regions in TCIRG1 and
to identify the location of nsSNPs in different domains. This tool
provides a functional analysis of proteins by classifying them into
families. It also predicts the presence of domains and active sites.
It has been reported a three domain: such as the V-TYPE
PROTON ATPASE 116 KDA SUBUNIT A ISOFORM 3
(1–828), cytoplasmic and non-cytoplasmic are found in
TCIRG1. The 33 nsSNPs and fifteen highly deleterious that we
have selected are located in V-TYPE PROTON ATPASE and
cytoplasmic domains.

3.8 SNPs in TCIRG1 Protein Are Linked to
Highly Conserved Buried (Structural) and
Exposed (Functional) Amino Acid Residues
TCIRG1 (ATPase H + Transporting V0 Subunit A3, T Cell
Immune Regulator 1) is a protein-coding gene that codes for
ATPase H + Transporting V0 Subunit A3. Autosomal Recessive 1
and Autosomal Recessive Malignant Osteopetrosis TCIRG1 is
associated with disorders like osteopetrosis. The lysosome cycle
and the synaptic vesicle cycle are two related pathways. This gene,
which is located on chromosome 11, is 830 amino acids long and
has a molecular mass of 92968 Da. TCIRG1 sequence-based
structural-functional investigation was analyzed using Clustal
Omega-based multiple sequence alignment analysis. The
Uniprot Knowledgebase was used to retrieve the TCIRG1
protein sequence (Uniprot ID: Q13488). After being BLASTed
against UniprotKB/SwissProt entries, the TCIRG1 protein
sequence was aligned using Clustal Omega with default
settings. This gene, which is located on chromosome 11, is

FIGURE 3 | (A) Gene–gene interaction of TCGIR1 with other genes
proposed by GeneMANIA. (B) Co-expression in GenMANIA.
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TABLE 2 | Sift and PolyPhen results of high deleterious nsSNPs in TCIRG1 gene.

ID of nsSNPs Aa position SIFT Score PolyPhen Score

rs36027301 R56W Deleterious 0 Probably damaging 0.999
rs368945298 M546V Deleterious 0 Probably damaging 0.999
rs115854062 P572L Deleterious 0 Probably damaging 1
rs150260808 I721N Deleterious 0 Probably damaging 1
rs137853150 G405R Deleterious 0 Probably damaging 1
rs137853151 R444L Deleterious 0 Probably damaging 1
rs147580611 F610S Deleterious 0 Probably damaging 1.00
rs148921764 E722K Deleterious 0 Probably damaging 1.00
rs140963213 A417T Deleterious 0.002 Probably damaging 1
rs144775787 A778V Deleterious 0.46 Probably damaging 0.883
rs145080707 R213W Deleterious Low 0.012 Probably damaging 1
rs150648332 R57H Deleterious 0.001 Probably damaging 1.00
rs150260808 I721N Deleterious 0 Probably damaging 1
rs201329219 R109W Deleterious 0.014 Probably damaging 1.00
rs367703865 R191H Deleterious 0.32 Probably damaging 0.999
rs371214361 S532C Deleterious 0.001 Probably damaging 1.00
rs199914625 S474W Deleterious 0 Probably damaging 1
rs200851583 G458S Deleterious 0 Probably damaging 1
rs371658110 G192S Deleterious 0.003 Probably damaging 1.00
rs370319355 R50C Deleterious 0 Probably damaging 1
rs376351835 F529L Deleterious 0.013 Probably damaging 1.00
rs371004297 G379S Deleterious 0.011 Probably damaging 1.00
rs200209146 N730S Deleterious 0.022 Probably damaging 1.00
rs200415611 V375M Deleterious 0.001 Probably damaging 1.00

rs367818260 T314M Deleterious 0.001 Probably Damaging 1.00

rs375809635 R363C Deleterious 0 Probably damaging 1.00
rs138305091 A732T Deleterious 0.001 Probably damaging 1.00
rs138308753 F51S Deleterious 0 Probably damaging 0.996
rs141095902 A717D Deleterious 0.002 Probably damaging 0.963
rs369264588 D517N Deleterious 0 Probably damaging 1.00
rs371907380 R92W Deleterious 0 Probably damaging 1.00
rs373988992 T368M Deleterious 0 Probably damaging 1.00
rs142606750 R757C Deleterious 0.003 Probably damaging 1.00
rs367818260 T314M Deleterious 0.001 Probably damaging 1.00
rs118141250 V52L Deleterious 0.11 Probably damaging 0.924

Threshold: Sift: < 0.05 Polyphen2: >0.8 (PSIC >0.5) or Benign (PSIC <0.5).

TABLE 3 | TMscore and RMSD values of 56 deleterious nsSNPs in TCIRG1.

SNP-ID Residual Change TM-score RMSD Values SNP-ID Residual Change TM-score RMSD Values

rs199902030 P572L 0.99626 0.78 rs121908252 R56W 0.99621 0.78
rs200149541 M546V 0.99626 0.78 rs121908254 G379C 0.99435 0.58
rs372499913 I721N 0.99760 0.53 rs147974432 R757C 0.99790 0.48
rs267605221 F610S 0.99312 0.81 rs192224843 N730S 0.99275 0.84
rs374941368 A732T 0.99621 0.78 rs115982879 V375M 0.99743 0.54
rs375717418 F51S 0.99626 0.78 rs139059968 T314M 0.99626 0.78
rs80008675 A717D 0.99661 0.73 rs141125426 D517N 0.99785 0.49
rs149792489 E722K 0.99830 0.46 rs147208835 R92W 0.96213 0.89
rs116675104 R57H 0.99790 0.48 rs147681552 T368M 0.99626 0.78
rs121908250 R109W 0.99626 0.78 rs148498685 A417T 0.99790 0.48
rs121908251 R191H 0.99785 0.49 rs149531418 R363C 0.99626 0.78
rs121908251 S532C 0.99092 0.81 rs149531418 A778V 0.99661 0.76
rs149792489 G192C 0.99626 0.78 rs147208835 R50C 0.99621 0.78
rs116675104 F529L 0.99435 0.58 rs121908250 H804Q 0.99790 0.48
rs121908251 G405R 0.99674 0.62 rs149792489 S474W 0.99760 0.53
rs116675104 G458S 0.99674 0.48 rs121908250 R444L 0.99270 0.84
rs121908251 R56P 0.99657 0.48
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830 amino acids long and has a molecular mass of 92968 Da.
TCIRG1 sequence-based structural-functional investigation was
analyzed using Clustal Omega-based multiple sequence
alignment analysis. The Uniprot Knowledgebase was used to
retrieve the TCIRG1 protein sequence (Uniprot ID: Q13488).
After being BLASTed against UniprotKB/SwissProt entries, the
TCIRG1 protein sequence was aligned using Clustal Omega with
default settings. The highly conserved amino acid residues in
human TCIRG1 protein were K304, M305, K306, A307, Y309,
L312, N313, C315, S316, T320, K322, K322, C323, L324, I325,
A326, E327, W329, C330, D334, L335, L338, A341, L342, S346,
E348, S350, I360, P361, P366, P367, T368, I369, R371, T372,
N373, F375, F379, Q380, I382, V383, D384, A385, Y386, G387,
V388, G389, Y391, E393, V394, N395, P396, A397, T400, I401,
I402, I403, F404, P405, F406, L407, F408, A409, V410, M411,
F412, G413, D414, G416, H417, G418, L419, M421, F422, L423,
F424, A425, L426, V429, L430, and E432. There are eighty-one
different conserved residues Results can be seen in Figure 4.

3.9 Conservation Analysis
We used the ConSurf web server to look at the conservation of
TCIRG1 residues. According to the results of the ConSurf
investigation, 22 deleterious missense SNPs are found in
highly conserved areas (7-8–9). The other 16 (S7K, V52L,
G379S, M403I, G405R, G458S, D517N, F529L, S532C, M546V,
A640S, D683H, I732N, N730S, A732T, and H804Q) were
predicted as functional and exposed residues, while the
other 10 (A20V, R56P, R57H, R191H, G192C, E321K,
R366H, T368M, R444L, and E722K) were predicted as
functional and exposed residues and the other 16 (S7K,
V52L, G379S, M403I, G405R, G458S, D517N, F529L,
S532C, M546V, A640S, D683H, I732N, N730S, A732T, and
H804Q) were predicted as buried and structural residues. The
18 (S3F, R28W, S45A, R50C, R92W, R109W, R166T, T314M,
D328M, S340L, R363C, R382H, R467H, S474W, P572L,
Y626S, R628W, and R757C) were predicted as exposed and
the other 9 (F51S, V348M, V375M, A417T, T570M, F610S,
A717D, A778V, and M783I) were buried residues. The results
are shown in Figure 5.

3.10 Project Hope
All of the predicating techniques projected negative consequences
for 15 high-risk pathogenic TCIRG1 nsSNPs, hence HOPE was
utilized to forecast their effects. The hop was based on the size,
spatial, charge, hydrophobicity, structure, and function of amino
acids. Seven mutant amino acids were smaller than their wild-
type counterparts, while eight were larger. The charge was
switched from positive to neutral at three different locations.
Six alterations exhibited an increase in hydrophobicity, while the
other did not. This finding implies that amino acid changes at
these locations modify protein structure and interactions with
other molecules, influencing protein function. The outcomes can
be seen in the graph below (Supplementary Table S8).

3.11 TCIRG1 Secondary Structure and
Surface & Solvent Accessibility of Residues
Analysis by NetSurfP-2.0
The surface accessibility (exposed or buried) of amino acids in
a given protein was predicted using NetSurfP-2.0, which
determines the relative and absolute accessible surface area
of each residue. It can also predict protein secondary structure.
Relative Surface Accessibility: With a threshold of 25%, red
upward elevation implies residue exposure, whereas sky blue
denotes buried residue. A helix is represented by an orange
spiral, a strand is represented by an indigo arrow, and a coil is
represented by a pink straight line. The disorder is represented
as a bloated black line, with the thickness of the line equaling
the probability of disordered residue. Figure 6: NetSurfP-2.0
results.

3.12 PTMs (Posttranslational Modifications)
Predictions
This was done with GPSMSP 3.0, which predicted that no sites
in TCIRG1 were methylated. TCIRG1 phosphorylation sites
predicted by GPS 3.0 and NetPhos 3.1 are included in
Supplementary Table S1. NetPhos 3.1 projected
phosphorylation potential for 62 residues (Ser23, Thr: 22,

FIGURE 4 | In ABWGB and Q3MI99, amino acid alignment of human TCIRG1 (UniProt ID: Q6UXH8) and homologs in phylogenetically adjacent species. Residues
with an asterisk (*) mark indicate evolutionarily conserved amino acids, while solid horizontal bars indicate conserved sequence patterns. The conservation index at each
alignment point was provided by Jalview, and the amino acid identities were colored according to the Clustal color scheme.
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Tyr: 17). GPS 3.0, on the other hand, suggested that 18 residues
(Ser: 12, Thr: 06, Tyr: 00) may be phosphorylated. For
ubiquitylation prediction, BDMPUB and UbPred were
utilized. UbPred projected that none of the lysine residues
would be ubiquitinated, but BDMPUB predicted that none of
the lysine residues would be ubiquitinated. None of the
BDMPUB predictions were found in a highly conserved or

detrimental nsSNP region. Table 2, Supplementary Table S2
shows the results achieved. Potential glycosylation sites were
predicted using NetOGlyc4.0. Positions 43, 145, 152, 346, and
474 in wild-type TCIRG1 protein were predicted to be
glycosylated with scores of 0.513,032, 0.554,065, 0.884,332,
0.830,233, 0.585,103, and 0.511,937. Interestingly, mutant
S532C lost its glycosylation site at position 532, but mutant

FIGURE 5 | The evolutionary conservation of amino acids in the TCIRG1 gene was assessed using the ConSurf service. A value of 1 indicates a high variability
region. The value grows as the region becomes more conserved until it reaches 9.
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N730S gained it at position 730. Supplementary Table S5
contains all of the scores for the wild type and mutants.

3.13 FTSite Predicts Ligand-Binding Sites
The ligand binding sites were predicted using FTSite algorithms,
which were then visualized and analyzed using Pymol. Using this
technique, three ligand-binding sites in human TCRIG1 protein
were found (Supplementary Figure S11). Site 1 has 14 residues,
while sites two and three each had 9, 13, and so on. In the fifty-six
replaced positions, none of the substitutions in the SIFT server’s
expected ligand-binding sites are detected (Supplementary Table
S7). In that sequence, the expected binding sites are colored pink,
green, and purple. Residues within 5 nm of the binding site are
represented using a ball and stick representations of side-chain
atoms. The atoms are colored according to their elements, with
carbon matching the binding site’s color. RaptorX Binding
ligand-binding site prediction servers were used to predict
ligand-binding sites in the TCIRG1 protein. A pocket
multiplicity value of greater than 40, according to the RaptorX
Binding server, indicates a precise prediction. The TCIRG1
protein has the maximum pocket multiplicity of 20, with an
expected CVM (2+) cation ligand connected to residues L801
H804 W805 D822 D830.

3.14 3DModeling of TCIRG1 and Its Mutants
The protein 3D model was predicted by HHpred, Phyre2 and
AlphaFold2 while the wild-type structure was predicted by
AlphaFold2 available in uniport with Q13488 ID. The mutant
structures predicted by HHpred and proceed with MD
Simulation and similarly, the structure of mutant was also
predicted by Alphafold2 and also proceed for 100ns MD
simulation for further analysis and validation (Figure 7A-H.
These structures proceeded with MD simulation for further
analysis and validation. Phyre2 was also used to generate 3D
structures of the wild-type TCIRG1 protein as well as 56
mutations. nsSNP replacements in the TCIRG1 protein
sequence were made separately and then submitted to Phyre2,
which predicted the mutant proteins’ 3D structures. C6VQ7A
was chosen as a template for 3D model prediction by Phyre2
because it was the template with the highest similarity, according
to the Phyre2 server. For each mutant model, TM scores and
RMSD values were determined. The TM-score measures
topological similarity, whereas the RMSD values measure the
average distance between the carbon backbones of natural and
mutant models. Higher RMSD values indicate that the mutant
structure differs from that of the wild type. The mutant R92W
(rs371907380) has the highest RMSD value of 0.89B, followed by

FIGURE 5 | (Continued).
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R444L (rs137853151), N730S (rs200209146), and S532C
(rs371214361) with 0.84B, 0.84B, and 0.81B, respectively.
F610S, M546V, and P572L have RMSD values of 0.B, 0.78B,
and 0.78B, respectively, indicating no structural differences from

wild type. Other nsSNPs showed slight variation which included
I721N (0.53B RMSD), A732T (0.78B RMSD), R51C (0.78B
RMSD), A717D (0.73B RMSD), E722K (0.46B RMSD), R57H
(0.48B RMSD), R109W (0.78B RMSD), R191H (0.49B RMSD),

FIGURE 6 | Secondary structure prediction by Net-SurfP-2.0.
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FIGURE 7 | (A) 3D structure of wild type protein predicted by AlphaFold2. (B) 3D predicted structure of Mutant protein. (C) superimposition of 3D structure of
Mutant (blue) and Wild Type Magenta. (D) Superimposition of initial 3D structure of Mutant (cyan) and Wild Type (yellow). (E) superimposition of 3D structure of Mutant
(cyan) and Wild Type (yellow). (F) Superimposition of 3D structure of Mutant (cyan) and Wild Type (yellow) at 50 ns. (G) 3D structure of Wild type at 100 ns. (H) 3D
structure of Mutant at 100 ns.
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G192C (0.78B RMSD), F529L (0.58B RMSD), H804Q (0.48B
RMSD), G405R (0.48B RMSD) S474W (0.53B RMSD), G458S
(0.48B RMSD), R56P (0.48B RMSD), R56W (0.78B RMSD),
G379C (0.58B RMSD), R757C (0.48B RMSD), V375M (0.54B

RMSD), T314M (0.78B RMSD), D517N (0.49B RMSD), T368M
(0.78B RMSD), A417T (0.40B RMSD), R363C (0.78B RMSD),
A778V (0.76B RMSD) and R50C (0.78B RMSD). Table 3 shows
the TMscores and RMSD values. The four nsSNPs with the
greatest RMSD values (R92W, R444L, N730S, and S532C)
were chosen and submitted to ITASSER for remodeling. The
protein structure produced by the ITASSER is the most
dependable since it is the most powerful modeling tool by
using Chimera 1.11. Phyre2 Wild type mutant and three
mutations superimposed on the wild-type TCIRG1 protein are
shown in Supplementary Figure S9 while validation results for
the wild and mutant versions of the 3D models were good, and
the Ramachandran plots may be found in the (Supplementary
Figure S10).

3.15 Clinical Identification of Deleterious
V52L nsSNP in a Patients Having Symptoms
Related to PID
One of our patient who was a Russian kid 7 years old was
suspected for Congenital Neutropenia, having symptoms
related to chronic infections (right-side catarrhal otitis, acute
rhinitis, and chronic tonsillopharyngitis). Whole genome
sequencing (WGS) was conducted and the result showed no
mutations for the suspected disorder. Analysis of the whole
genome sequencing data of the patient was carried out using
the BWA, GATK4, VCFtools software. An analysis of the so-
called “candidate variant filtering” was performed using the
ANNOVAR software and the Combined Annotation
Dependent Depletion (CADD) database, and its results are
schematically presented in Figure 28. The first filtration step
was to remove all synonymous SNV, non-frames InDels and
embodiments are marked as “NA” or “unknown”. A total of 270
were identified variants or INDEL SNV. Then, the identified
variants were filtered by overlaying on the known 351 PID genes
and known congenital neutropenia genes. Selected 111 variants
were retained to search for more possible ones. After eliminating
the common variants, whose Minor allele frequency (MAF)>0.01
for The Exome Aggregation Consortium (ExAC), 1000g and The
Genome Aggregation Database (gnomAD), a total of six rare
variants remained. To select pathogenic mutations, CADD, the
Functional Analysis through Hidden Markov Models
(FATHMM), and Protein Variation Effect Analyzer
(PROVEAN) models were used, and finally, four mutations
that are likely to lead to the development of the disease in this
patient were predicted. In particular, a mutation (g. 68041789G >
C) was identified in the TCIRG1 gene. The mutation was V52L
which in our Insilco analysis this mutation was predicted through
many algorithm tools and this mutation was found to disturb the
function and structure of TCIRG1 protein.

3.16 Simulation
The wild type and mutant proteins were preprocessed using
Protein Preparation Wizard of Maestro, which included
complex optimization and minimization. All the systems were
prepared using the System Builder tool. TIP3P, a solvent model
with an orthorhombic box, was chosen. (Transferable

FIGURE 7 | (Continued).
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Intermolecular Interaction Potential three Points). In the
simulation, the OPLS 2005 force field was used (Rasheed
et al., 2021). To make the models neutral, counter ions were
introduced. To mimic physiological conditions, 0.15 M sodium
chloride (NaCl) was added. The NPT ensemble with 300 K
temperature and 1 atm pressure was chosen for the entire
simulation. The models were relaxed before the simulation.
The trajectories were saved for examination after every 100 ps,
and the simulation’s stability was verified by comparing the

protein and ligand’s root mean square deviation (RMSD)
over time.

Figure 8 depicts the evolution of RMSD values for the C-alpha
atoms of protein over time. The plot shows that the protein reaches
stability at 20,000 ps. After that, for the length of the simulation,
fluctuations in RMSD values for wild type remain within 2.0
Angstrom, which is acceptable (Pedersen et al., 2021). The
mutant protein RMSD values fluctuate within 3.5 Angstrom after
they have been equilibrated. These findings indicate that the mutant

FIGURE 8 | Root mean square deviation (RMSD) of the C-alpha atoms of Wild Type (A) and Mutant by HHpred (B) and Mutant by Alphafold2 (C)with time. The left
Y-axis shows the variation of proteins RMSD through time.
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protein has higher RMSD throughout the simulation period. On the
RMSF graphic (Figure 9A, B), peaks represent portions of the
proteins that fluctuate the most during the simulation. Protein tails
(both N- and C-terminal) typically change more than any other part
of the protein. Alpha helices and beta strands, for example, are
usually stiffer than the unstructured section of the protein and
fluctuate less than loop portions. According to MD trajectories, the
residues with greater peaks belong to loop areas or N and C-terminal
zones. Alpha-helices and beta-strands are monitored as secondary
structure elements during the simulation (SSE). The graph above
depicts the distribution of SSE by residue index across the protein
structures. The mutant and wild total energy, VanderWaal’s energy,
and Secondary structure element (SSE are shown in Figure 9C-J as
mutant show different total energy and Vander Waal’s energy from
the wild.

3.17 Intramolecular H-Bonds can Be
Detected Throughout the Simulation
As seen in Figure 10, most of the significant intramolecular
interactions discovered by MD are hydrogen bonds. A timeline
depicts the interactions and contacts. The distribution of atoms in a
protein around its axis is known as the radius of gyration (Rg). Rg is
the length that reflects the distance between the rotating point and
the place where the energy transfer has the greatest effect. This
conceptual idea also aids in the identification of diverse polymer
kinds, such as proteins. The two most important markers for
forecasting the structural activity of a macromolecule are the
calculation of Rg and distance calculations. The pace of folding
of a protein is directly related to its compactness, which may be
tracked using an advanced computer approach for determining the
radius of gyration Figure 11.

FIGURE 9 | Residue wise Root Mean Square Fluctuation (RMSF) of (A)Wild Type protein, (B)Mutant protein, total energy of the wild type(C) compared to mutant
protein (D, Vander Waal’s energy of the wild type(E) compared to mutant protein (F), Secondary structure element (SSE) percentage of the wild type (G) and mutant
protein (H), Distribution of SSE by residue index across the protein structures, alpha helices (orange), beta strands (cyan) and loops (white) along the simulated time of
100 ns.
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4 DISCUSSION

A number of studies have found a relationship between SNPs in
the TCIRG1 gene and osteopetrosis and congenital neutropenia.
(Sobacchi et al., 2001; Susani et al., 2004; Makaryan et al., 2014;
Scimeca et al., 2003; Rosenthal et al., 2016). TCIRG1 still has far

too many SNPs that could play an impact on the disorders caused
by this gene. We looked at TCIRG1’s nsSNPs to discover which
ones were the most detrimental and could be linked to
Osteopetrosis, congenital neutropenia, and other immune-
related diseases in this study. In this work, the dbSNP
database revealed 811 nsSNPs in the TCIRG1 gene. Sixty-four

FIGURE 9 | (Continued).
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nsSNPs in the TCIRG1 gene were validated as high-risk
detrimental by SIFT and PolyPhen. The top fifteen high-risk
nsSNPs in (Table 4) have been verified as extremely harmful by
all state-of-the-art prediction techniques employed in the study.
These fifteen nsSNPs (P572L, M546V, I721N, F610S, A732T,
F51S, A717D, E722K, R57H, R109W, R191H, S532C, G192S,

F529L, and H804Q) have not yet been connected to
TCIRG1 gene-related osteopetrosis and congenital
neutropenia, however, they could be utilized as a markers
nsSNPs variants whenever diagnosing disorders related with
TCIRG1 gene. These nsSNPs have been connected to their
participation in the pathophysiology of TCIRG1-related

FIGURE 10 | (A) timeline representation of the interactions and contacts (H-bonds) Wild Type. (B) timeline representation of the interactions and contacts
(H-bonds) of Mutant.

FIGURE 11 | Radius of gyration, (A) Wild Type Protein, (B) Mutant Protein.
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TABLE 4 | confirmation of SIFT and Poly Phen2 predicated highly pathogenic nsSNPs through different predication tools.

Aas LRT Mutation
taster

Mutation
accessor

PROVEAN FATHMM VEST3 MTA
SVM

METALR M-CAP CADD DANN FATHMM-
MKK

PhD-
SNP

PANTHER SNP-
GO

P-MUT SNAP2

P572L D D H D D D D D D D D D D D D D D
M546V D D H D D D D D D D D D D D D D D
I721N D D H D D D D D D D D D D D D D D
F610S D D M D D D D D D D D D D D D D D
A732T D D H D D D D D D D D D D D D D D
F51S D D M D D D D D D D D D D D D D D
A717D N D M D D D D D D D D D D D D D D
E722K D D H D D D D D D D D D D D D D D
R57H D D H D D D D D D D D D D D D D D
R109W D D M D D D D D D D D D D D D D D
R191H D D H D D D D D D D D D D D D D D
S532C D D H D D D D D D D T D D D D D D
G192S D D H D D D D D D D D D D D D D D
F529L D D M D D D D D D D D D D D D D D
H804Q D D M D D D D D D D D D D D D D D
G405R D D - D D D D D D D D D D D D D D
S474W D D - D D D D D D D D D D D D D D
G458S D D - D D D D D D D D D D D D D D
R444L D D - D D D D D D D D D D D D D D
R56P D D - D D D D D D D D D D D D D D
G379S D D - D D D D D D D D D D D D D D
R757C D D M D D D D D D D T D D D D D D
N730S D D M D D T D D D D D D D D D D D
V375M D D - D D D D D D D D D D D D D D
T314M D D - D D D D D D D D D D D D D D
D517N D D H D D T D D D D D D D D D D D
R92W D D M D D T D D D D D D D D D D D
T368M D D - D D D D D D D D D D D D D D
A417T D D H D D D D D D D D T D D D D D
R363C D D - D D D D D D D D D D D D D D
R56W D D H D D T D T - D D D D D D D D
A778V D D M D D D D D D D D D D D N N N
R50C D D M D D T D D D D D D D D D D -
V52L D D M T D T D D - D D D D D D D D
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illnesses such as osteopetrosis and congenital neutropenia.
Mutations (G405R, R444L, and D517N) reported in our study
are already associated with osteopetrosis. These three mutations
are predicated deleterious by all of the algorithm tools except one
tool while ConSurf show that they are highly conserved. Our
study confirms that these three mutations are shown to
destabilize the TCIRG1 protein structure and function.
Mutation V52L was identified by analyzing whole genome
sequencing data of the patient suspected for congenital
neutropenia and was carried out using the BWA, GATK4,
VCFtools software. This mutation is shown by our study
deleterious, highly conserved and destabilizing the protein
structure and function. Fifteen nsSNPs (S474W, G458S, R56P,
G379S, R757C, N730S, V375M, T314M, R92W, T368M, A417T,
R363C, R56W, A778V and R50C) reported in our study are also
deleterious they are not shown damaging by one or two
predication tools but they also showed to destabilize protein
stability and might be important nSNPs for TCIRG1 gene.
ConSurf uses a combination of evolutionary conservation data
and solvent accessibility predictions to determine whether an
amino acid is conserved, exposed, functional, or structural.
Highly conserved residues are predicted to be structurally or
functionally relevant based on their positions on the protein
surface and core (Ashkenazy et al., 2016). Amino acids involved
in protein–protein interactions, for example, are expected to be
more conserved. As a result, the nsSNPs that have been found in
conserved areas are the most damaging nsSNPs (Miller and
Kumar, 2001). Only 26 SNPs out of a total of 56 nsSNPs are
found at evolutionary conserved, exposed, and functionally
relevant residues (A20V, R56P, R57H, R191H, G192C, E321K,
R366H, T368M, R444L, and E722K). There were 16 nsSNPs
found at conserved, buried, and structurally significant residues
(S7K, V52L, G379S, M403I, G405R, G458S, D517N, F529L,
S532C, M546V, A640S, D683H, I732N, N730S, A732T, and
H804Q). The remaining nsSNPs were discovered in either
exposed or buried residues that were not predicted to have
any structural or functional significance in the TCIRG1
protein. The I-Mutant 3.0 web server was used to estimate
protein stability, and variations T570M, P572L, M546V,
I721N, F610S, A732T, F51S, A717T, R57H, R109W, R191H,
G192S, F529L, G458W, R444L, R56P, G379S, N730S, V375M,
R92W, and T368 All of these nsSNPs can be important in the
diagnosis of the TCIRG1 gene because they reduce the protein’s
stability. In silico tools have been used to conduct various
investigations on genes and proteins such as the CCBE1,
ADA, and GJA3 genes (Shinwari et al., 2021; Essadssi et al.,
2019; Zhang et al., 2020). Such research may lead to the discovery
of novel therapeutic targets. All of the simulated structures were
validated using RAMPAGE data. Protein designs with core
RAMPAGE values greater than 80% are regarded to be
superior (Essadssi et al., 2019). RAMPAGE values for the
structure shown in Figure 5A (TCGIR1 wild type) were 90.5%
preferred residues, 8.8% allowed, 0.6% usually allowed, and 0.2%
forbidden. Similarly, for mutants P572L (90.7% favored residues,
8.6% allowed, 0.5% generally allowed, and disallowed 0.2%),
R92W (90.5% favored residues, 8.8% allowed, 0.6% generally
allowed, and disallowed 0.2%) R444L (90.6% favored residues,

8.8% allowed, 0.3% generally allowed, and disallowed 0.2%), and
N730I (90.4% favored residues, 8.8% allowed, 0.3% generally
allowed, and disallowed 0.3% and S532C (90.2% favored residues,
8.8% allowed, 0.5% generally allowed, and disallowed 0.6%, and
A732T (90.6% favored residues, 8.4% allowed, 0.9% generally
allowed, and disallowed 0.2% all the structures were somehow
validated. Protein shapes and functions are influenced by PTMs,
which have been found to be important in cell signaling,
protein–protein interactions, and other essential events in
biological systems (Dai and Gu, 2010; Shiloh and Ziv, 2013).
We wanted to determine if the selected nsSNPs changed the
PTMs of the TCIRG1 protein in this investigation. PTM sites in
the protein under research were predicted using a variety of
bioinformatics methods. Because lysine residues in certain
proteins are methylated, this changes their interaction with
DNA and regulates gene expression, methylation is a key
PTM. Another essential method for protein regulation is the
molecular switch, which adapts the protein to execute functions
such as protein structure conformational changes, protein
activation and deactivation, and signal transduction pathways
(Deutscher and Saier, 2005; Puttick et al., 2008; Cieśla et al., 2011;
Sawicka and Seiser, 2014). Among these predictions, the ConSurf
Conservation profile shows that rs137 6162684 is highly
conserved, exposed, and functionally relevant, indicating its
relevance. Phosphorylation capability is demonstrated at
position rs137 6162684, which also happens to be structurally
essential and highly conserved (ConSurf Prediction), making it
incredibly crucial. Ubiquitylation is a protein degradation
mechanism that also helps to repair DNA damage (Gallo
et al., 2017). Protein function and stability are both dependent
on it. In protein–protein interactions, it has a structural role. As
revealed by these PTM predictions, phosphorylation is the only
PTM that may have a significant impact on TCIRG1 protein
structure and function, with residuals rs121908251 and other
reported locations in our study having the most significant
phosphorylation sites. All of the phosphorylation and
ubiquitylation sites identified in our investigation could play a
significant role in protein stability and other TCIRG1 gene-
related functions. According to GeneMANIA’s predictions,
TCIRG1 is the most interacting gene in our study and co-
expressed with a variety of genes. Any of the most detrimental
nsSNPs in the TCIRG1 gene will eventually influence and impair
the normal functioning of other linked genes, based on their
interaction patterns and coexpression profiles. This highlights the
significance of these interconnected and co-expressed genes in
congenital neutropenia and other primary immunodeficiency
disorders. Our research has all of the essential data and
analyses for finding the most damaging nsSNPs because it was
thorough. Every study, including ours, is limited in some way.
Our research is centered on computer tools and web servers that
use mathematical and statistical methodologies. As a result,
further research is needed to corroborate these findings. Our
findings shed light on TCIRG1 nsSNPs, their conservation,
impact on protein stability and functions, protein 3D
structure, PTM potential sites, ligand binding sites, and gene-
gene interactions with other genes, all of which could be useful in
future TCIRG1 research to better understand its role in diseases
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such as osteopetrosis and congenital neutropenia. The effect of
substitutions on protein function was investigated using FTSite.
Three ligand-binding sites were predicted by the FTSite server,
each having 14.9 and 13 residues. We discovered that several
alterations are involved in the ligand-binding region and form the
catalytic coordination sphere, which could affect the binding
affinity of the TCIRG1 protein. As predicted by SIFT software
and other prediction approaches, these changes had an impact on
the TCIRG1 structure and decreased its stability.

5 CONCLUSION

Out of 64 SIFT and PolyPhen deleterious predicted nsSNPs
variants, this study identified 33 novel sites which are
deleterious, while 15 of which were highly deleterious variants
predicted damaging/deleterious by all of the algorithms tools used
in the study, and these variant mutations may lead to disruption
of the original conformation of the native protein. When
compared to the original protein structure, our molecular
dynamics technique revealed a shift in deviation in critical
locations of the mutant structures. These discrepancies can
compromise the confirmation of the secondary structure and,
as a result, the protein’s stability. We also noticed that the ATP
binding capability of the mutant proteins was less than that of the
native protein. Although the G405R, R444L, and D517N mutant
has been previously associated with osteopetrosis according to the
literature, no one has predicted the other 12 mutants to be linked
with any diseases. As a result, it is conceivable that the unreported
nsSNP can cause disease by affecting protein activation or
efficiency. The findings of this study will aid future genome
association studies in distinguishing harmful SNPs linked with
various individual individuals with osteopetrosis and congenital
neutropenia. As a result, comprehensive clinical-trial-based
investigations on a broad population are required to

characterize this data on SNPs, as are experimental mutational
research to validate the findings.
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