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ABSTRACT
Influenza vaccines are a fundamental tool for preventing the disease and reducing its consequences,
particularly in specific high-risk groups. In order to be licensed, influenza vaccines have to meet strict
criteria established by European Medicines Agency. Although the licensure of influenza vaccines started
65 years ago, Hemagglutination Inhibition and Single Radial Hemolysis are the only serological assays
that can ascertain correlates of protection. However, they present evident limitations. The present
review focuses on the evaluation of cell-mediated immunity (CMI), which plays an important role in
the host immune response in protecting against virus-related illness and in the establishment of long-
term immunological memory. Although correlates of protection are not currently available for CMI, it
would be advisable to investigate this kind of immunological response for the evaluation of next-
generation vaccines.
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Introduction

Influenza vaccines constitute the only available means of pre-
venting influenza and its complications. Although influenza is
a vaccine-preventable disease, it still constitutes a major health
problem, accounting for about 3 to 5 million cases of severe
illness and responsible for 290,000 up to 650,000 respiratory
deaths per year.1 Young children, pregnant women, immuno-
compromised subjects, subjects of any age with specific chronic
medical conditions and the elderly have a higher risk for influ-
enza-related co-morbidities; these may be life-threatening,
requiring hospitalization, and even lead to death. In healthy
children younger than 24 months of age, the risk of hospitaliza-
tion is comparable to that of high-risk groups, or even higher.
Specifically, children aged < 24months run a significantly higher
risk of being hospitalized than older children; in addition the
youngest children have the greatest risk of hospitalization as
a consequence of flu. Influenza-associated deaths in children
often occur soon after symptom onset, mostly within 1 week.
Wong et al.2 found that the period between symptom onset and
death was even shorter in previously healthy children than in
children with high-risk medical conditions. Although no expla-
nation for this observation is currently available, it has been
hypothesized that abnormal immune regulation could underlie
severe infection in certain previously healthy children.3

Flu complications range from moderate (ear and sinus
infections) to serious. The latter include pneumonia, myocar-
ditis, encephalitis, myositis, rhabdomyolysis, multi-organ fail-
ure (such as respiratory and kidney failure) and sepsis. Flu
also can make chronic health problems worse.4

The elderly show reduced vaccine effectiveness as a result of
immunosenescence. It is traditionally accepted that aging leads to

a gradual decline of both innate and adaptive immune responses,
thereby reducing the response towards infections and vaccines;
today, however, immunosenescence is seenmore as a remodeling
of the immune system, causing an altered regulation of the
various compartments. Indeed, while certain activities show a -
deterioration,5 others are up-regulated6 or remain unchanged.7

In addition to age, other factors influence the effectiveness of
influenza vaccines: the antigen match between the circulating
influenza strains and those strains contained in the vaccine itself,
the vaccinee’s immunocompetence, and the antibody levels
induced by previous infections or vaccinations.8,9

Criteria for influenza vaccine licensing

The evaluation of vaccine immunogenicity constitutes a critical
aspect of vaccinemarketing. In order to evaluate the host immune
response to vaccines that provides protection, correlates of protec-
tion are used. Although the words “correlates” and “surrogates”
are often used synonymously, their meanings are different. As
specified by Plotkin,10 “an immune function that is responsible
for and statistically interrelatedwith protection is a correlate, while
an immune response that is simply an easy measurement but not
functional in protection is a surrogate”. In the case of influenza
vaccines, correlates of protection for influenza are usually repre-
sented by serum antibody titers, which are mainly measured by
means of the Hemagglutination Inhibition (HI) assay.11 Indeed,
antibodies can protect against influenza, as demonstrated by the
fact that their parental or intranasal administration reduces infec-
tion rates in animal models12,13 and IgG trans-placental passage
provides neonatal protection.14,15 Furthermore, in the human
influenza challenge, treatment with an anti-M2emonoclonal anti-
body has proved effective and safe.16
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Several serological assays are commonly used to evaluate
vaccine effectiveness; these include usually Single Radial
Haemolysis (SRH), HI test and VirusMicroneutralization (MN).

However, although the licensure of influenza vaccines began
65 years ago, HI and SRH are the only serological assays for the
evaluation of humoral effectiveness that have correlates of protec-
tion established by the EuropeanMedicines Agency (EMA) which
have to bemet in order to obtain vaccine licensure. For this reason,
they are considered the gold standard. Every year, vaccine manu-
facturers have to conduct clinical trials for the annual update of
influenza vaccine composition. Specifically, pre- and post-
vaccination serum samples are collected (approximately 21 days
after the first blood draw) from 2 groups of at least 50 individuals
aged 18–60 years and >60 years. Immunogenicity is assessed by
means of three criteria identified by the Committee for Medicinal
Products for Human Use (CHMP).

The proportion of vaccines that achieve an HI titer of 40 or
SRH > 25 mm2 should be >70% in

18–60 year-olds and >60% in the over-60s. The seroconversion
rate (SCR) (at least a 4-fold increase in titer) should be >40% in
18–60-year-olds and >30% in the over 60s. A mean geometric
increase (ratio of pre- to post-vaccination) of >2.5 is required in
18–60-year-olds and >2 in over-60s. In the US, the same criteria
are used by Food and Drug Administration (FDA), but the lower
boundary of the 95% confidence interval (CI) has to be higher than
or equal to that of the SCR and geometric mean titer (GMT)
criteria.17

At least one of the 3 criteria must be met by seasonal
influenza vaccines, and all 3 criteria by pandemic influenza
vaccines in order to be licensed.

Since different classes of antibodies are identified by the
three serological assays, different degrees of correlation
among them have been observed.18

The SRH and HI tests recognize antibodies which bind the
influenza virus and fix complement19,20 and viral HA, respec-
tively, preventing the agglutination of erythrocytes caused by
the influenza virus (Figure 1).

The SRH assay is based on the measurement of the hemo-
lysis areas,20,21 which correlates with influenza antibody con-
centration, since hemolysis is the outcome of antigen-
antibody binding. The assay is specifically suitable for use in
large-scale clinical trials, owing to its rapidity, reproducibility
and reliability.22,23 The SRH assay has a higher sensitivity for
influenza B strains.24,25

The HI assay is the gold-standard assay of antibody titers
against HA, and is based on erythrocyte agglutination due to
the ability of antibodies that specifically recognize HA to inhi-
bit the binding of viral surface protein HA to sialic acid sites on
the surface of red blood cells.21 Avian (chicken or turkey) or
mammalian (horse or guinea pig) erythrocytes are usually
chosen for the assay. HI titers are quantified as the reciprocal
of the highest serum dilution (titer) (1/dilution factor) that
inhibits hemagglutination by binding with the virus.26

HI also presents limitations, including low sensitivity for
influenza B and avian viruses, unsuitability for LAIV eva-
luation, high inter-laboratory variability due to many fac-
tors and the absence of standardized protocols.25 Regarding
seasonal influenza A strains, SRH and HI show similar
sensitivity.24 A ≥ 25 mm2 zone is defined as a correlate of
protection for SRH.27 Concerning HI, an HI antibody titer
≥40 and a minimum 4-fold increase in antibody titer post
vaccination are historically considered an immunological
correlate of protection against infections caused by influ-
enza viruses, and is associated with a 50% reduction in the
risk of developing influenza. These data are based on
a challenge study performed by the group of Hobson on

Figure 1. Some of the assays currently used for the evaluation of influenza vaccines
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adults27 and epidemiologic studies conducted mainly on
young adults. [rev. in17,23,28]. However, the biological role
in establishing protection of titers higher than 1:40 remains
to be elucidated. Indeed, in an analysis of 12 studies con-
ducted on healthy adults, de Jong et al.29 found that a mean
titer of 28 was protective in 50% of the subjects. However,
they reported protective titers ranging from 15 to 65, owing
to differences in the studies. By contrast, a subsequent
meta-analysis by Coudeville found that 17 was a median
50% protective titer.30 In addition, application of the baye-
sian random-effects model developed by Coudeville to the
data from Hobson’s study revealed that a titer of 29 pro-
vided a 50% level of protection. Regarding the correlation
between HI titers and the establishment of clinical protec-
tion against influenza, the investigation revealed an increase
in protection up to an HI titer of 150. Reaching HI titers
higher than 150 did not provide a further significant pro-
tective ability; however, it is possible that HI titer > 160
must be reached in order to be protective both in children
less than 6 years of age and in the elderly, since these two
groups have an elevated risk of suffering influenza-related
complications.31 Concerning children, Black and colleagues
found that 50% protection corresponded to an HAI titer of
110,31 whereas few data are available on subjects aged over
65 years, to whom the protective titer of 40 is applied, as in
younger adults.32

In addition, over the last decade, an increasing proportion
of circulating human influenza A(H3N2) viruses have exhib-
ited lower levels of hemagglutination as a consequence of
binding to HA.33

The MN assay identifies functional antibodies that recog-
nize the globular head of hemagglutinin (HA); these anti-
bodies are able to halt receptor binding and internalization
during membrane fusion, thus constituting the principal
immune mediators toward influenza viruses.34 Hence, the
assay provides a true measure of the antibodies able to
neutralize the ability of the virus to enter mammalian cells
and replicate (Figure 1).35 In the MN assay, sensitive cells are
inoculated with a mixture of viruses and serum (i.e. the
serum samples tested) and the read-out is performed by
microscopically observing cytopathic effects (CPEs). The
neutralization titer (i.e. antibody titer of tested previously
serum samples serially diluted two-fold) is defined as the
serum dilution by means of which 50% of the wells are
protected against a virus-induced CPE. CPE is evaluated by
checking the 96-well plate under an optical microscope for
the presence of local lesions in the cell monolayer, in terms
of hole(s) in the cell monolayer, surrounded by destroyed
cells, or complete destruction of the cell monolayer in the
well.11 However, the assay is labor-intensive and displays
poor reproducibility among laboratories.36,37 Currently, no
threshold for protection against influenza has yet been estab-
lished for the MN test.23

All the above-mentioned assays measure antibody titers in
the peripheral blood, but they do not evaluate the establish-
ment of local mucosal immunity.

Evaluating local mucosal immunity is particularly important
with regard to the efficacy of live attenuated influenza vaccines
(LAIVs). Although these vaccines entered themarket in 2013, we

still do not have specific knowledge of the immunological
mechanisms they induce, nor do they have correlates of
protection.38 A study conducted byGorse39 on older, chronically
ill adults found that LAIVs, but not trivalent inactivated vaccines
(TIVs), were able to induce heterosubtypic immunity in terms of
both humoral and cellular immune responses. Comparison of
the immune response in children and adults immunized with
LAIVs or TIVs, revealed that both vaccines were effective; how-
ever, significant differences emerged in B-cell and antibody
responses elicited by LAIVs or TIVs in the two groups.40,41

Specifically, inactivated influenza vaccine (IIV) proved more
effective in adults, whereas LAIVs provided higher protection in
children,42 although the immune mechanisms underlying these
differences have not yet been clarified.41 With particular regard to
influenza virus-specific HI, only a small increase in serum HI
responses was observed in adults immunized with LAIV, and
these responses were considerably lower than those induced by
IIV. Both LAIV and IIV similarly induced only transient T-cell
responses to replication-competent whole virus in adults. In con-
trast, stronger influenza virus-specific secretory IgA (sIgA)
responses were induced by LAIV than by IIV.41 A previous inves-
tigation conducted by the same group40 reported that LAIVs
showed a greater ability to induce several T-cell responses
(CD4+, CD8+, and γδ T cells) in young children, indicating that
they play an important role in providing heterosubtypic
immunity.

Measuring sIgA and identifying a subpopulation of resident
memory T-cells43 could constitute valuable alternative tools for
assessing the effectiveness of LAIV (Figure 1). In addition,
a recently published meta-analysis performed by the group of
Wen44 allowed the identification of differentially expressed
genes responsible for distinct immune responses following
LAIV and TIV vaccinations. Specifically, whereas LAIV mainly
promoted the upregulation of genes associated with the innate
immune system, TIV up-regulated genes correlated with both
the innate and the humoral immune responses. The importance
of these data lies in the fact that they provide more information
about the activating pathways underlying the different immune
responses to LAIV and TIV immunization – knowledge which
may enable us to enhance the efficacy of vaccinations in children,
adults and the elderly.44 Wang and colleagues45 first investigated
the correlates of protection by calculating Spearman’s rank cor-
relation coefficient (r) for antibody levels for SRH, HI and MN
against H3N2 influenza in children and adolescents; in these two
age-groups, few data on the transferability of the two thresholds
established for HI and SRH are available.31 They reported sig-
nificant correlations among HI, MN and SRH. Specifically,
correlation of 0.50 (P < .01), 0.53 (P < .01) and 0.82 (P < .01)
were observed between HI and MN, between HI and SRH, and
between MN and SRH. MN was the most sensitive of the three
serological assays investigated for the evaluation of antibody
response against influenza H3N2.45 This result could be directly
linked to the principle underlying the three tests.While SRH and
HI assays are based on complement fixation and HA binding,
respectively, MN recognizes specifically functional antibodies
involved in virus neutralization. Hence, MN can detect
a higher proportion of protective antibodies than SRH and
HI.25 Specifically, HI has been seen to have lower sensitivity
than SRH and MN, as demonstrated by the fact that 34% and
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16% of the subjects, respectively, showed HI and SRH titers
below the detection limit, in comparison with 7% on the MN
assay. Previous investigations had also reported a higher sensi-
tivity of MN than HI.11,19,20 Moreover, MN is reckoned to be
more sensitive than HI in detecting protective antibodies
towards some pandemic influenza strains.46,47 With regard to
the MN assay, a recent study conducted by Tsang48 reported
a correlation between antibody titers ≥ 40 and the establishment
of 49% protection against H3N2 influenza virus within
households.

Another limitation that should be considered is that the
currently available correlates of protection for influenza vaccines
regard healthy subjects and not high risk groups, such as older
adults, young children and subjects affected by certain medical
conditions;46 in these groups, HI displays lower effectiveness in
predicting protection. Indeed, the efficacy of an influenza vac-
cine is not always correlated with the extent of the humoral
immune response.49 Evaluation of the efficacy of novel influenza
vaccines is heavily based on serological assays; however, both
seroconversion and seroprotection rates, as well as antibody
titers, when used as the only predictors of vaccine efficacy,
present limitations, as has increasingly been recognized.50-54

Immune senescence is responsible for the age-related decline
of immune responses, since the elderly present alterations in the
immune function and inflammatory response; this results in
more serious outcomes of viral and bacterial infections as well
as lower vaccine responses.55 Specifically, elderly subjects who
are affected by febrile influenza illness may not be able to mount
an antibody response (with reductions in antibody titers and
lower antibody avidity) although they test PCR+ for influenza
virus.56 For this reason, an optimal correlation between antibody
titer and strain-specific vaccine efficacy cannot be obtained by
using the traditional measures of immune response to influenza
vaccines. Hence, in the elderly, the cell-mediated immune
response can help to establish clinical protection against the
increased risk for complications of influenza infections.57,58 In
addition, in the elderly cytotoxic T-lymphocyte (CTL) response
and granzyme B synthesis have shown a stronger correlation
with protection than that provided by antibodies.59,60

Another limitation of standard serology methods is that
new vaccines may not contain HA in their formulations, but
other viral proteins, which means that their protective actions
cannot be determined; some example are DNA- or RNA-
based vaccines with sequences encoding nucleoprotein (NP)
and M proteins.61

In young adults, correlates of protection for T-lymphocytes
have been identified,62,63 but these have not been transferred to
older adults. Moreover, attempts to transfer the thresholds indi-
cating clinical protection against influenza infection to older
adults, with a view to developing novel influenza vaccines, could
be unsuccessful, since these thresholds may need to be associated
with antibody responses. Supporting the need for new correlates of
protection, a recent study by Neidich64 on influenza-vaccinated
adults suffering from obesity revealed for the first time that,
although obese subjects displayed similar seroconversion and
seroprotection rates to healthy-weight subjects, they were twice
as likely to develop influenza or influenza-like illness (ILI). Not
only did an HI titer ≥ 40 not represent a serological correlate of
protection in obese adults, but alsoMN titers could not be applied

to this group at high risk of influenza and ILI, in accordance with
studies performed on obese mice.65

The use of flow cytometry

Cell-mediated immunity (CMI) plays an important role in host
immune response in protecting against virus-related illnesses,
including influenza, and in the establishment of long-term immu-
nological memory.66

Today, clinical trials aimed at evaluating vaccine immuno-
genicity and, in particular, at increasing our knowledge of the
mechanisms underlying the immune response are making
greater use of techniques involving the simultaneous and accu-
rate measurement of subpopulations of stimulated peripheral
blood mononuclear cells (PBMCs) and several extracellular
and intracellular cytokines, chemokines and cytotoxic activity,
by means of flow cytometry (Figure1) or Enzyme-linked
ImmunoSPOT (ELISPOT) assays.67

Identifying significant changes in the phenotype, differentia-
tion and activity of T-lymphocytes induced by vaccine adminis-
tration could provide reliable correlates of protection.68

Although our knowledge of memory T-cell responses has
increased, we still know little about the duration of these responses
and their involvement in various pathologies. Protection against
influenza involves both B and T lymphocytes. Specifically,
CD8 T-cell memory and antigen-selective B cells require
CD4 T-cells. Although conserved influenza peptides/antigens
have been seen to induce the formation of both CD8 and
CD4 T-lymphocytes, their generation does not reach a sufficiently
elevated level to maintain immunological protection for years.69

Long-term heterotypic protection against several influenza viruses
have been induced by memory T-lymphocytes,70-72 as demon-
strated by the fact that seasonal influenza viruses induced
CD4 T70,73 and cytotoxic T-lymphocytes71 that are able to recog-
nize the pandemic H1N1 2009 (pdmH1N1) virus.

Intracellular cytokines released by an entire population can be
identified through the use of intracellular cytokine staining (ICS).
However, the extracellular release of cytokines by the Golgi is
prevented by the use of an inhibitor of protein transport, such as
monensin or Brefeldin A in the last 4 or 16 hours of cell
culture.74,75 PBMCs or dilutedwhole blood can then be stimulated
overnight by using different stimuli, such as Staphylococcus enter-
otoxin B (SEB), recombinant ESAT-6 protein or anti-CD28 and
anti-CD49d co-stimulatory antibodies. The end of the incubation
is followed by fixing, permeabilization and staining with fluores-
cent-labeled anti-cytokine antibodies. The PBMCs are then ana-
lyzed by means of a flow cytometer.76,77 The profile of secreted
cytokines enables T-lymphocyte sub-populations to be
distinguished.

ICS can be conducted both on isolated PBMCs, either fresh or
cryopreserved in freezing medium (before at −80ºC and then in
liquid nitrogen)78 and on whole blood; in the former case, how-
ever, a lower inter-laboratory coefficient of variation has been
observed.79

Evaluation of t and B cell responses

Natural influenza virus infection stimulates CD4+ and CD8+

T cells, which act in synergy to provide protection in the case
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of vaccine mismatch or pandemic outbreak. By contrast, only
the currently available LAIVs, and not IIVs, have been seen to
efficiently elicit T-cell responses, especially in children.40,80,81

The establishment of T-cell-mediated immunity induced by
next-generation vaccines could overcome limitations linked to
both specific subtype protection and antigenic mismatch. The
different T-cell sub-populations can be identified through the
use of specific antibody combinations that recognize cytokines
secreted by a specific T-cell subset, such as Interferon (IFN)-γ
by CD4+ T helper (Th)1 T-cells82 and cytotoxic T (Tc)1 CD8+

T cells,83 Interleukin (IL)-17A by Th17 CD4+ T-cells,84 or IL-
4, IL-5, IL-9, IL-10 and IL-13 synthetized by CD4+ Th2 cells.

84

Although the cell-mediated immune response upon
influenza vaccination is increasingly being investigated,
and the observation that granzyme B production correlates
with protection and increased CTL response to influenza
vaccination in the elderly (vide supra), no correlates of
protection regarding either the phenotype or the magnitude
of the T-cell response following vaccination have yet been
established. Evaluation of the cytotoxic potential of CD8+

T-lymphocytes is a further method of evaluating immune
response; this involves measuring the degranulation and
granule contents of specific T-cell subsets. Degranulation
is typically measured in terms of CD107a expression on
the cell surface. In normal conditions, CD107a is expressed
in internal granular membranes, whereas during degranula-
tion its transient expression can be identified on the cell
surface.85 T-cell responses can be evaluated by analyzing
several cytokines, cell surface markers and other functional
markers, such as perforin, CD107a, and CD154, with up to
10-color resolution86 and CD40 ligand expression with
regard to CD4+T cell response.

The profile of ab-producing B lymphocytes has been investi-
gated in infected or immunized subjects bymonitoring the surface
markers CD19, CD20, CD27, CD38, and CD138. Acute plasma-
blasts constitute the cell population which usually appears in the
blood after infection during the phase of immune response. These
cells are CD19lowCD20−CD27highCD38highCD138+/−cell popula-
tions, which differ from steady-state plasmablasts.87 Their number
has been seen to peak onday 6 or 7 in the case of booster responses,
and somewhat later (∼day 10) in the case of new responses.11,88-91

In order to identify novel correlates of protection, Nakaya
and colleagues investigated early features of the innate and
adaptive immune responses that could predict the HI titer
4 weeks after vaccination in 56 healthy young adults immu-
nized with TIV or LAIV during the annual influenza seasons
in 2007, 2008 and 2009.92 The study highlighted the presence
of a large number of genes showing a different expression;
most of these participated in the response involving type
I IFN and had a high expression in antibody secreting cells
(ASCs), the latter probably due to rapid plasmablast prolifera-
tion 7 days after vaccination,89 in the PBMCs of LAIV and
TIV vaccinees, respectively.92

Gijzen et al.49 utilized granzyme B as a marker of T cell-
mediated cytotoxicity and the production of Th1 and Th2
cytokines, such as IFN-γ, TNF-α, IL-2, IL-10, IL-4, IL-13,
GM-CSF, to determine the cellular immune response with
a view to establishing correlates of protection. Their study
demonstrated that both granzyme B and cytokine assays

could be used to evaluate cellular immunity and thus be
examined as correlates of protection.

The group of Jürchott93 evaluated the baseline protective
immune response to the A(H1N1)pdm2009 influenza strain
following seasonal vaccination of 17 young (<31 years old)
and 20 older (≥50 years) subjects who were seronegative
against this strain by analyzing 36 sub-populations of lym-
phocytes. They also correlated this response with the serolo-
gical immune response to the A(H1N1)pdm2009 strain after
seasonal influenza vaccination. The seasonal vaccine for the
season 2011–2012 (and 2013–2014 season) contained A
(H1N1)pdm09/California/7/2009, together with A(H3N2)/
Perth/16/2009 and B/Brisbane/60/2008 (or A(H3N2)/Texas/
50/2012 and B/Massachusetts/2/2012) as vaccine strains.

The A(H3N2) and the B strains circulated before 2009 in
humans and accumulated slight modifications by means of
antigenic drift over the time,94 whereas the California strain
was a new virus of the subtype A(H1N1). The study revealed
that the serological response to A/California/7/2009 depended
on age and number of strains for which the donors were sero-
negative at the baseline. More specifically, a trend toward
a higher risk of no response and no seroprotection was
observed in elderly donors. In addition, the analysis of several
cell counts of immune sub-populations allowed these authors
to identify the axis of CD4+ T cells, CD4+ naïve T-cells and
CD4+ recent thymic emigrant T-cells as good candidates for
response predictors. Specifically, they reported that the base-
line CD4+ T-cell count, and especially that of naive CD4+

T-cells, constituted the best correlates for the evaluation of
a successful immune response to A(H1N1)pdm09, but not to
the A(H3N2) Perth or the influenza B Brisbane strains.
Indeed, no marked deviations in CD4+ T-cells and their sub-
sets were noted in Brisbane and Perth seronegative donors
regarding the response to these strains, while the cell counts
of CD8+ T-cells and CD19+ B cells in Brisbane seronegative
donors, and of monocytes and dendritic cells in Perth sero-
negative donors, differed considerably between the protected
and non-protected groups.67 The significant differences
between non-responders and responders concerning the
immune cell sub-populations could be due to the fact that
the H3N2 and the influenza B strains – or similar strains –
were circulating in humans before 2009.

In agreement with Jürchott’s results, Nayak’s group also
reported that CD4+ T-cell expansion was predictive of neu-
tralizing antibody responses to a monovalent 2009 A(H1N1)
pdm09 vaccine.95 By contrast Tebas96 found that the A
(H1N1)pdm09 vaccine was poorly immunogenic in well-
controlled HIV-infected patients as a consequence of their
low CD4+ T-cell counts. The further subdivision of naïve
CD4+ T-lymphocytes into CD31+ recent thymic emigrants
(RTE) and CD31− non-RTE fractions was not correlated
with improved prediction, though both sub-populations
were predictive of protection. Conversely, no association
between baseline influenza selective CD4+ CD40L+ T-cells
and protection against the A(H1N1)/California/7/2009 strain
was observed.

Recently, Tsang and colleagues revealed that the analyses
of human immune changes highlights the presence of baseline
predictors of post-vaccination immune responses.97
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A recent investigation conducted by Mbawuike98 evaluated
cell-mediated immune responses upon re-vaccination of 177
subjects by using an inactivated influenza A/H5N1 (A/H5N1/
Vietnam/1203/2004 and A/H5N1/Indonesia/05/05) vaccine;
they also considered the effects exerted by the vaccine dose (15-
or 90-mcg), adjuvant and the age of the subjects immunized.

Concerning LAIV vaccines, neither the quantization of
mucosal or serum antibodies, nor that of chemokines or cyto-
kines provide information regarding protection, and no associa-
tion between protection and the administration of either IIV or
LAIV vaccines was observed when the commonly used methods
for the evaluation of immunity were implemented.99

Conclusions

The formulation of an influenza vaccine that provides broad
protection even in high risk groups, and the optimization of
the vaccines currently available, require more thorough
knowledge of the immune response of the host following
influenza vaccination. A further need is to establish new
correlates of protection for influenza vaccines, particularly
for the evaluation of next-generation vaccines, since corre-
lates of protection can vary according to the vaccine type,
vaccine formulation, and the age and medical status of
vaccinees. For the last 70 years, serological assays have
been the only tests used to assess influenza vaccine efficacy,
and the HI assay is a well-standardized and widely used test.
However, the standardization of a T-cell assay may consti-
tute a valuable approach, not least with a view to the
development of more immunogenic, effective and cross-
reactive novel vaccines. Traditionally, influenza vaccines
have been aimed at eliciting antibodies involved in virus
neutralization. However, those which recognize the HA-
head region, even though potently neutralizing, can usually
target only related viruses that do not present marked anti-
genic diversity. By contrast, although antibodies that target
the conserved stem region have less neutralizing activity
in vitro, they are endowed with cross-reactivity.100,101 Even
though HI plays a paramount role as a correlate of protec-
tion for conventional influenza vaccines, in addition to
CMI, assays based on other vaccination-induced antibodies,
and which recognize epitopes different from HA, could
constitute valid alternatives. Indeed, the human immune
response is complex, involving both humoral and cellular
responses, and various correlates of protection may concei-
vably exist.

Novel assays able to measure the Fc-mediated functions of
anti-influenza antibodies have been developed, since it has
been demonstrated that, in addition to neutralization, Abs
can mediate further functions by using their Fc region.
Specifically, they are important for anti-influenza immunity
in vivo, playing a role in complement-dependent cytotoxicity
(CDC),102-106 antibody-dependent phagocytosis (ADP),107,108

and antibody-dependent cellular cytotoxicity (ADCC).109,110

These antibodies represent a connection between the innate
and adaptive immune responses. It has been proved that
antibody Fc-receptor interaction is not only able to enhance
the efficacy of widely neutralizing antibodies,111 but is also
necessary for broadly neutralizing anti-influenza Abs to

guarantee protection in vivo112 and that these antibodies are
correlated with protection against experimental influenza
challenge for several candidate universal vaccines.113 Indeed,
in the absence of elevated HI titers towards circulating strains
in the elderly, older adults usually present ADCC
antibodies.114 The majority of the currently used cell-based
assays of the Fcγ function of antibodies are based on Natural
Killer (NK) cells, and quantify activation marker expression,
cytokine and lytic protein release or the killing ability of NK
cells through flow cytometry or ELISpot techniques.115-117

These methods include NK viral inhibition assays, rapid-
fluorimetric ADCC assay (RFADCC), granzyme delivery
assays, lactate dehydrogenase release assay, and NK cell acti-
vation assays which assess IFN-γ and/or CD107a. However,
these techniques also present limitations, owing to the long
execution, complexity and difficulty of reproduction and stan-
dardization across laboratories; in addition, the results of the
assays may be biased by the possible presence of polymorph-
isms in the Fc-receptor of effector cells collected from human
donors.118

This review focuses on the main aspects of T- and B-cell
responses following influenza vaccination, as evaluated by
means of flow cytometry. Hence, efforts should be made to
identify other immunological parameters, such as T – cell-
mediated immune response, as correlates of protection, espe-
cially in view of the fact that the scenario of influenza vaccine
is evolving rapidly and novel influenza vaccines will probably
be developed in the foreseeable future.
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