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The development of gene transfection technologies has greatly advanced our
understanding of life sciences. While use of viral vectors has clear efficacy, it requires
specific expertise and biological containment conditions. Electroporation has become
an effective and commonly used method for introducing DNA into neurons and in
intact brain tissue. The present study describes the use of the Neon® electroporation
system to transfect genes into dorsal root ganglia neurons isolated from embryonic
mouse Day 13.5–16. This cell type has been particularly recalcitrant and refractory to
physical or chemical methods for introduction of DNA. By optimizing the culture condition
and parameters including voltage and duration for this specific electroporation system,
high efficiency (60–80%) and low toxicity (>60% survival) were achieved with robust
differentiation in response to Nerve growth factor (NGF). Moreover, 3–50 times fewer
cells are needed (6 × 104) compared with other traditional electroporation methods. This
approach underlines the efficacy of this type of electroporation, particularly when only
limited amount of cells can be obtained, and is expected to greatly facilitate the study of
gene function in dorsal root ganglia neuron cultures.

Keywords: dorsal root ganglion (DRG) neuron, transfection, electroporation, nucleofection, gene expression,

primary neurons, EGFP expression, Nerve growth factor (NGF)

INTRODUCTION
Culture of primary cells has been extensively used to study neu-
ronal survival, signal transduction, development, and neurite
outgrowth. Gene transfer, through both viral and non-viral meth-
ods, has become a powerful technique to assess the effects of
expression of selected genes. Adenovirus, herpes-simplex virus
(HSV), lentivirus, and adeno-associated virus (AAV) have been
reported to deliver transgenes both in vivo and in vitro (Glatzel
et al., 2000; Chattopadhyay et al., 2005; Towne et al., 2009;
Yu et al., 2011). While effective, these approaches are time-
consuming, labor-intensive and carry some potential biohazard
risk. Non-viral methods, which mainly include microinjection of
DNA, biolistic, sonoporation, lipid- or chemical-based transfer
or electroporation, offer faster and safer means for gene delivery
(Table 1).

Electroporation, particularly because of its ease of use, com-
bined with efficient and precise targeting in space and time, has
become an effective method for introducing DNA into neurons
in culture, slices and in intact neural tissue of Xenopus, chick
and mouse (Kawabata et al., 2004; Falk et al., 2007; Saijilafu and
Zhou, 2011). Dorsal root ganglia (DRG)-derived sensory neurons
that are selectively sensitive to Nerve growth factor (NGF), Brain
derived neurotrophic factor (BDNF) and Neurotrophin-3 (NT3),

provide an excellent model in which to study the mechanisms
of axonal regeneration, neurotrophin signaling, peripheral ner-
vous system development and peripheral neuron disease (Melli
and Hoke, 2009; Newbern et al., 2011). Existing electropora-
tion methods of dissociated DRG neurons require relatively large
amounts of cells. As example, the Amaxa Nucleofector system,
one of the best known and commonly performed transfection
methods now in the labs, requires 1 × 106 DRG cells in 100 μl for
each electroporation [e.g., Chick DRG (Chadborn et al., 2006);
Manufacturer’s instructions]. This is a major obstacle when work-
ing with embryos. Additionally, the low survival and transfection
rate with the standard Amaxa system are of major concern.
Though encouraging results have been reported recently with
adult Rat DRG using the 4D-Nucleofector system-X from Lonza
(McCall et al., 2012), electroporation of dissociated DRG neu-
rons, from young mouse embryos, whose cell number is limiting,
remains a challenge.

Herein, we describe an optimized procedure for isolation and
dissociation of mouse embryonic DRG neurons and their elec-
troporation with plasmid DNA (≈5 kb and ≈4.7 kb) in a rapid
and highly effective manner with efficiencies comparable to those
reported for viral infection, while maintaining high viability and
transgene expression.
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Table 1 | Comparison of non-viral methods commonly used to transfect mammalian neurons.

Non-viral method Model Maximal efficiency Cell

survival

References

Precursors Post-mitotic

cells

DNA plasmids RNAi

Ca2+phosphate/DNA
co-precipitation

erHCn Typically between 1 and 5%;
12 and 27% under highly
controlled conditions

Efficient%n.c. %n.c. Goetze et al., 2004

Lipofection nmCGn Effective (≥50% Knock-down) %n.c. %n.c. Butcher et al., 2009

erHCn/erCn 20–25% / 25–30%a – 100%b Ohki et al., 2001; Dalby et al.,
2004

erHCn – 73%c 89–96% Tonges et al., 2006

Biolistics Typically around 2%, rarely
reaches 10% in cultured
neurons, up to 34% in slice
culture

– %n.c. Karra and Dahm, 2010

nr/arDRGn/
SCGn

5% – %n.c. Dib-Hajj et al., 2009

Sonoporation DRGn 31% 35% Lin et al., 2010

Electroporation
“Nucleofection”

nr/ar/amDRGn/
SCGn

5–20% Efficient %n.c. Dib-Hajj et al., 2009

ecDRGn 37% Martinez and Hollenbeck, 2003

mNSC 88% Efficient>50% 78% Bertram et al., 2012d

hNPCs 10–20% 44% Dieterlen et al., 2009

arDRGn/
erDRGn/

ecDRGn/SCGn/
erHCn

39–42% %n.c. Chadborn et al., 2006; Jones
et al., 2006; MacGillavry et al.,
2009; Ketschek and Gallo,
2010; McCall et al., 2012;
Pristera et al., 2012; Kirton
et al., 2013

erHCn, embryonic rat hippocampal neurons; hNPCs, human neural progenitor cells; NSC, neural stem cells; CGns, cerebellar granule neurons; SCGn, superior

cervical ganglion neurons. amDRGn, adult Mouse DRGn; emDRGn, embryonic mouse DRGn; arDRGn, adult Rat DRGn; nrDRGn, neonatal rat DRGn; ecDRGn,

embryonic chick DRGn; %n.c., percent not communicated.
aLipofectamine 2000™.
bThe authors state that 100% of the cells in transfected cultures are viable.
cStearyl-R8.
d Nucleofector® 4D.

MATERIALS AND METHODS
REAGENTS
Poly-L-Lysine (P1399, Sigma-Aldrich), Laminin (L2020, Sigma-
Aldrich), calcium/magnesium free Hank’s Balanced Salt Solution
(HBSS) (14170, Life technologies), Trypsin (T5266, Sigma-
Aldrich, pH = 7.2), DNAse (DN25, Sigma-Aldrich), Nutrient
Mixture F-12 (21765, Life technologies), Fetal calf serum
(FCS) (10270106, Life technologies), penicillin-streptomycin
(P/S) (15140, Life technologies), Nerve growth factor (NGF)
(mouse 2.5S; N-100, Alomone Labs), Cytosine-arabinoside “Ara-
C” (C1768, Sigma-Aldrich), anti-βIII tubulin antibody (SC-
53140, Santa Cruz), Donkey anti-mouse antibodies conjugated
to Alexa Fluor® 488 (715-545-151, Jackson ImmunoResearch),
Vectashield (Vector, H-1000).

ANIMALS
Time pregnant OF1 mice were purchased from Charles
River (France). The mice were euthanized by cervical dis-
location according to ethical committee recommendations
(Authorization # 007050).

PLASMIDS
pEGFP-N1 (4.7 kb) was from Lonza; pCDNA3.1-Cav-1 fused to
RFP (pCDNA3.1-Cav-1-RFP (5.25 kb), Addgene Plasmid 14434)
was a gift from R. E Pagano; (Sharma et al., 2004); pCDNA3.1-
RFP was modified by removing the Cav1 coding sequence
from pCDNA3.1-Cav-1-RFP. An Endofree DNA purification kit
(Nucleobond XtraMAxi, ref. 740424.10) was used to isolate
GFP, RFP and CAV1-RFP plasmids according to manufacturer’s
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protocol. Plasmids were resuspended in culture grade PBS (Ca++,
Mg++-free; 14190-094, Life technologies) at 3–5 μg/μl.

PREPARATION OF COATED COVERSLIPS
Coverslips were soaked in 96% ethanol for 30 min, then washed
with distilled water and/or air dried. Poly-L-lysine (50 μg/ml) was
spread equally over the surface of the coverslip, followed by incu-
bation for 3 h at room temperature or overnight at 4◦C. They
were subsequently rinsed with distilled water, then 50 μl Laminin
(10 μg/μl) in HBSS was applied on a coverslip. A second coverslip
was placed, coated side down, on the first one, then allowed to sit
overnight at 37◦C. After two washes with HBSS, the coverslips
were placed one per well into a 24-well tissue culture plate. Wells
were then filled with 500 μl of culture medium without antibi-
otics and plates pre-incubated in a humidified 37◦C/5% CO2

incubator prior to use.

ISOLATION AND DISSOCIATION OF DORSAL ROOT GANGLIA FROM
MOUSE EMBRYOS
We used a modified protocol, adapted from a previously
described procedure for isolation and culture of cortical neurons
(Castellani et al., 2004; Falk et al., 2014). Time pregnant mice at
E14.5 were sacrificed by cervical dislocation and embryos were
removed from the uterus kept on ice. Heads were removed from
the embryos in ice cold HBSS (Ca++/Mg++-free) and the bodies
washed in the same. Both Male and Female embryos were used.
The embryos were pinned down on the silicon-coated dish with
dorsal side up in cold HBSS with 2% glucose. The skin of the
embryo was cut along the dorsal midline. The cartilage was then
cut along the midline and the spinal cord removed with the for-
ceps tip by sliding them along the spinal cord. The meninge was
removed to visualize the DRG along the vertebral canal, which
were taken out one by one using forceps. Buffer in the dissection
dish was changed for every embryo. Typically up to 18 DRG are
isolated per embryo.

Dissected DRG from three E14.5 embryos were transferred
into an eppendorf tube containing 270 μl of ice cold in
Ca++/Mg++-free HBSS to which 30 μl of trypsin (25 mg/ml)
were added to yield a final concentration of ≈2.5 mg/ml (Total
volume ≈300 μl) and incubated for 10 min at 37◦C. 10 μl of
DNAse (0.1 mg/ml) were added to a final concentration of
0.033 mg/ml, and returned to 37◦C for an additional 10 min incu-
bation, gently shaking the tube approximately every 3 min to
equally distribute the DRG. Neutralization of the trypsin was
performed by adding 30 μl of FBS followed by 500 μl of cul-
ture medium (F12, 10% FBS without antibiotics). DRG explants
were centrifuged 3 min at 900 rpm (fixed angle rotor, radius
60 mm, Eppendorf minispin) and Trypsin-containing medium
was removed. Mechanical dissociation of cells was carried out
using a fire polished glass Pasteur pipette with a bulb, by trit-
urating approximately 15 times in 200 μl F12, 10%FCS with-
out antibiotics. Cells were counted to evaluate the number of
conditions possible (6–9 × 104 cells per condition) before re-
suspension in electroporation buffer. An average of 27 × 104 cells
were isolated per embryo (range 18–37 × 104).

In order to achieve a high survival rate of the cells, it is essential
to keep the dissection within 1 h after sacrifice of the mother.

ELECTROPORATION
After counting the cells, 1.3 ml Ca++/Mg++-free HBSS was added
and the cells centrifuged for 2 min at 300 rpm (fixed angle rotor,
radius 60 mm, Eppendorf minispin). The cells were resuspended
with half of the electroporation buffer R (Invitrogen) that would
be needed for the number of conditions estimated. Since cells are
lost in this process, they were counted again to adjust the amount
to 6–9 × 104 cells per condition with electroporation buffer R
(10 μl total per electroporation). 10 μl of cells were gently pipet-
ted into each microfuge tube, then mixed with the appropriate
plasmids, i.e., pEGFP (Lonza) (0.5 μg) and pCDNA3.1-Cav-1
fused to RFP (pCDNA3.1-Cav-1-RFP) or pCDNA3.1-RFP (1 or
2 μg). Cells were immediately electroporated using the Neon®

transfection system. Electrical parameters, i.e., voltage and pulse
length, were varied in order to find the optimal conditions. Cells
should not be kept in the electroporation buffer for longer than
10 min. After electroporation, cells were immediately transferred
into two wells with coated coverslips, containing medium without
antibiotics, pre-warmed to 37◦C. The culture dishes were gen-
tly rocked to ensure even distribution of the cells, which were
then left to settle for 1 h in the CO2 incubator at 37◦C. NGF
(50 ng/ml final) and antibiotics (1% final) were then added to the
medium and 12 h later, Ara-C (10 μM final) was added to remove
contaminating glial cells.

IMAGING AND DATA ANALYSIS
Control and caveolin-1-RFP-expressing cultures from the same
dissociation batch were fixed in 2% paraformaldehyde for 14 -16 h
at 4◦C, 24 and 48 h after addition of NGF, and transgene expres-
sion was analyzed. Phase contrast and fluoresence images were
acquired using a 20x objective as a 3 × 3 montage. 4 montages
of 9 images were collected in different regions of the coverslips
to minimize bias due to different cell density (Zeiss AxioImager,
Z1 upright). The number of transfected neurons per image was
calculated using the Cell Counter plugin for ImageJ.

For determination of the impact of electroporation on cell
survival and differentiation, non-transfected control and 1 μg
RFP/0.5 μg GFP expressing cultures from the same dissociation
batch were fixed in 2% paraformaldehyde for 14–16 h at 4◦C,
24 and 48 h after addition of NGF. Phase contrast images were
acquired using a Zeiss AxioImager, Z1 upright, 20x objective.
Approximately 14 images were collected in different regions of
the coverslips to minimize bias due to different cell density. The
number of surviving neurons (round, bright clear) per image was

Table 2 | Optimization of electroporation.

Conditions Survival Efficiency

1. 1500 V 20 ms 1 pulse ++ +
2. 1600 V 10 ms 3 pulses + ++
3. 1300 V 20 ms 2 pulses ++ ++

DRG neurons (6–9 × 104 cells for each condition) were electroporated with

pEGFP (1 μg, Lonza). Electroporation conditions were optimized for voltage,

duration and number of pulses. After 24 h, cell viability and transfection efficiency

were assessed by visual inspection.
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calculated using the Cell Counter plugin for ImageJ. The overall
neurite outgrowth per image was calculated using the NeuronJ
plugin for ImageJ (1 pixel = 0.318 μm).

For immunolabeling of neurons, cells were fixed in 2%
paraformaldehyde for 14–16 h at 4◦C and permeabilized at
room temperature (RT) for 5 min with 0.1% Triton X-100
in PBS. After washing with PBS at RT, cells were blocked
for 1 h at RT with 10% normal goat serum/1% BSA/0.1%
Triton in PBS. Samples were incubated with anti-βIII tubu-
lin mouse monoclonal antibody (Santa Cruz, SC-53140) 14–
16 h at 4◦C and visualized with secondary antibodies conju-
gated to Alexa 488 (Goat-anti-mouse, Jackson ImmunoResearch,
115-485-003) to label neurons. Coverslips were mounted in

Vectashield. Images were acquired using Olympus FluoView
FV10i. Data acquisition was performed with Olympus FluoView
software.

STATISTICS
Statistical significance between various groups was tested using
the Mann-Whitney test.

RESULTS
OPTIMIZATION OF TRANSFECTION CONDITIONS FOR DISSOCIATED
DRG NEURONS
To determine the protocol that would produce the highest possi-
ble transfection efficiency and greatest survival, the DRG neurons

Table 3 | Percentage of RFP and Cav1-RFP positive cells with different expression constructs.

Time point Construct Percentage of GFP(+) Percentage of RFP(+) Percentage of Cav1-RFP(+)

neurons/Total neurons (%) neurons/total neurons (%) neurons/Total neurons (%)

24 h 0.5 μg GFP/1 μg RFP 58.1 ± 3.7 57.9 ± 3.6
0.5 μg GFP/1 μg Cav1-RFP 51.5 ± 2.0 53.9 ± 1.7
0.5 μg GFP/2 μg RFP 55.0 ± 3.1 55.2 ± 3.1
0.5 μg GFP/2 μg Cav1-RFP 50.5 ± 3.1 52.6 ± 3.6

48 h 0.5 μg GFP/1 μg RFP 62.6 ± 2.5 62.6 ± 2.5
0.5 μg GFP/1 μg Cav1-RFP 67.0 ± 3.7 80.3 ± 2.8
0.5 μg GFP/2 μg RFP 68.6 ± 3.3 68.0 ± 3.1
0.5 μg GFP/2 μg Cav1-RFP 60.1 ± 5.2 64.5 ± 4.8

Cells were transfected with pEGFP and each expression construct for RFP at two different concentrations and the number of transfected cells was determined by

visual inspection. Results were obtained from three independent experiments. Data represent Mean ± S.E.M.

FIGURE 1 | Expression of fluorescent proteins in DRG neurons.

Neon transfection leads to efficient electroporation of E14.5 DRG
neurons. Neurons were transfected with 0.5 μg EGFP along with 1
or 2 μg of RFP or 1 or 2 μg Cav1-RFP. 24 h after electroporation,

cells were fixed and observed under the microscope. Column A:
Phase contrast image. Column B: GFP fluorescence. Column C: RFP
fluorescence. Column D: Merge of GFP and RFP Fluorescence.
Scale Bars represent 200 μm.
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were electroporated with 1 μg pEGFP, varying voltage, duration
and number of pulses. The three pulse parameters listed in Table 2
were initially tested in this work since they have been successfully
applied to hippocampal, cortical and neuronal stem cells from
rat embryos (Manufacturer’s protocol). After 24 h, cell viability
and transfection efficiency were assessed by visual inspection.
As shown in Table 2, electroporation with two pulses at 1300 V
with a pulse width of 20 ms, produced high transfection effi-
ciencies and cell viability. Therefore, this setting was utilized for
subsequent experiments.

The amount of pCDNA3.1-Cav-1-RFP or pCDNA3.1-RFP
DNA was then varied between 1 and 2 μg for which the volume
was normalized to 10% of the total reaction volume in distilled
water; 0.5 μg pEGFP was co-transfected for neurite tracing in
transfected neurons. 24 and 48 h post-transfection, the cells were
fixed and processed for microscopic analysis. As shown in Table 3,
over 50% of the neurons were positive for GFP, while increasing
RFP or Cav1-RFP plasmid concentration did not result in signif-
icantly higher transfection efficiency. On average, all conditions
considered, a transfection efficiency of 54 ± 1.1% (Average ±
S.E.M.) was achieved at 24 h. After 48 h, 67 ± 1.4% of fluores-
cent neurons were observed, indicating the survival of transfected
neurons.

Essentially all of the cells carrying GFP were also transfected
with RFP or Cav1-RFP (Figure 1). Both EGFP and RFP were visu-
alized over the entire length of the axons, whereas Cav1-RPF was
predominantly expressed in the cell body (Figure 2).

Other parameters, such as the cell density and plasmid purity
are also important issues. Use of low cell numbers 2 × 104 to
4 × 104 cells/electroporation, resulted in decreased transfection
efficiency (Not shown). Also, avoiding multiple centrifugations
during the procedure effectively reduces cell loss while enhancing
viability. The use of endo-free plasmids is highly recommended

as they result in high cell viability and thereby complement the
transfection efficiency.

Finally, as mentioned in the Materials and Methods section,
it is particularly important for the high transfection efficiency
and survival to use DRG isolated within 1 h after sacrifice of the
mother.

THE SURVIVAL AND DIFFERENTIATION OF DRG NEURONS AFTER
ELECTROPORATION
Since high electroporation efficiencies are often achieved at the
expense of cell survival, we evaluated survival subsequent to
Neon® electroporation. Under phase-contrast, healthy neuronal
cells are easily distinguished since their cell bodies are round
and phase bright and display extensive neurite outgrowth, as
shown in Figure 3. As shown in Figure 4A, cultures of transfected
neurons had approximately 35% fewer neurons than cultures of
non-transfected neurons. Between 24 and 48 h, neuron number
was maintained, under both conditions, indicating that the trans-
fected neurons survived as well as non-transfected. 24 and 48 h
post-electroporation, neuronal survival rates were 65% of naïve,
non-transfected controls.

The extent of average neurite growth was as robust in
transfected cultures as with non-transfected, increasing in both
between 24 and 48 h (Figure 4B). The average neurite length in
non-transfected cultures at 24 h was 885 ± 93 pixels per neuron
vs. 892 ± 90 for transfected. At 48 h, average neurite length was
1077 ± 71 pixels/neuron in non-transfected and 1302 ± 95 in
transfected cultures.

DISCUSSION
Electroporation, because of its ease of use, reproducibility and
relatively high efficiency, has been developed and widely used
for introducing various molecules into cells. In this study, we

FIGURE 2 | Expression of fluorescent proteins in DRG neurons. Neurons were transfected with 1 μg RFP or Cav1-RFP combined with 0.5 μg EGFP. 24 h
after electroporation, cells were fixed and observed under the microscope. Scale Bar represents 50 μm.
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FIGURE 3 | Representative DRG neurons in culture. DRG neurons were dissected and maintained in culture. 24 h later, cells were fixed and labeled with
anti-βIII tubulin antibody. Arrows and arrowheads point, respectively, to glial and neuronal cells. Scale Bar represents 100 μm.

FIGURE 4 | Survival and differentiation of DRG neurons after

electroporation. DRG neurons were prepared and directly cultured without
transfection (white bars) or transfected with 1 μg RFP combined with
0.5 μg EGFP (hashed bars). 24 and 48 h after electroporation, cells were
fixed and neuron survival (A) and average neurite length per neuron (1pixel
= 0.318 μm) (B) were calculated compared to naïve, non-transfected
neurons. Results were obtained from three independent experiments. Data
represent mean ± S.E.M. derived from 40 images representative of 692
non-transfected neurons (24 h) and 39 images representative of 439
GFP/RFP expressing neurons and 29 images representative of 523
non-transfected neurons and 31 images representative of 360 GFP/RFP
expressing neurons of naïve, non-transfected controls (48 h).

describe an optimized method for gene delivery into embryonic
DRG neurons, with high transfection efficiency of >60%, and
low cytotoxicity as reflected in a 2/3 survival rate and robust
differentiation, comparable to non-transfected cultures.

Primary neurons present a particular challenge to success-
ful gene transfer. Adenovirus (Ad), adenovirus-associated virus
(AAV) was successfully used for gene transfer via in vivo injec-
tion of mice (Glatzel et al., 2000). Herpes simplex virus (HSV)
(Storey et al., 2002), and lentivirus (Yu et al., 2011) have been
applied in rat DRG cells. Although they effectively deliver genes
into DRG cells, several viruses can affect sensory neuron physiol-
ogy (Fukuda and Kurata, 1981; Maehlen et al., 1991; Farkas et al.,
1994) and thus limit their use in some experiments.

The Neon® transfection system applied to embryonic DRG
neurons as described herein, resulted in a mean transfection
efficiency for DNA plasmids well over 60% in DRG neurons,
along with high viability and robust differentiation comparable
to non-transfected cultures at 48 h which, to our knowledge, is
the highest reported for a non-viral transfection method, yielding
levels comparable to viral infection (Table 4).

Usually, 1–2 × 106 cells are required for each electropora-
tion to achieve reasonable number of transfectants and good
cell survival in the first and second generation electroporation
apparatuses. This is due to the necessity to have an optimal cell
density and the original large volume (100 μl) of the electropo-
ration chambers. The advent of smaller chamber volumes allows
a significant reduction in cell number. As few as 3 × 105 cells
have been successfully used with the Nucleofector 4D in a vol-
ume of 20 μl/1 mm chamber with an efficiency of 40%, which
is comparable to the results obtained with the 100 μl chamber
(Manufacturer’s protocol) and survival rates of up to almost 30%
(McCall et al., 2012). The Neon® system was reported to have
been successfully used DRG neurons isolated from adult Rats,
with a cell number (5 × 104) and program similar to the one
we have found to be optimal for DRG’s isolated from embry-
onic mice. There is no data however on the actual efficiency or
survival. Using the approach presented herein 6–9 × 104 cells
were sufficient for each transfection of DRG neurons from mouse
embryos. Thus, with the cells obtained, for example, from one
E14.5 embryo, four electroporations can be performed, largely
expanding the experimental conditions, while reducing the total
number of embryos needed for certain types of experiments. The
other main advantage of our method is that, when electroporated
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with mixed plasmids comprising EGFP and RFP at a ratio of
1:2–1:4, we found that essentially all of the neurons expressed
both of these fluorescent proteins. As EGFP was sufficiently
detectable the entire length of the axons, one can easily analyze
the effect of transfected genes with a GFP-based imaging system.
By combining other plasmid constructs, such as TET-ON/OFF
system (Shaikh and Nicholson, 2006) and using cell type-specific
promoters (Hitoshi et al., 1999; Boulaire et al., 2009; Gulick and
Robbins, 2009), it should be possible to express transgenes in
a spatiotemporal manner. In summary, the transfection proto-
col presented herein for embryonic DRG neurons, employed the
Neon® transfection system and effectively enabled heterologous
gene expression in DRG neurons.

While viral transduction/infection has yielded significant
advances, it remains more labor-intensive than electroporation of
purified plasmids. Furthermore, there are safety issues regarding
the types of genes that can be introduced under standard labo-
ratory conditions, e.g., oncogenes or genes that inhibit apoptosis
or modulate autophagy. Clearly, implementation of the protocol
proposed herein alleviates both issues, enabling investigation of
the impact of such genes or modulators thereof on DRG survival,
differentiation and function.
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