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Abstract: Background: This study aimed to propose a machine learning model to predict the local
response of resectable locally advanced esophageal squamous cell carcinoma (LA-ESCC) treated by
neoadjuvant chemoradiotherapy (NCRT) using pretreatment 18-fluorodeoxyglucose positron emis-
sion tomography (FDG PET) images. Methods: The local responses of 98 patients were categorized
into two groups (complete response and noncomplete response). We performed a radiomics analysis
using five segmentations created on FDG PET images, resulting in 4250 features per patient. To
construct a machine learning model, we used the least absolute shrinkage and selection operator
(LASSO) regression to extract radiomics features optimal for the prediction. Then, a prediction model
was constructed by using a neural network classifier. The training model was evaluated with 5-fold
cross-validation. Results: By the LASSO analysis of the training data, 22 radiomics features were
extracted. In the testing data, the average accuracy, sensitivity, specificity, and area under the receiver
operating characteristic curve score of the five prediction models were 89.6%, 92.7%, 89.5%, and 0.95,
respectively. Conclusions: The proposed machine learning model using radiomics showed promising
predictive accuracy of the local response of LA-ESCC treated by NCRT.

Keywords: esophageal cancer; squamous cell carcinoma; neoadjuvant chemoradiotherapy; patholog-
ical response; machine learning; radiomics

1. Introduction

Esophageal cancer is a malignant tumor that still has a poor prognosis. There are
two distinct histological types, squamous cell carcinoma and adenocarcinoma, which
predominate in East Asia and Western countries, respectively. For patients with resectable
locally advanced esophageal squamous cell carcinoma (LA-ESCC), neoadjuvant treatment
including neoadjuvant chemotherapy [1] or neoadjuvant chemoradiotherapy (NCRT) [2,3]
has been shown to improve survival compared to surgery alone. Therefore, preoperative
treatment followed by surgery has been the worldwide standard of care. However, the
superiority of neoadjuvant chemotherapy or NCRT has not been determined at this time.
On the other hand, definitive chemoradiotherapy (CRT) has been positioned as a treatment
option for patients who wish to receive organ-preserving treatment or who are medically
inoperable, because the results of definitive CRT to date have been somewhat inferior
to those of surgery after neoadjuvant chemotherapy [4]. However, the Japan Clinical
Oncology Group (JCOG) 0909 study recently reported that definitive CRT combined with
salvage endoscopic resection or salvage surgery showed favorable overall survival and
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esophagectomy-free survival [5]. Thus, organ-preserving treatment will be a promising
option for patients with resectable LA-ESCC in the future. However, the choice between
surgery-based and organ-preserving definitive CRT-based treatment strategies is still
difficult for patients.

In recent years, the introduction of radiomics and artificial intelligence (AI) into
medicine has become a major topic of discussion. Radiomics is the study of systematically
handling large amounts of imaging information in radiology [6]. The aim of radiomics is
generally to extract quantitative, and ideally reproducible, information from diagnostic
images, including complex patterns that are difficult to recognize or quantify by the human
eye [7,8]. By combining radiomics and AI, attempts are being made to perform diagnostic
imaging and to predict treatment outcomes [9–13].

18F-fluorodeoxyglucose positron emission tomography (FDG PET) image-derived
parameters have been reported to be useful in predicting pathological response to NCRT
and prognosis in patients with esophageal cancer [14–16]. In addition, the pathological
complete response (pCR) rate after NCRT for resectable LA-ESCC was reported to be
comparatively high [2,17]. However, since FDG PET imaging of the therapeutic effect
of NCRT is performed immediately before surgery, it has not been possible to select a
nonsurgical treatment. We, therefore, devised this study because we thought that if we
could predict pathological response with high probability by analyzing medical images
before NCRT using radiomics and AI technology, it would contribute to the treatment
selection of resectable LA-ESCC patients. The purpose of this study was to propose a model
to predict the local pathological response of resectable LA-ESCC patients after NCRT based
on FDG PET images before NCRT by radiomics analysis and machine learning.

2. Materials and Methods
2.1. Patients

Eligibility for this study was based on the following criteria: a histologically confirmed
thoracic esophageal or esophagogastric junction cancer; stage IB to IV disease without T4b
lesions and distant metastasis other than supraclavicular lymph node metastasis (according
to the 7th edition of the Union for International Cancer Control TNM Classification)
diagnosed using endoscopy, computed tomography (CT), and FDG PET/CT; and receiving
NCRT with cisplatin and 5-fluorouracil (5-FU) followed by surgery from 2003 to 2016.
Histopathological response after NCRT was determined according to the 11th edition of
the Japanese classification of esophageal cancer [18]. Grade 3 (no viable cancer cells are
evident) in this classification corresponds to the pCR in this study. All patients provided
written informed consent for treatment. The characteristics of the patients and their tumors
are presented in Table 1.

Table 1. Characteristics of patients.

Characteristics

Gender Male/Female 83/15
Age (year) Median (range) 66 (35–78)

Performance status 0/1/2 88/10/0
Tumor site Upper/Middle/Lower-EGJ 1 22/46/30

T factor 1/2/3/4 2/16/79/1
N factor 0/1/2/3 19/52/25/2

Clinical stage IB/II/III/IV 4/21/58/15
Local response pCR 2/non-pCR 44/54

1 EGJ = esophagogastric junction, 2 pCR = pathological complete response.

2.2. FDG PET Image Acquisition

Patients fasted for at least 4 h before administration of 3.7 MBq/kg of FDG. The FDG
PET/CT images were scanned using a Biograph mCT-64 (Siemens Healthcare, Erlangen,
Germany). An unenhanced CT scan was performed with a 3 mm slice thickness. Both
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CT and PET scans proceeded under normal tidal breathing. An iterative algorithm with
CT-derived attenuation correction was used for the reconstruction of FDG PET images.

2.3. Neoadjuvant Chemoradiotherapy Followed by Surgery

Treatment planning CT images were scanned under free breathing using a CT scanner
(Light speed RT16; GE Healthcare, Little Chalfont, UK). The slice thickness was 2.5 mm.
Three-dimensional radiotherapy treatment planning was performed. We delineated the
gross tumor volumes for the primary tumor (GTVp), lymph node metastasis (GTVn), and
both (GTVall). For the clinical target volume (CTV), CTVp and CTVn were defined as
GTVp and GTVn plus a margin of 5 mm, respectively, and were adjusted according to
the anatomical barrier. CTVsub was defined as elective nodal areas for subclinical lymph
node metastasis. The elective nodal areas were determined according to primary tumor
subsites as follows: supraclavicular to middle mediastinal nodal areas for upper thoracic
tumors, upper mediastinal to perigastric nodal areas for middle and lower thoracic tumors,
and lower mediastinal to celiac nodal areas for EGJ tumors. The volume including CTVp,
CTVn, and CTVsub was defined as CTVall. The planning target volume (PTVall) was
defined as the CTVall plus 8–12 mm margins. We used multiportal beams, if possible,
to reduce the dose to the heart. Dose fractionation was 40 Gy in 20 fractions for PTVall.
The concurrent chemotherapy regimen consisted of a combination of cisplatin (70 mg/m2

on days 1 and 29) and 5-FU (700 mg/m2/day on days 1–4 and 29–32). Surgery was
performed 4 to 8 weeks after the completion of NCRT. The main surgical procedure was
right transthoracic esophagectomy and two-field or three-field lymph node dissection.
Patients with upper and middle thoracic esophageal lesions or lymph node metastasis in
the upper mediastinum underwent cervical lymphadenectomy.

2.4. Process of the Radiomics Analysis

The process for generating a prediction model using a machine learning method with
the radiomics feature is shown in Figure 1. The current study was designed as a Transparent
Reporting of a Prediction Model for Individual Prognosis or Diagnosis (TRIPOD) type
2a [19].

Figure 1. The process of the radiomics analysis and generating prediction model.

2.4.1. Preparation of Segmentation and Image Registration

We prepared five segmentations for radiomics analysis: GTVp, GTVp-2 mm, CTVp,
CTVp-GTVp, and PTVall. “GTVp-2 mm” was defined as the inner tumor region of GTVp
minus 2 mm of the outer edge. “CTVp-GTVp” was defined as the tumor peripheral region
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of CTVp minus GTVp. For each patient, these segmentations on the treatment planning CT
were registered on the FDG PET/CT images using a deformable transformation field. The
deformable image registration algorithm for the registration from the treatment planning
CT images to the FDG PET/CT images consisted of two steps: a rigid image registration
followed by a deformable image registration. By this process, each FDG PET voxel was
mapped to a new position based on the transformations used in the CT-CT registration,
resulting in a new FDG PET/CT dataset that was deformably registered with the treatment
planning CT. All of the segmentations for radiomics analysis were performed by one or
two radiation oncologists, including one expert radiation oncologist. Moreover, more
than two researchers, including one expert radiation oncologist, checked and confirmed
the performance of the deformable image registration and modified the segmentation if
necessary.

2.4.2. Radiomics Analysis

The pixel values of the FDG PET data were rescaled using the RescaleSlope and
RescaleIntercept tags from the DICOM header as follows:

Image Data = (Image Data) × RescaleSlope + RescaleIntercept + 1000 (1)

The creation of radiomics features was performed using an open-source package in
Python, Pyradiomics software [20]. The following features were created: morphology-
based features (13 features), first order-based features (18 features), and texture analysis
features, including Gray Level Co-occurrence Matrix (GLCM, 24 features), Gray Level
Size Zone Matrix (GLSZM, 16 features), Gray Level Run Length Matrix (GLRLM, 16
features), Neighborhood Gray Tone Difference Matrix (NGTDM, 5 features), and Gray Level
Dependence Matrix (GLDM, 14 features) (Table 2). Moreover, the FDG PET image data
remained unchanged as the original, and these were preprocessed with a wavelet imaging
filter. The wavelet filter has low-pass (L) and high-pass (H) filters. The decompositions
were constructed in the x, y, and z directions. For example, “wavelet-HLL” was interpreted
as a wavelet subband image resulting from directional filtering with a high-pass filter
along the x-direction (H), a low-pass filter along the y-direction (L), and a low-pass filter
along the z-direction (L). In the current study, eight wavelet subband images (wavelet-HLL,
wavelet-LHL, wavelet-LHH, wavelet-LLH, wavelet-HLH, wavelet-HHH, wavelet-HHL,
and wavelet-LLL) were created (Table 2). Each feature was computed separately with each
of the above-mentioned preprocessing steps. From the above, a total of 850 features were
created for each segmentation.
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Table 2. Feature type and associated features.

Feature Type Morphology-Based First Order-Based Texture-Based

Methods Shape Histogram
Gray Level

Co-occurrence
Matrix (GLCM)

Gray Level Size
Zone Matrix

(GLSZM)

Gray Level Run Length
Matrix (GLRLM)

Neighborhood Gray
Tone Difference

Matrix (NGTDM)

Gray Level Dependence
Matrix (GLDM)

Feature
names

Maximum 3D
diameter Interquartile range Joint average Gray level variance Short run low gray level

emphasis Coarseness Gray level variance

Maximum 2D
diameter slice Skewness Sum average Zone variance Gray level variance Complexity High gray level

emphasis

Sphericity Uniformity Joint entropy
Gray level

nonuniformity
normalized

Low gray level run
emphasis Strength Dependence entropy

Minor axis Median Cluster shade
Size zone

nonuniformity
normalized

Gray level
nonuniformity

normalized
Contrast Dependence

nonuniformity

Elongation Energy Maximum
probability

Size zone
nonuniformity Run variance Busyness Gray level

nonuniformity
Surface volume

ratio
Robust mean

absolute deviation Idmn Gray level
nonuniformity

Gray level
nonuniformity

Small dependence
emphasis

Volume Mean absolute
deviation Joint energy Large area emphasis Long run emphasis Small dependence high

gray level emphasis

Major axis Total energy Contrast Small area high gray
level emphasis

Short run high gray level
emphasis

Dependence
nonuniformity

normalized

Surface area Maximum Difference entropy Zone percentage Run length
nonuniformity

Large dependence
emphasis

Flatness Root mean squared Inverse variance Large area low gray
level emphasis Short run emphasis Large dependence low

gray level emphasis

Least axis 90 percentile Difference variance Large area high gray
level emphasis

Long run high gray level
emphasis Dependence variance
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Table 2. Cont.

Feature Type Morphology-Based First Order-Based Texture-Based

Methods Shape Histogram
Gray Level

Co-occurrence
Matrix (GLCM)

Gray Level Size
Zone Matrix

(GLSZM)

Gray Level Run Length
Matrix (GLRLM)

Neighborhood Gray
Tone Difference

Matrix (NGTDM)

Gray Level Dependence
Matrix (GLDM)

Maximum 2D
diameter column Minimum Idn High gray level zone

emphasis Run percentage Large dependence high
gray level emphasis

Maximum 2D
diameter row Entropy Idm Small area emphasis Long run low gray level

emphasis
Small dependence low

gray level emphasis

Range Correlation Low gray level zone
emphasis Run entropy Low gray level emphasis

Variance Autocorrelation Zone entropy High gray level run
emphasis

10 percentile Sum entropy Small area low gray
level emphasis

Run length
nonuniformity

normalized
Kurtosis MCC

Mean Sum squares
Cluster prominence

Imc2
Imc1

Difference average
Id

Cluster tendency

Filtering None First-order statistic and texture of wavelet decomposition. Decomposition levels: LLL, LLH, LHL, LHH, HLL, HLH, HHL, HHH.
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2.4.3. Construction and Evaluation of Prediction Model

Among image features created by the radiomics technique, we selected the optimal
features for machine learning using the least absolute shrinkage and selection operator
(LASSO) logistic regression analysis with MATLAB code [21,22]. Furthermore, we used
a machine learning method to construct predictive models, employing a neural network
classifier with 10 hidden layers and rectified linear unit activation. The selected radiomics
features were used as input values, and the information of “pCR” or “non-pCR” was
used as output values. Here, 98 patients were randomly divided into a training group
(72 patients; 54 for learning and 18 for validation) and a testing group (26 patients). To
find the best predictive models, we used the 5-fold cross-validation method (Figure 2). The
training–validation–testing processes were repeated five times for each patient group. The
results of the prediction for the training and testing groups were evaluated in terms of
accuracy, sensitivity, and specificity. Their predictive performance was evaluated using the
area under the receiver operating characteristic (ROC) curve (AUC) score.

Figure 2. Generation and testing of the prediction model. The proposed neural network model with
5-fold cross-validation was built in the model training section.

3. Results

A total of 4250 features were created from FDG PET images using the radiomics
technique. In addition, 22 features for machine learning were selected using the LASSO
analysis (Table 3). Twenty-one features were selected from the wavelet filtering features,
and one feature was selected from the original image features. Regarding segmentations,
eight features were selected from the GTVp, four from GTVp-2 mm, two from CTVp,
three from CTVp-GTVp, and five from PTVall. All features were selected from the texture
analysis of GLCM, GLRLM, GLSZM, and GLDM. The average values of each feature were
compared in the pCR and non-pCR data. The average values of the Gray Level Variance,
Gray Level Nonuniformity Normalized, Low Gray Level Run Emphasis, Low Gray Level
Zone Emphasis, Gray Level Variance, Small Area Emphasis, Small Area High Gray Level
Emphasis, Zone Percentage, Short Run High Gray Level Emphasis, and High Gray Level
Run Emphasis in patients with pCR were smaller than those in non-pCR patients. On the
other hand, the average values of the Small Area High Gray Level Emphasis, Correlation,
MCC, High Gray Level Emphasis, and Large Dependence Low Gray Level Emphasis in
pCR patients were higher than those in non-pCR patients.
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Table 3. Selected features by LASSO 1 regression analysis.

Segmentation Filter Method Feature Name Relation of Average Value

GTVp 2 wavelet-LHH GLRLM 5 Gray Level Variance pCR 9 < non-pCR
GTVp wavelet-LHH GLRLM Gray Level Nonuniformity Normalized pCR < non-pCR
GTVp wavelet-LLH GLSZM Gray Level Variance pCR < non-pCR
GTVp wavelet-LHH GLRLM Gray Level Variance pCR < non-pCR
GTVp wavelet-LHH GLRLM Low Gray Level Run Emphasis pCR > non-pCR
GTVp wavelet-LHH GLRLM Gray Level Nonuniformity Normalized pCR > non-pCR
GTVp wavelet-LLH GLSZM 6 Gray Level Nonuniformity Normalized pCR > non-pCR
GTVp wavelet-HLH GLSZM Small Area High Gray Level Emphasis pCR > non-pCR

GTVp-2 mm original GLSZM Low Gray Level Zone Emphasis pCR < non-pCR
GTVp-2 mm wavelet-HLL GLCM 7 Correlation pCR > non-pCR
GTVp-2 mm wavelet-HLL GLCM MCC pCR > non-pCR
GTVp-2 mm wavelet-HLH GLSZM Gray Level Variance pCR < non-pCR

CTVp 3 wavelet-LHL GLSZM Gray Level Variance pCR < non-pCR
CTVp wavelet-LHH GLDM 8 High Gray Level Emphasis pCR > non-pCR

CTVp-GTVp wavelet-LLH GLSZM Small Area Emphasis pCR < non-pCR
CTVp-GTVp wavelet-HLH GLSZM Small Area High Gray Level Emphasis pCR < non-pCR
CTVp-GTVp wavelet-HLH GLSZM Small Area Emphasis pCR < non-pCR

PTVall 4 wavelet-LHL GLDM Large Dependence Low Gray Level Emphasis pCR > non-pCR
PTVall wavelet-HLH GLSZM Zone Percentage pCR < non-pCR
PTVall wavelet-HHH GLRLM Low Gray Level Run Emphasis pCR > non-pCR
PTVall wavelet-HHH GLRLM Short Run High Gray Level Emphasis pCR < non-pCR
PTVall wavelet-HHH GLRLM High Gray Level Run Emphasis pCR < non-pCR

1 LASSO = the least absolute shrinkage and selection operator, 2 GTVp = gross tumor volume for primary tumor, 3 CTVp = clinical target
volume for primary tumor, 4 PTVall = planning target volume for all targets, 5 GLRLM = Gray Level Run Length Matrix, 6 GLSZM = Gray
Level Size Zone Matrix, 7 GLCM = Gray Level Co-occurrence Matrix, 8 GLDM = Gray Level Dependence Matrix, 9 pCR = pathological
complete response.

Table 4 shows the performance of the NN models. There were five models generated in
the 5-fold cross-validation step. The average accuracy of the five models was 95.2% (range,
92.7–98.2%) with the training group. The average accuracy, sensitivity, and specificity of the
testing group were 89.6% (range, 87.0–95.7%), 92.7% (range, 84.6–100%), and 83.3% (range,
93.3–100%), respectively. Figure 3 shows the ROC curves of the predictive performance of
five models for the testing group with 5-fold cross-validation. The AUC score was 0.93 for
the 1st model, 0.94 for the 2nd model, 0.99 for the 3rd model, 0.92 for the 4th model, and
0.92 for the 5th model. The average and standard deviation of the AUC score with 5-fold
cross-validation were 0.95 and 0.03, respectively.

Table 4. Model performance (%).

Model 1 Model 2 Model 3 Model 4 Model 5 Average

Training Accuracy 94.5 92.7 96.4 94.3 98.2 95.2

Testing
Accuracy 87 95.7 87 87 91.3 89.6
Sensitivity 92.3 94.1 100 92.3 84.6 92.7
Specificity 89 86 100 89 83.3 89.5
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Figure 3. The area under the receiver operator characteristic curve (AUC) of five prediction models
constructed by 5-fold cross-validation method. AUC scores for the models 1–5 were 0.93, 0.94, 0.99,
0.92, and 0.92, respectively.

4. Discussion

In this study, we constructed a model to predict the pathological response of primary
tumors after NCRT for patients with resectable LA-ESCC using FDG PET image-based
radiomics and machine learning analysis. Five-fold cross-validation analysis showed
promising results with an average prediction accuracy of 89.5% (87.0–95.7%) and an average
AUC score of 0.95 (0.92–0.99).

For patients with resectable LA-ESCC, neoadjuvant chemotherapy [1] or NCRT [2,3]
followed by surgery is the standard treatment. At present, the superiority of NCRT over
neoadjuvant chemotherapy remains unclear. To establish the superiority of NCRT over
neoadjuvant chemotherapy, two randomized controlled trials were conducted. One was
the Japanese three-arm trial, the JCOG1109 NeXT trial [23], for resectable LA-ESCC, and
the other was the Irish Neo-AEGIS trial, ICORG10–14 [24], for resectable locally advanced
adenocarcinoma. On the other hand, organ-preserving treatment strategies for resectable
LA-ESCC have been investigated. Definitive CRT has been positioned as a treatment
option for patients who wish to receive organ-preserving treatment or who are medically
inoperable because the results of definitive CRT to date have been somewhat inferior to
those of surgery after neoadjuvant chemotherapy [4]. However, the JCOG 0909 study
recently reported that the 5-year overall survival rate of definitive CRT combined with
salvage endoscopic resection or salvage surgery was 64.5%, and the esophagectomy-free
survival rate was 54.9% [5]. Thus, organ-preserving treatment strategy will be a promising
option for LA-ESCC patients in the future. However, the choice between surgery-based
and organ-preserving, definitive CRT-based treatment strategies is still a very difficult issue
for patients.

Regarding the pCR rate after NCRT in resectable LA-ESCC, van Hagen et al. reported
that pCR rates in squamous cell carcinoma and adenocarcinoma were 49% and 23%,
respectively [2]. Our previous study showed that the pCR rate after NCRT for patients
with resectable LA-ESCC was 43% for primary tumors and 35% for both primary tumors
and lymph node metastases [17]. In the patients enrolled in this study, NCRT resulted in
pCR of the primary esophageal tumor in 44 of 98 patients (45%). Patients who achieved
pCR after NCRT may have been cured by definitive CRT, and esophageal preservation
may have been possible. If we can predict which patients with resectable LA-ESCC can
achieve pCR by NCRT based on pretreatment medical information, it may contribute to
the treatment selection of patients who wish to preserve their organs.
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In recent years, the introduction of radiomics and AI into medicine has become a
major topic. Regarding prediction of treatment outcomes, we reported that the neural
network model using the radiomics features of tumor image was more accurate than
the visual evaluation method using the image pattern information in predicting the local
response of brain metastases to Gamma Knife radiosurgery [9]. Arshad et al., reported
that PET image-based radiomics classifiers obtained prior to treatment were useful in
predicting the prognosis of patients with non-small-cell lung cancer [10]. Peng et al.,
reported that PET/CT-based radiomics with deep learning for advanced nasopharyngeal
cancer could serve as a prognostic tool and may act as an indicator for individualized
induction chemotherapy [11]. Lv et al., reported that radiomics features extracted from the
PET and CT components of baseline PET/CT images provide complementary prognostic
information and improved outcome prediction for NPC patients compared with the use of
clinical parameters alone [12]. Jiang et al., reported that the radiomics signature of PET/CT
in gastric cancer patients was a powerful predictor of survivals and could predict which
patients could benefit from chemotherapy [13].

FDG PET image-derived parameters have been reported to be useful in predicting
the pathological response to NCRT and the prognosis of esophageal cancer patients [14].
We also reported that the rate of decrease in FDG uptake before and after NCRT in FDG
PET images could be a prognostic factor [15,16]. However, it is necessary to predict the
prognosis based on pretreatment information for patients who wish to undergo organ-
preserving treatment to choose nonsurgical treatment. Regarding the study to evaluate the
prediction of treatment response in esophageal cancer by radiomics using medical imaging,
studies using CT and FDG PET images have been reported [25–28]. Hou et al. proposed a
predictive model of tumor response using the pretreatment contrast-enhanced CT-based
radiomics features of 49 patients with esophageal cancer. Their results showed that the
classification accuracy using the neural network algorithm for testing cases was 0.917 and
the AUC score was 0.800 [26]. Yang et al., developed three CT-based radiomics models for
predicting pCR using data of 55 ESCC patients after NCRT. In their study, the AUC score
in the testing group was 0.71–0.79 [27]. As for FDG PET imaging, recent studies reported
that radiomics features of FDG PET images were better predictors of treatment response
than the standard SUV method (SUVmax) [29–31]. Beukinga et al. constructed a model to
predict the complete response to NCRT in esophageal cancer based on pretreatment clinical
parameters and FDG PET/CT-derived radiomics features and reported that the predictive
value of the constructed model was better than that of the SUVmax approach [31]. In their
study, when the textual features of radiomics were introduced into the logistic regression
analysis, the AUC score was 0.78 compared to 0.58 for the SUVmax model.

The current study constructed a predictive model for pathological findings after NCRT
in patients with resectable LA-ESCC with FDG PET image-based radiomics and machine
learning. For radiomics analysis, we constructed five segmentations of GTVp, GTVp-2
mm, CTVp, CTVp-GTVp, and PTVall.. Hao et al. developed the tumor shell as a radiomics
feature that characterizes the tumor periphery and clarified the correlation between this
feature and distant failure [32]. The ingenious things we have done in this study were
constructing the inner tumor region (GTVp-2 mm) and tumor peripheral region (CTVp-
GTVp) as segmentations. Of the 22 features extracted by LASSO analysis, 4 were related to
the inner tumor region and 3 were related to the tumor peripheral region. In radiomics
analysis, segmentation of not only the target itself but also the tumor peripheral regions and
inner tumor regions may contribute to the creation of highly accurate models. Additionally,
the LASSO analysis showed characteristic features for pCR and non-pCR cases. The pCR
patients had radiomics features of small variance, high homogeneity, and high pixel values
in GTVp and inner tumor regions. Moreover, radiomics features of fineness and coarseness
by shell analysis can differentiate between pCR and non-pCR patients. In the CTVp and
PTVall regions, the fineness and coarseness of the images were smaller in the pCR patients
than in the non-pCR patients. This indicates that the images in and around the tumor of
pCR patients were more homogeneous than those of non-pCR patients. Additionally, we
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used a 5-fold cross-validation method to evaluate the prediction model more accurately.
As a result, our study showed promising results with a mean prediction accuracy of 89.5%
(87.0–95.7%) and a mean AUC score of 0.95 (0.92–0.99). These results were more accurate
than the results of previous studies of prediction models for esophageal cancer described
earlier. The results also suggest that our prediction method using machine learning of
radiomics features of pretreatment FDG PET may be more suitable for predicting pCR.

In radiomics, there are two main categories in imaging features: manually defined
features and deep learning features. When compared with manually defined features, deep
learning features are more specific to clinical outcomes and data [33]. In the current study,
we used manually defined features. Although the results showed promising predictive
value, the analysis was based on limited case data from a single institution. In the next
step, we will need to validate the prediction model using more case data from multiple
institutions. At that time, we plan to use various machine learning methods, including
deep learning.

The current study has several limitations. In this prediction model, the pathologic
response of only the primary esophageal tumor was considered, and not the pathologic
response of lymph node metastases. It is unclear whether similar results will be obtained
when the FDG PET imaging system is changed. This study was conducted at a single
institution with a limited number of patients. To build a universal prediction model, we
consider it necessary to examine a large number of cases in a multicenter setting. Moreover,
the robustness of the performance of segmentation and deformable registration was not
assessed in the current study. However, this report is significant in that it showed that a
predictive model using radiomics and machine learning could significantly change the
treatment choice for patients with resectable LA-ESCC in clinical practice in the future.

5. Conclusions

We constructed a model to predict the pathological response of primary tumors after
NCRT for patients with resectable LA-ESCC using FDG PET image-based radiomics and
machine learning, and the model showed promising prediction accuracy.
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