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The motivation of someone who is locked-in, that is, paralyzed and mute, is to find relief

for their loss of function. The data presented in this report is part of an attempt to restore

one of those lost functions, namely, speech. An essential feature of the development of a

speech prosthesis is optimal decoding of patterns of recorded neural signals during silent

or covert speech, that is, speaking “inside the head” with output that is inaudible due to

the paralysis of the articulators. The aim of this paper is to illustrate the importance of

both fast and slow single unit firings recorded from an individual with locked-in syndrome

and from an intact participant speaking silently. Long duration electrodes were implanted

in the motor speech cortex for up to 13 years in the locked-in participant. The data herein

provide evidence that slow firing single units are essential for optimal decoding accuracy.

Additional evidence indicates that slow firing single units can be conditioned in the

locked-in participant 5 years after implantation, further supporting their role in decoding.

Keywords: neural signals, Neurotrophic electrode, single unit firings, speech prosthesis, locked-in participants

INTRODUCTION

A speech prosthesis is essentially a brain to computer interface between the speech areas of cortex
and a computer.More specifically, in the iteration reported herein, it records signals from themotor
articulatory area of the brain and transmits these neural signals to a computer that decodes the
signals to produce speech in real time. There are several other approaches to developing a speech
prosthesis. Most recently, Willett et al. (2021) have recorded from human arm motor cortex and
provided a writing facility, easily convertible to speech, using Utah arrays and recording multi-
units. Other researchers (Hochberg et al., 2012; Collinger et al., 2013; Kennedy et al., 2017; Jafari
et al., 2020; Moses et al., 2021) have used micro-electrode arrays to control paralyzed limbs and
robotic limbs, also recording multi-units. In the present report, the Neurotrophic electrode is used
to record single units over long time periods (Bouton et al., 2016). Stability of single units has also
been reported by Friedenberg et al. (2017).

ECoG electrodes placed on the cortical surface have been used by Chang and his group (Sharma
et al., 2015) to develop a speech prosthesis using the frequency domain to interpret and produce the
intended speech. In addition, silent/imagined speech was also investigated by Dash et al. (2020a,b)
using magnetoencephalography (MEG). In addition, wearable MEGmay be a realistic option (Boto
et al., 2018). A thorough review of these techniques is outside the scope of this paper and is
published elsewhere (Kennedy, 2018).

The locked-in syndrome is consequent on two major conditions: (1) amyotrophic lateral
sclerosis is a devastating and slow paralysis; (2) brainstem stroke it is a sudden and complete
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paralysis. In either case, it leads to loss of use of the articulators,
and hence loss of speech, even though the neural substrate
in the cortex and sub-cortical areas are intact. These cortical
areas are the targets of research efforts to develop a system
of stable and long lasting recordings. It follows therefore
that only those electrodes that have proven stability and
duration should be candidates for human implantation. The
discussed systems have been demonstrated to produce functional
signals (individual units, multi-units, frequency domain surface
recordings) for months and years. Published data on the Utah
array, however, indicates loss of 85% of single units after 3 years
(Downey et al., 2018) though anecdotal evidence suggests longer
duration of multi-unit signals. ECoG array duration was assessed
histologically at 22 months with recordings continuing up to 18
months (Degenhart et al., 2016). Histological analysis indicated
giant cells and macrophages at the interface, with encapsulation
of the electrodes by collagenous tissue. This histology strongly
suggests attempts to reject the implant though Pels et al. report
no loss of ECoG signal at 3 years (Pels et al., 2019). A more
recent configuration is the placement of multiple gold electrodes
on the cortical surface, but no long term data has been produced
to validate the longevity of this approach (Musk, 2019).

Another approach to avoid rejection of the electrode is to
grow the neuropil inside the electrode tip. Using this approach,
data indicate stability of single units up to 4 years in four
participants and 9 years in participant 5 in this study (Kennedy,
2011; Kennedy et al., 2011, 2018). The stability of single unit
recordings after 5 years of implantation was such that the
participant controlled movements of a cursor in a 2D formant
frequency plane to activate vowel sounds (Guenther et al.,
2009; Brumberg et al., 2010, 2011), as well as decoding phones
and words (Kennedy et al., 2018). Post mortem histological
verification 13 years after implantation indicated no gliosis,
abundant myelinated axons, and normal neuropil except no
neurons (the neurons remain outside the glass tip and grow
neurites into the tip under the influence of neurotrophic factors)
(Gearin and Kennedy, 2020). The histological analysis result is
identical to prior rat and primate studies using light microscopy
and electron microscopic techniques (Kennedy et al., 1992). In
addition, single units remained functional at year nine (Kennedy
et al., 2018). Thus, the question of longevity and stability of
recorded single units, as well as the lack of gliosis, has been
established with the Neurotrophic electrode.

Advances in decoding with neural network paradigm allow
detection of patterns of neural firings. These paradigms allow
accurate classification of phones and phonemes described in this
paper, and phrases in a prior paper (Kennedy et al., 2018). The
classification includes results with slow firing single units as well
as fast firing single units. This paper focuses on both fast [5
impulses per second (ips) and above during a 10 s rest period]
and slow firing units, with particular emphasis on the importance
of slow firing single units for improved accuracy of classification.
There is no human study known to these authors where consistently
slow firing single units were specifically related to the task at hand.
Some single units are known to cease firing and then burst to a high
frequency, but consistently slow, non-bursting units, firing in the 0

to 5 ips range at rest are not known to have been studied, at least
with respect to neural prosthesis development.

In this study, two human participants were implanted with the
aim of understanding how to develop a speech prosthesis. The
first participant, locked-in due to a brainstem stroke at the age
of 16 years, was implanted in 2004. Multiple publications have
described the results (Guenther et al., 2009; Brumberg et al., 2010,
2011; Kennedy, 2011; Kennedy et al., 2011, 2018; Gearin and
Kennedy, 2020). Even though this locked-in participant (number
5 in FDA IDE G960032) could control his single unit firings,
the technology available at that time was not amenable to the
production of speech.

To better understand decoding of single units associated
with the timing of audible and silent speech, one author (PK)
decided to have his speech motor cortex implanted in 2014. An
important result from studies in both the locked-in and speaking
participants is that even though fast firing units are the most
important, slow firing units optimize the decoding accuracy.
This issue is addressed in this paper. In addition, results from
conditioning of slow single unit firings illustrate the importance
of including slow firing in decoding, so that even if not related
to the task they can be conditioned to the task and thus improve
decoding capability.

The late David Jayne, an ALS person and friend, insisted that I
focus my efforts on restoration of speech, not movement, because
as he said “speech will make me human again. I will talk to my
children!”. So the aim of this effort is to restore at least 100 useful
words to those who are mute and paralyzed. The expectation is
that they speak at a conversational rate, or at least at a rate that
allows the locked-in individual to be understood by others during
a conversation.

Participant 5 of FDA study (G960032) gave his permission
using up movements of his eyes for agreement and down
movement for disagreement with the informed consent
regulations of Neural Signals Inc. with the regulations being read
to him and to his mother and father. His parents also agreed to
the regulations. Participant 6 is one of the authors (PK).

STRATEGY

Archived data from locked-in participant 5 and intact participant
6 (PK) are analyzed during silent speaking of phones using
MATLAB’s Classification application (app). This app provides an
accuracy rating of the ability to distinguish between individual
phones for participant 5 and phonemes plus phones for
participant 6. To test the contribution of fast and slow firing
single units to the decoding accuracy, fast and slow single units
are removed from the analysis one at a time and the accuracy
recalculated. In addition, groups of fast and slow single units
are removed and the accuracy recalculated. For conditioning of
slow firing single units, data recorded over several days involved
locked-in participant 5 listening to a tone, having a quiet period,
and then “singing” it in his head. When feedback was provided,
conditioning improved over two sessions as will be shown below,
and remained stable.
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FIGURE 1 | Schematic of the neurotrophic electrode. Ingrowth of neurites is

assured by placing trophic factors inside the cone tip prior to implantation. The

axons nearest each wire will have opposite polarity during depolarizations.

METHODS

Electrode
The electrode assembly is shown in Figure 1. Construction has
been detailed (Bartels et al., 2008). The cone is made by pulling a
heated pipette to produce tip dimensions of 1.5mm in length, 25
microns at the deep end and a few hundred microns at the upper
end to allow space for the four inserted wires. 2 mil (0.002 inches,
50.4 microns) Teflon insulated gold wires are coiled around
a pipette and glued with methyl-methacrylate inside the glass
cone. The other end of each coiled gold wire is soldered onto a
connector that plugs into the implanted electronic component.
The electrodes are FDA approved (IDE G960032).

Implanted Electronics
The single channel electronics are assembled in-house and FDA
approved (IDEG960032). Bipolar amplifiers record pairs of wires
via the low impedance (50–500 kohms) gold wires that are cut
across the tips to provide the low impedances. These connect
to an amplifier with a gain of 100× and the signals are filtered
between 5 and 5,000Hz. The signals then feed into an FM
transmitter operating in the carrier range of 35–55 MHz. During
recording sessions, a power induction coil powers the device
with the induced current passing through a regulator to provide
a stable ±3 volts. The electronics are insulated with polymer
(Elvax: Ethylene Vinyl Acetate Copolymer Resin, from DuPont,
WilmingtonDelaware 1998) and further insulated (and protected
against trauma during handling while receiving nursing care)
with Silastic (Med-6607, Nusil, Silicone Technology, Carpentaria,
CA). The gold pin connection to the electrodes is protected
with acrylic cement (Medtronic Inc., St. Paul, MN). After
implantation, the device is covered with scalp skin. The result is
illustrated in Figure 2: a lateral X ray of the skull (in participant 6)
indicating three of the eight pairs of electrodes wires are attached

FIGURE 2 | Lateral X ray of the skull in participant 6. The electrode tip are at

center, the connecting pins to the right of center, with amplifiers and finally the

power induction coils (that appear to be floating). Three pairs of the eight pairs

of electrodes wires are attached to three sets of connecting pins that are

attached to three electronic amplifiers and FM transmitters.

to three sets of connecting pins that are, in turn, attached to three
single channel electronic amplifiers and FM transmitters. There
was insufficient space under the scalp to place more than three
electronic devices.

Implantation Target Site
Because the speech prosthesis is based on movement of
the articulators, the speech motor cortex is targeted for
implantation. Functional MRI studies during audible and silent
speech confirmed the target location as previously described
in detail (Kennedy, 2018). This area extends from the Sylvian
fissure medially for 30mm and about 20mm in the rostro-
caudal dimension.

Surgery
Briefly, under fully sterile conditions, a craniotomy is performed
over the left sided speech motor cortex and electrodes are
implanted as previously described (Kennedy et al., 2018). The
electronics are attached in participant 5 and at a later surgery
in the speaking human. Recordings began at month 4 in
both participants.

Recording
The recording systems are detailed elsewhere (Kennedy et al.,
2018). Briefly, the power induction coil is placed over the scalp
and the underlying receiving coil. It powers the implanted
electronics. Data from the FM transmitters are received via a coil
placed on the scalp over the transmitting coil. These data are sent
to a receiver that sends it on to the Neuralynx (Bozeman, MT)
computer that contains the Cheetah cluster cutting system that
separates the single units from the continuous data stream. These
are then transferred to a laptop computer for off-line analysis
employing the Classification App from MATLAB (MathWorks
Inc., Natwick, MA).
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FIGURE 3 | (A) Paradigm for participant 5. (B) Paradigm for participant 6.

Paradigms
The paradigm used for locked-in participant 5 is shown in
Figure 3A. It consists of the computer first outputting an audible
phrase “listen to the sound” followed by the phone or word
repeated three times. Then the computer emits a phrase “say the
sound”. We then assume the participant says the sound in his
head. This is repeated ten times. We ask him later to confirm that
he did say the phone or word by rolling his eyes up, or deny saying
it by rolling his eyes down. The 10 s rest period is taken from the
data prior to the active data.

The paradigm used in the speaking human (PK) consists of a
control period, followed by a speaking period and then a silent
period (speaking a phoneme in the participant’s head) as shown
in Figure 3B. Note the timing marker that is activated with the
left hand. The left hand is preferred to the right so as to minimize
possible contamination of the data if the right hand is used
(because it is contralateral to the left speech motor cortex). The
event markers indicate the control period followed by the audible
speech and then the silent speech.

The conditioning study: Participant 5 first listened to a tone
for 10 s, and then attempted to sing the tone in his head for 10 s.
The rest period is prior to the listening period. Tones are emitted
from a sine wave generator asmajor keys CDG andA in different
octaves. All single units are involved in this conditioning study,
whereby the participant is asked to sing in his head as accurately
as possible. In the first session no feedback is provided. During
the second session feedback of one individual single unit firing

is provided as a single brief tone each time the single unit fires.
During the final session, feedback of single unit firing is provided
and the volume of the feedback is directly related to the firing
rate. Thus, there is a non-linear relationship between the firing
rate and the volume of the output.

Spike Sorting
An example of a continuous stream of multi-units neural activity
is shown in Figure 4A over a 40ms time base. Cheetah Spike
Sorting software (Neuralynx, Boseman, MT) is employed to sort
the continuous data streams into identifiable single units. The
preferred algorithm is the convex hull technique which uses a
combination of features such as peak, valley, height and area
under the curve of the presumptive spikes that are shown in
Figure 4B. The program first separates presumed single units
into upward or downward action potentials thus creating two
channels of data. It then applies the features for single unit
separation to each channel (panel 1). The clusters are selected
by circling them with the cursor to produce multiple waveforms
(panel 2). These are then cut (panel 3) by placing a marker above
the presumed waveforms which deletes the outlying waveforms.
This technique is further used to remove extraneous signals from
the waveform. Finally, examples of various resultant waveforms
are shown in panel 4. Time base is 1ms in panels 2, 3 and 4. These
waveforms are then subjected to auto-correlograms to provide
further assurance that they can be designated as single units as
evidenced by the single peak (one example in panel 5). Inter spike
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FIGURE 4 | (A) An example of continuous data stream from one electrode over a 40ms timebase. (B) Panel 1 illustrates clusters of waveform features (height and

width) and a “convex hull” is drawn around a group of dense features. Amplitude is on the abscissa and width on the ordinate. The lower right convex hull surrounds

slow firing units. The waveforms emanating from this “convex hull” are displayed in panel 2. Note the white marker that is used to separate the higher amplitude

waveforms from the lower amplitude waveforms. Waveforms are separated by placing the marker above and below the peak to remove possible noise, as shown in

panel 3. A selection of various waveforms is illustrated in panel 4, some depolarizing in the upward direction and some depolarizing in the lower direction due to the

opposite polarity of the recording wires, as shown in Figure 1. The amplitude of the upward depolarizing waveform from baseline is 80 mVs and the time base is one

ms. An example of an auto-correlogram of one single unit is shown in panel 5. (C) Inter Spike Interval Histograms. Examples of fast firing units indicating the 0.5ms

gap at origin. Slow units will have a false gap and are not shown. Ips, impulses per second. Units taken from both channels of data (ch1_se_07; ch2_se_07). 10ms

time base.

interval histograms are used to verify fast firing units as single
units as evidenced by the 0.5ms gap at origin (Figure 4C). Slow
units will have a “false gap”, that is a wider gap due to their
random firing and are not shown. Further validation that units
are single is dependent on functional studies as described below.
Slow firing single units have less dots (panel 1) and are usually
larger in amplitude.

Decoding of Single Unit Patterns
Description of the Classification Learner (v.2018b

MATLAB)

The Classification Learner is a toolbox containing a variety of
classifiers with various algorithms. We use it as follows: When
the input vector (set of single units) arrives at the first layer of the
network, the distance from the input vector to the training input
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vectors is computed. This produces a vector whose elements
indicate how close the input is to the training input. All classes
of inputs are summed to produce as its net output a vector of
probabilities. The final step is for the output of the second layer
to use a transfer function to produce a 1 formaximumprobability
and a 0 for the other classes of inputs which thus generates
the classification.

Application

.txt files containing all the single unit firings in 5, 10, 25 or 50ms
time bins are imported intoMATLABworkspace as four different
Tables and analyzed separately. After decoding passes, 25ms
bins provide the optimal decoding accuracy. The Classification
Learner app is opened by clicking on the app and then clicking
on New Session and selecting the imported .txt file (5, 10, 25
or 50ms). The validation is chosen as 5, 10, 15, 20 or 25 Fold.
All classifier types are selected and the Train button is activated.
The training is repeated for five validation options (5 10 etc.). Of
the many classifiers, the Support Vector Machine (SVM, fine or
coarse) and KNN classifiers (k-nearest neighbor) proved to be
optimal for decoding these data. Each .txt file (corresponding
to production of one phone or word) typically contains 500ms
of single unit firings as determined by the acoustic channel that
represents audible speech or by the event marker during the
control or silent speech periods. One hundred microseconds
of data is selected before the acoustic record or event marker
because the neural activity has to begin prior to the speech and
most likely falls within 100ms prior to speech onset.

Approvals
Approval for the implantation in Belize is obtained from
the Belize Committee on Human Experimentation, Belize
City, Belize. The participant 5 part of the study is undertaken
under IDE G9600032. The study adhered to The Code of
Ethics of the World Medical Association (Declaration of
Helsinki) for experiments involving humans http://www.
wma.net/en/30publications/10policies/b3/index.html; EC
Directive 86/609/EEC for animal experiments http://ec.europa.
eu/environment/chemicals/lab_animals/legislation_en.htm;
Uniform Requirements for manuscripts submitted to Biomedical
journals http://www.icmje.org. The Human Investigation
Committee of Neural Signals Inc. also approved the study.

RESULTS

Phone Classification in the Intact
Participant 6 Speaking Silently
Classification is performed as described above using MATLAB.’s
app Classification Learner. All paradigms [including tree, linear
discriminant, quadratic discriminant, support vector machine
(SVM), k-nearest neighbor (KNN) and ensemble], are trained by
the system. SVM (fine or coarse Gaussian) almost invariably is
the most accurate with KNN the next most accurate.

The accuracy of phoneme classification is illustrated in
Figure 5A for participant 6 speaking silently. When all single
units are included the accuracy is 96.4% (histogram bar ALL on
left). The accuracy varies with removal of each single unit in

sequence. When the non-firing single units (non-firing in this
task) are removed as a group (#1, 5, 11, 12, 13, 14, 15, 18, 19),
the accuracy remains at 96.4% (third histogram bar from right
labeled NO). When all the fastest firing are removed (#3, 4, 8,
22, and 23) the accuracy drops dramatically to 64.3% (second
bar from right labeled FAST). When slow firing are removed as
a group (#2, 6, 7, 9, 10, 16, 17, 20, and 21 labeled SLOW) the
accuracy drops to 80% (final bar on right). Data indicating the
total firings for each of the 23 single units over 4.5 s are illustrated
in Figure 5B. The data indicates that the fast firing single units
are more important than the slow firing units, but accuracy is
impacted when the slow firing units are excluded.

Phoneme Classification in Locked-In
Participant 5 Speaking Silently
The accuracy of phoneme classification is illustrated in Figure 6A
for participant 5 during silent speech. All 39 phonemes were used
in the analysis. When all single units are included the accuracy
is 50.7% (ALL). The accuracy varies with removal of each single
unit in sequence. When all the non-firing (in this task) single
units (1, 6, 7, 8, 12, 13, 14, 15, 16, 19, 24) are removed the accuracy
is virtually unchanged at 49.9% (NO). When all the fastest firing
(9, 10, 17, 20, 21, 22, and 23) are removed the accuracy drops
dramatically to 22.2% (FAST). When slow firing are removed as
a group (2, 3, 4, 5, 11, 18, 25, 26) the accuracy drops to 37.9%
(SLOW). Data indicating the total firings for each of the 26 single
units over 4.5 s are illustrated in Figure 6B.

Conditioning of Slow Firing Single Units
In light of the above results, it should follow that the slow firing
single units have some functional value. If they have value then
it should be possible to condition them. In a different set of
studies in locked-in participant 5 four years after implantation,
conditioning of slow firing single units is achieved (Kennedy
et al., 2011). This study involves silently singing a tone as
described in Section Methods. The data in Figures 7A–C are
extracted from the data in a prior study (Kennedy et al., 2011).
We focus here on the slow firing single units only. Illustrated is
the result of presenting a 523Hz frequency tone (high C).

There are 10 separate trials in Figure 7A. The firing rate in
spikes per second are shown for the listen period, the rest period
and then the sing period (10 s each), followed by a 30 s pause until
the next presentation. Clearly, the firing rates (without feedback)
of these two slow firing units are random on day 1,549 after
implantation. The next session, on day 1,553, audible feedback
of the firing rate is presented to the participant. As Figure 7B
illustrates, progressing through the session and compared to the
previous session on day 1,549, the firing rates became much less
random. On day 1,556, the audible feedback of the firing rate
increased in volume as a function of increasing firing rate. Clearly
each trial produces a symmetry of the firing rates (Figure 7C).
Note that the firing rates do not exceed 4 ips. The standard
deviations of the firing rates are plotted in Figure 8 for listen,
rest and sing periods for days 1,549, 1,553 and 1,556. There is a
clear decrease in standard deviations during the introduction of
feedback. Also noted is that the “rest” firing rates are the same on
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FIGURE 5 | (A) The accuracy of phone identification during silent speech in participant 6 is 96.7% when ALL are included (left bar). Excluding each single unit in

sequence may change the accuracy. When the non-firing (NO) are excluded the accuracy remains the same. When FAST firing are excluded the accuracy drops as

shown. When the slow firing are excluded the accuracy also drops as shown. The fine Gaussian SVM was used for this analysis. (B) The total number of firing for all is

shown over the whole session that lasted 4.5 s.

days 1,553 and 1,556, but the firing rates are higher during listen
and sing phases for day 1,556 when volume feedback was active.

DISCUSSION

The data presented above indicate that decoding accuracy is
optimal when all single units, slow as well as fast, are included
in the analysis. Dropping out individual single units, or groups
of single units, reduced the accuracy as shown in Figures 5A,
6A. This was more marked for fast firing single units, but also
very noticeable for slow firing single units. The importance of
this finding is highlighted when considering the clear drops in
accurate decoding.

This finding applies to decoding single units: It was not tested
for decoding in the frequency domain.

The difference in the results between participants 5 and 6 is
not fully understood. Likely it is due to the fact that participant 5
was locked-in whereas participant 6 was not. We know by direct
observation that participant 6 was implanted in the motor speech
cortex (30 × 12mm lateral most part of the left primary motor
cortex) whereas participant 5 was not implanted in that area, but
was implanted in the general speech area perhaps in the premotor
area. Thus, participant 5’s signals would not all be related to
motor speech.

Conditioning of single units implies that single units can
be used for functions that are not their original function.
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FIGURE 6 | (A) The accuracy of phone identification during silent speech in participant 5 is 50.7% when ALL are included (left bar). Excluding each single unit in

sequence may change the accuracy. When the non-firing single units are excluded (NO) the accuracy remains the same. When FAST firing are excluded the accuracy

drops as shown. When the slow firing are excluded the accuracy also drops as shown. (B) The total number of firing for all is shown over the whole session that lasted

4.5 s.

Conditioning of fast and slow single units has been achieved
(Kennedy et al., 2018). To buttress the present result, an example
is extracted from the 2011 paper to illustrate this point in
Figures 7A–C for slow firing single units only. These data
illustrate that using auditory feedback, the locked-in participant
is able to condition the single unit firings as illustrated in
Figure 7B andmore impressively in Figure 7C. It is worth noting
that the feedback involved only the audible firing rate and the
participant had no visual representation of the result. In fact,
neither the researchers nor the participant had any idea that the
participant was conditioning the single units while these data
were being acquired. We only asked him to sing the tone in
his head on a “look see” basis. It was not until the analysis was
completed offline that we understood that the single units were
being conditioned. The importance of conditioning of slow or
fast firing single units is that they can be conditioned to a new
task such as vocalization, movement or other tasks. It follows
that just a few (5–10) single units can be used to decode the

phone, word or phrase, as demonstrated by the data above. This
implies that even though thousands of units can be used for
decoding (Hochberg et al., 2012; Collinger et al., 2013; Jafari
et al., 2020; Willett et al., 2021), a large number of units are NOT
needed for adequate decoding, though the accuracy improves
with involvement of a larger number of units. Clearly, more
units improves the resolution, but are not essential for adequate
decoding as described here and elsewhere (Brumberg et al., 2010).

Slow firing single units are infrequently analyzed in brain
computer interfacing research. One reason is that when trying to
develop a motor prosthesis, there needs to a driving force to drive
velocity, for example, emanating from the neuronal activity and
only fast firing units can provide a high velocity related driving
force. Slow firing units could only supply a low velocity related
driving force that would be of limited usage. For that reason slow
firing single units are rarely described. However, they have been
described in the hippocampus in relationship to theta rhythmic
clock-like activity (Zhang et al., 2016). The present data strongly
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FIGURE 7 | (A) 523Hz tone is presented on post-implant day 1,549. There are 10 trials, with each trial having a 10 s “listen” period, followed by a 10 s rest period and

then a 10 s “sing the tone he just heard” period. Note the random firing rates of these slow participant. There is no feedback during this session. (B) 523Hz tone is

presented on post-implant day 1,553. Same paradigm as in (A) for seven trials. There is feedback of the firing rate. Note the less random firing rates. (C) 523Hz tone

is presented on post-implant day 1,556. Same paradigm as in (A) for nine trials. There is feedback of the firing rates that is dependent on the feedback volume of the

firing rates. Note the non-random firing rates.

suggests they have a role in the accurate decoding of patterns of
neural activity in a speech prosthesis. Theoretically, they may also
be useful in precise digit movement generation.

Alternative Approaches
Undoubtedly, the Blackrock (Utah) microarray and other tine
type electrodes have produced remarkably useful single unit
firings over months and years (Hochberg et al., 2012). However,
85% of the single units are lost after 3 years (Downey et al., 2018).
Thus, the Utah array and similar electrodes are not presently
suitable as long term recording electrodes, with long term defined
as a minimum 50 years. Thus, they would not be suitable for
restoration of speech over the long term.

Many other workers in the field take a different approach to
decoding neural activity. The ECoG approach of various workers
(Conant et al., 2014; Sharma et al., 2015; Herff et al., 2020;
Makin et al., 2020) involves decoding spoken words and phrases
using cortical surface electrical activity, clearly a data set with
less resolution compared to single units. Their data indicate the
most effective recording resulted from electrodes over the ventral
motor speech cortex (Conant et al., 2014), which is the cortical
area targeted for implantation in both the present participants.
Conant et al. (2014) did not show that silent speech, (defined
again as speaking “in the head” but not using lips, tongue and
jaw, and it is not imagined speech) could be detected because
they used movements of the articulators without producing
sound (they called it miming) which is obviously not realistic
for paralyzed and mute participants. However, a more recent

study demonstrates that phrases could be decoded using ECoG
electrodes over the primarymotor and sensory cortex in a locked-
in participant (Sharma et al., 2015). So ECoG recording can
be used to decode speech in locked-in participants. The main
problemwith ECoG, however, is that the ECoG electrodes are not
compatible with the cortical surface that always rejects foreign
bodies. As described in the introduction, however, Pels at al
report continuing operation of ECoG at 3 years (Pels et al., 2019).

Other researchers (Balaji et al., 2017; Lawhern et al., 2018) are
using EEG recordings allied with deep learning paradigms. It is
unlikely that artificial intelligence (AI) will adequately interpret
the EEG signals to produce free flowing speech because the spatial
resolution with external EEG recordings is too low. Whether or
not AI can compensate for this low spatial resolution remains
to be seen, but it is unlikely to fully compensate, as recently
reviewed (Kennedy, 2018). Other techniques include near field
infra-red (NFIR) that penetrates through the skull and measures
the blood flow within the cortex as used by Chaudhary et al.
(Chaudhary et al., 2017). Again, low resolution is the issue for
this technique: useful information is unlikely to be decoded
for speech. Other recent developments include tightly spaced
multi-electrodes from Neuralink (Musk, 2019). These are likely
to suffer gliosis similar to all other penetrating electrodes with
subsequent loss of useful signal (Downey et al., 2018). The same
gliosis issue will likely be true for the stereotaxic-EEG electrodes
(Herff et al., 2020). Other approaches include “neural lace”
whereby micro devices powered by ultrasound record directly
from neural tissue (Neely et al., 2018). Longevity has not been
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FIGURE 8 | (A,B) Standard deviations of Listen, Rest and Sing average firing rates from days 1,549, 1,553 and 1,556. These results indicate a drop in the standard

deviation of firing rates during audible feedback conditioning compared with no feedback.

published but gliosis may intercede between the device and the
neural surface. Efforts to minimize the mechanical rigidity of
the electrode and thus minimize rejection are underway (Zhao
et al., 2019). In summary, these data indicate that for human
prosthesis lifetime usage there is as yet no alternative to the
Neurotrophic electrode.

CONCLUSION

Slow firing single units are just as important as fast firing
units for optimal decoding accuracy. The fast firing units when
removed from the analysis result in a greater degradation of
the accuracy compared with the slow firing single units. The
ability to condition single units implies that unrelated single units
could be made to relate to the decoding task thus enhancing the
bandwidth of the brain to computer interface.
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