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Risk Stratification Models for
 Stroke in Patients Hospitalized
with COVID-19 Infection
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Objectives: To derive models that identify patients with COVID-19 at high risk for
stroke. Materials and Methods: We used data from the AHA’s Get With The Guide-
lines� COVID-19 Cardiovascular Disease Registry to generate models for predict-
ing stroke risk among adults hospitalized with COVID-19 at 122 centers from
March 2020-March 2021. To build our models, we used data on demographics,
comorbidities, medications, and vital sign and laboratory values at admission. The
outcome was a cerebrovascular event (stroke, TIA, or cerebral vein thrombosis).
First, we used Cox regression with cross validation techniques to identify factors
associated with the outcome in both univariable and multivariable analyses. Then,
we assigned points for each variable based on corresponding coefficients to create a
prediction score. Second, we used machine learning techniques to create risk esti-
mators using all available covariates. Results: Among 21,420 patients hospitalized
with COVID-19, 312 (1.5%) had a cerebrovascular event. Using traditional Cox
regression, we created/validated a COVID-19 stroke risk score with a C-statistic of
0.66 (95% CI, 0.60�0.72). The CANDLE score assigns 1 point each for prior cerebro-
vascular disease, afebrile temperature, no prior pulmonary disease, history of
hypertension, leukocytosis, and elevated systolic blood pressure. CANDLE strati-
fied risk of an acute cerebrovascular event according to low- (0�1: 0.2% risk),
medium- (2�3: 1.1% risk), and high-risk (4�6: 2.1�3.0% risk) groups. Machine
learning estimators had similar discriminatory performance as CANDLE: C-statis-
tics, 0.63�0.69. Conclusions: We developed a practical clinical score, with similar
performance to machine learning estimators, to help stratify stroke risk among
patients hospitalized with COVID-19.
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Introduction

Coronavirus Disease 2019 (COVID-19) is the most
impactful pandemic of our lifetime. As of March 2022,
there have been more than 470 million confirmed cases of
COVID-19, leading to more than 6.0 million deaths world-
wide.1 Although COVID-19 is primarily a respiratory ill-
ness, multiple studies have found that the SARS-CoV-2
infection promotes immune dysregulation, a hypercoagu-
lable state, and thrombotic complications.2-8 Additionally,
multiple studies have reported that COVID-19 is associ-
ated with an increased risk of stroke.9-14 Furthermore,
strokes appear to be more severe and associated with
worse outcomes in patients with COVID-19 infection.15,16

Identifying patients with COVID-19 who have an ele-
vated risk for stroke may aid in management and thera-
peutic decisions. We therefore used multicenter data from
the American Heart Association’s (AHA) Get With The
Guidelines� (GWTG) COVID-19 Cardiovascular Disease
Registry to create risk stratification models to help iden-
tify incident stroke among patients hospitalized with
COVID-19. We derived and validated an easy-to-use clini-
cal score encompassing clinical factors at hospital presen-
tation associated with incident stroke, as well as
constructed three different machine learning algorithms
using all available covariates. Our prespecified study
hypothesis was that older age, vascular risk factors, and
laboratory markers of inflammation and thrombosis
would be associated with an increased risk of stroke in
patients hospitalized with COVID-19.
Methods

Design, setting, and participants

We conducted a retrospective cohort study using pro-
spectively collected data from patients enrolled in the
AHA COVID-19 Cardiovascular Disease Registry. The
details of this registry have been previously described,
but in brief it is powered by the AHA GWTG quality
improvement program and aims to elucidate the charac-
teristics and cardiovascular outcomes of patients hospital-
ized with COVID-19 infection in the United States.17 The
registry includes over 200 data elements on consecutive
patients hospitalized with COVID-19 at participating
sites, which comprised urban and rural hospitals of all
sizes across all geographic regions of the continental
United States. Each site that participated in the registry
obtained institutional review board approval or exemp-
tion and was granted a waiver of informed consent under
the common rule. The Weill Cornell Medicine institutional
review board confirmed exemption status for this study.
The data for this analysis are maintained by the AHA and
can be made available through written application. Our
analysis followed guidelines from the REporting of stud-
ies Conducted using Observational Routinely collected
health Data (RECORD) statement.18

We included all patients aged 18 years or older who
were hospitalized at 122 centers from March 1, 2020 to
March 31, 2021 with active COVID-19 infection confirmed
by laboratory testing (either a positive PCR or IgM anti-
body test for SARS-CoV-2). All analyzed patients had
been discharged from the hospital or died and had com-
plete data on age, sex, medical history, clinical presenta-
tion, and in-hospital events.
Measurements

To build risk stratification models, we included data on
sociodemographics (age, sex, race, ethnicity, and payment
source), medical history, home medications, and initial
vital signs and laboratory values at admission. Medical
history encompassed pertinent vascular, neoplastic, and
immunological diseases. Home medications included
medications commonly used to prevent or treat cardio-
vascular disease and its risk factors as well as chemother-
apy and immunosuppressive medicines. Laboratory
values included standard blood and chemistry parame-
ters, cardiac biomarkers, and measures of inflammation
and thrombosis. The complete online data collection
form, powered by IQVIA (Parsippany, New Jersey), is
available at https://www.heart.org/-/media/files/pro-
fessional/quality-improvement/covid-19-cvd-registry/
ahacovidcvdcrf428-fillable-pdf.pdf?la=en. As we aimed to
build a stroke risk stratification score that could be imple-
mented at the time of hospital presentation, we did not
include data on events, biomarkers, or treatments that
occurred during the hospitalization (e.g., mechanical ven-
tilation, rising plasma D-dimer, prophylactic anticoagula-
tion, etc.).
The primary outcomewas an acute cerebrovascular event,

defined as any acute ischemic stroke, intracerebral hemor-
rhage, subarachnoid hemorrhage, subdural hemorrhage,
epidural hemorrhage, transient ischemic attack (TIA), or
cerebral vein thrombosis diagnosed during the index hospi-
talization. The secondary outcome was an ischemic cerebro-
vascular event, defined as any acute ischemic stroke or TIA
diagnosed during the index hospitalization.
Statistical analysis

We used descriptive statistics with exact binomial confi-
dence intervals to characterize the patient cohort. We
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divided the analytical dataset into a derivation cohort
(70% of the cohort) and a validation cohort (30% of the
cohort). We created separate risk stratification models
using different analytical techniques. This included a sim-
ple-to-use standard clinical score and more complex
machine learning estimators using different statistical
approaches. For both models, two neurovascular special-
ists (A.M. and B.N.) reviewed all available clinical data at
admission and selected exposure variables they believed
could be associated with incident cerebrovascular events
based on biological plausibility and prior data.9,15,19-21

Variables that were missing in more than 25% of patients
were excluded. After applying these criteria, 32 variables
were analyzed as potential exposures for incident cerebro-
vascular events (Table 1).
For the standard clinical score, we used data from the

derivation cohort and performed univariate Cox regres-
sion with 5-fold cross validation techniques to identify
clinical factors associated with the primary outcome at a
p-value of <0.10. Factors significantly associated at the
univariate level were then entered into a multivariable
Cox regression model and any factor independently asso-
ciated with the primary outcome at a p-value <0.05 was
selected for the final model. We then applied the final
model to the validation cohort and measured Harrel’s C-
statistic to internally validate the results. To facilitate the
score’s clinical applicability, we dichotomized continuous
variables according to normal and abnormal values per
standard criteria. For instance, white blood cell count was
dichotomized as �11 K/uL (normal) or >11 K/uL (abnor-
mal) and temperature was dichotomized as <38.3°Celsius
(afebrile) or �38.3 °C (febrile). As the six variables selected
for the final model had overlapping hazard ratios and
beta-coefficients for their association with the primary
outcome when dichotomized, we assigned one point for
each variable.
For the machine learning models, we used data from

the derivation cohort and performed regularized Cox
regression, XGBoost, and Random Forest machine learn-
ing techniques to create separate risk stratification estima-
tors using all available covariates.22 Continuous variables
were analyzed as continuous unlike for the standard clini-
cal score. We used nonparametric bootstrap methods to
calculate 95% confidence intervals (CI). We applied the
final estimator models to the validation cohort and mea-
sured Harrel’s C-statistic to internally validate the results.
Regularized Cox regression uses regularization techni-

ques to achieve variable selection and provide accurate
inference on an outcome’s predicted survival when a
moderate number of potential predictors are available.22

In our analysis, an elastic net penalty was used to regular-
ize the model. Gradient tree boosting is an ensemble
method that seeks to create a strong classifier (model)
based on “weak” classifiers.23 It fits a new model to the
residuals of the previous prediction and then corrects the
errors of the previous model by adding the new model.
XGBoost implements gradient tree boosting with an addi-
tional custom regularization term in the objective function
to achieve better model performance and faster execution
speed. Random Survival Forest is an extension of the Ran-
dom Forest method for analyzing survival data. The Ran-
dom Survival Forest technique first draws bootstrap
samples from the original data, then grows a survival tree
for each bootstrap sample, and finally calculates a cumu-
lative hazard function for each tree.22,23 The ensemble
cumulative hazard function is obtained by averaging
individual cumulative hazard functions. Prediction error
is calculated by using the ensemble cumulative hazard
function.
In secondary analysis, we measured the discriminatory

performance of both the standard clinical score and the
machine learning estimators for the secondary outcome of
ischemic cerebrovascular events.
Plasma D-dimer was not analyzed as a potential expo-

sure in our risk stratification models because 60% of
patients had missing values at admission. However, as
prior studies have reported that D-dimer may be associ-
ated with an elevated risk of ischemic stroke among
patients with COVID-19 infection, we performed an
exploratory analysis restricted to the 40% of patients with
D-dimer values at admission.9,19 For this analysis, we fol-
lowed the same methodology used to derive the risk strat-
ification models above except all eligible patients were
used for both derivation and validation.
Deidentified data from this registry were analyzed

by C.Z. through the AHA’s online Precision Medicine
Platform (https://precision.heartorg/) using RStudio,
version 3.6.0 (R Foundation). We used multiple impu-
tation to account for missing data (mean imputation
for continuous variables and median imputation for
binary variables).

Results

Patient characteristics and outcomes

We evaluated 21,420 patients hospitalized with
COVID-19. Their median age was 62 years (interquartile
range [IQR], 49�75) and 54% were men. During a median
hospitalization duration of 11 days (IQR, 6�18), there
were 312 (1.5%) patients diagnosed with an acute cerebro-
vascular event, including 168 with acute ischemic stroke,
48 with intracerebral hemorrhage, 33 with subarachnoid
hemorrhage, 22 with subdural/epidural hemorrhage, 9
with TIA, 2 with cerebral venous thrombosis, and 48 with
stroke not otherwise specified (some patients had multi-
ple events, so events sum to more than 312). Patients with
a cerebrovascular event were on average older, more
often men, had more vascular risk factors, higher systolic
blood pressures, lower temperatures, and higher white
blood cell and platelet counts than patients without a cere-
brovascular event. The median duration from hospital
admission to cerebrovascular event diagnosis was 2 days



Table 1. Baseline Characteristics of Hospitalized COVID-19 Patients with and without an Acute Cerebrovascular Event.

Characteristica No Cerebrovascular Event (n=21,108) Cerebrovascular Event (n=312)

Demographics

Age, y, median (IQR) 62 (49�75) 66 (59�74)

Male sex 11,389 (54) 196 (63)

Race/Ethnicity

Non-Hispanic White 8041 (38) 127 (41)

Non-Hispanic Black 5419 (26) 92 (29)

Hispanic 5387 (26) 54 (17)

Asian 836 (4) 18 (6)

Other/Unknown 1425 (7) 21 (7)

Insurance

Medicare/Medicaid 5450 (26) 71 (23)

Private 13,484 (64) 203 (65)

Other 2174 (10) 38 (12)

Medical History

Hypertension 13,592 (64) 242 (78)

Hyperlipidemia 9878 (47) 167 (54)

Diabetes 7945 (38) 134 (43)

Prior stroke/TIA 2530 (12) 74 (24)

Heart failure 7277 (34) 126 (40)

Coronary artery disease 2078 (10) 42 (13)

Peripheral vascular disease 573 (3) 9 (3)

Chronic pulmonary disease 3945 (19) 36 (12)

Chronic kidney disease 2714 (13) 45 (14)

Atrial fibrillation/flutter 2025 (10) 49 (16)

Cancer 2626 (12) 43 (14)

HIV 217 (1) 2 (1)

Autoimmune disorder 947 (5) 9 (3)

Tobacco use 1382 (7) 23 (7)

Alcohol use 5586 (12.1) 41,875 (2.5)

Home Medications

Antiplatelet 5689 (27) 113 (36)

Anticoagulant 2900 (14) 56 (18)

Initial Vital Signs (IQR)

Temperature 37.2 (36.7-37.8) 37.0 (36.6�37.4)

Oxygen saturation 95 (93�97) 96 (93�98)

Systolic BP 131 (116�144) 134 (117�152)

Heart rate 94 (80�106) 87 (75�102)

Respiratory rate 20 (18�24) 20 (18�24)

BMI, kg/m2 30 (26�34) 30 (25�33)

Admission Labs (IQR)

WBC count, K/uL 7.1 (5.2�9.5) 8.1 (6.5�11.4)

Hemoglobin, g/dL 12.9 (11.5�14.3) 12.9 (10.9�14.1)

Platelet count, K/uL 208 (159�263) 223 (166�286)

Hemoglobin A1c, % 6.9 (6.1�8.9) 6.5 (5.9�7.9)

Creatinine, mg/dL 1.04 (0.80�1.62) 1.10 (0.87�1.68)

Abbreviations: IQR, interquartile range; TIA, transient ischemic attack; HIV, human immunodeficiency virus; WBC, white blood cell
aData are presented as number (%) unless otherwise specified.
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(IQR, 1-8). The median NIH Stroke Scale was 10 (IQR, 3-
20). In-hospital mortality was 35% among patients diag-
nosed with a cerebrovascular event and 14% among
patients not diagnosed with a cerebrovascular event
(p<0.001).
Standard clinical score

Among the 32 analyzed variables, we identified 6 varia-
bles at admission that were independently associated
with increased risk of an acute cerebrovascular event
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during hospitalization with COVID-19 infection (Table 2).
These variables were prior stroke or TIA, lower body tem-
perature, no previous pulmonary disease (COPD, asthma,
other pulmonary disease), history of hypertension, ele-
vated serum white blood cell count, and elevated systolic
blood pressure. In the validation cohort, a clinical score
comprising these six variables had a Harrel’s C-statistic of
0.66 (95% CI, 0.60�0.72) for predicting an acute cerebro-
vascular event. For the secondary outcome of ischemic
stroke or TIA, the score’s C-statistic was 0.67 (95% CI,
0.59�0.76).
After dichotomizing continuous variables to enable

bedside calculation and assigning 1 point for each vari-
able, the CANDLE risk stratification score was derived as
follows: Cerebrovascular disease history, Afebrile temper-
ature (<38.3 °C), No pulmonary disease history, Disorder
of hypertension, Leukocytosis (white blood cell count >11
K/uL), and an Elevated systolic blood pressure
(>140 mm Hg). The magnitude and precision of the inde-
pendent associations between CANDLE’s dichotomized
variables and an acute cerebrovascular event are provided
in Table 3. We stratified the risk of an acute cerebrovascu-
lar event according to low (0-1), medium (2-3), and high
(4-6) risk groups. In the derivation cohort, the low-risk
group had a 0.2% risk (95% CI, 0.1�0.7%) of incident cere-
brovascular events, while the medium-risk group had a
1.1% risk (95% CI, 0.9�1.3%), and the high-risk group had
a 3.0% risk (95% CI, 2.5�3.6%) (Fig. 1). In the validation
cohort, the low-risk group had a 0.2% risk (95% CI,
0.0�1.2%) of incident cerebrovascular events, while the
medium-risk group had a 1.1% risk (95% CI, 0.8�1.4%),
and the high-risk group had a 2.1% risk (95% CI,
1.5�2.9%)
Machine learning models

The machine learning risk stratification models had
similar discriminatory performance to CANDLE for the
primary outcome. Random Forest performed best with a
Table 2. Baseline variables independently associated with a

Variablea Univariable HR

Prior stroke or TIA 2.6 (1.9�3.5)

Temperatureb 0.7 (0.6�0.9)

History of pulmonary disease 0.6 (0.4�0.9)

History of hypertension 2.1 (1.5�3.0)

White blood cell countb 1.05 (1.02�1.0

Systolic blood pressurec 1.09 (1.03�1.1

Abbreviations: HR, hazard ratio; CI, confidence interval; TIA, transien
aCox regression with 5-fold cross validation was used to identify b
an acute cerebrovascular event. Factors associated at the univar
regression model. Factors independently associated with the pr
white blood cell count, and systolic blood pressure were analyz
of pulmonary disease, and history of hypertension were analyze

bTemperature and white blood cell count were analyzed per unit o
cSystolic blood pressure was analyzed per 10 units mmHg.
validation cohort C-statistic of 0.69 (95% CI, 0.65�0.72),
regularized Cox regression had a validation cohort C-sta-
tistic of 0.67 (95% CI, 0.60�0.73), and XGBoost had a vali-
dation cohort C-statistic of 0.63 (95% CI, 0.56�0.70). For
the secondary outcome of ischemic cerebrovascular
events, the C-statistics were 0.69 (95% CI, 0.64�0.75) for
the Random Forest model, 0.63 (95% CI, 0.54�0.73) for
the regularized Cox regression model, and 0.64 (95% CI,
0.58�0.71) for the XGBoost model.

Exploratory D-dimer analysis

Plasma D-dimer at admission was associated with an
incident cerebrovascular event in univariate (hazard ratio
per unit in ug/mL, 1.06; 95% CI, 1.03�1.09) but not multi-
variable (hazard ratio per unit in ug/mL, 1.03; 95% CI,
1.00-1.06; p=0.15) Cox regression analyses. As D-dimer
was not independently associated with an increased risk
of incident cerebrovascular events, we did not evaluate
whether its addition would improve the discriminatory
ability of the CANDLE score.
When D-dimer was added as a potential exposure vari-

able to the three machine learning estimators, discrimina-
tory performance of these models were similar to their
original versions. The Random Forest model had a C-sta-
tistic of 0.67 (95% CI, 0.65�0.68), the regularized Cox
regression model had a C-statistic of 0.72 (95% CI,
0.67�0.77), and the XGBoost model had a C-statistic of
0.65 (95% CI, 0.60�0.69). While discriminatory perfor-
mance did not improve, D-dimer was a selected exposure
in the regularized Cox regression estimator and an impor-
tant feature of the Random Forest and XGBoost models.

Discussion

Using data from over 21,000 patients enrolled into the
AHA’s multicenter COVID-19 Cardiovascular Disease
registry, we created an easy-to-use clinical score, entitled
CANDLE, to help stratify stroke risk among patients hos-
pitalized with COVID-19 infection. CANDLE includes 6
n acute cerebrovascular event in the derivation cohort.

(95% CI) Multivariable HR (95% CI)

2.4 (1.8�3.3)

0.8 (0.7�0.9)

0.6 (0.4�0.8)

2.0 (1.4�2.7)

8) 1.05 (1.02�1.07)

5) 1.09 (1.03�1.15)

t ischemic attack.

aseline clinical factors associated with the primary outcome of
iate level (p<0.10) were then entered into a multivariable Cox
imary outcome at p<0.05 are described herein. Temperature,
ed as continuous variables, while prior stroke or TIA, history
d as dichotomous variables.
f each.



Table 3. CANDLE: a clinical score for stratifying stroke risk among patients hospitalized with COVID-19 Infection.

CANDLE Parameters Multivariable HR (95% CI)

Cerebrovascular disease history 2.5 (1.9�3.4)

Afebrile temperature (<38.3 ˚C) 2.1 (1.3�3.4)

No pulmonary disease history 1.8 (1.2�2.6)

Disorder of hypertension 1.9 (1.4�2.7)

Leukocytosis (WBC count >11 K/uL) 1.7 (1.2�2.2)

Elevated systolic blood pressure (>140 mm Hg) 1.7 (1.3�2.2)

Abbreviations: HR, hazard ratio; CI, confidence interval; WBC, white blood cell.
aMultivariable Cox regression was used to examine the independent association between baseline clinical parameters and the risk of an

acute cerebrovascular event.
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variables—history of cerebrovascular disease, lack of
fever, no history of pulmonary disease, history of hyper-
tension, serum leukocytosis, and an elevated systolic
blood pressure—that can be easily ascertained at hospital
presentation though medical history, vital signs, and basic
laboratory evaluation. The score’s C-statistic was 0.66 for
any cerebrovascular event and 0.67 for an ischemic cere-
brovascular event, indicating moderate discriminatory
performance for both outcomes. When grouped into dif-
ferent risk categories, a low-risk score of 0-1 estimated a
0.2% risk of an incident cerebrovascular event, while
medium- and high-risk scores of 2-6 indicated consider-
ably higher cerebrovascular event risks, ranging from
1.1% to 3.0%. Therefore, the score may be most useful in
identifying patients who are highly unlikely (i.e., one-in-
five hundred) to develop stroke during COVID-19 hospi-
talization and consequently may not warrant the same
degree of monitoring or prophylactic treatments as other
patients.
We also derived three machine learning estimators uti-

lizing different statistical approaches to predict stroke risk
during COVID-19 hospitalization. Despite more sophisti-
cated models incorporating more quantitative and quali-
tative data from hospital admission, the discriminatory
performance of these machine learning estimators was
similar to that of the easy-to-use CANDLE score. In
exploratory analyses restricted to the 40% of patients with
available plasma D-dimer values at admission (n=8523),
including D-dimer in the three machine learning estima-
tors did not significantly improve their discriminatory
ability, indicating that D-dimer is not a reliable risk
marker for stroke among patient’s hospitalized with
COVID-19.
Some of our findings align with existing literature while

others are novel and require further discussion. Prior
studies have reported that history of cerebrovascular dis-
ease and hypertension may be risk factors for stroke in
patients with COVID-19 infection.13,15,24 This includes a
descriptive study that we published using a smaller sam-
ple from the AHA’s COVID-19 Cardiovascular Disease
Registry.25 Further, acute hypertension is a known short-
term risk factor or trigger for cerebrovascular events, par-
ticularly hemorrhagic stroke, and it sometimes reflects a
physiological response to stroke that has already mani-
fested.26, 27 Serum leukocytosis is a nonspecific marker of
systemic inflammation, and inflammation is a probable
risk factor for stroke in people with and without COVID-
19 infection.28-30

Our finding that patients without prior pulmonary dis-
ease face a higher risk of stroke with COVID-19 was less
expected. As history of pulmonary disease is associated
with an increased risk of hospitalization and respiratory
failure from COVID-19 infection,31,32 it is possible that
patients without prior pulmonary disease who became
hospitalized with COVID-19 infection had a more severe
systemic syndrome resulting in higher degrees of inflam-
mation, endotheliopathy, and hypercoagulability. Con-
versely, it is also possible that patients with pulmonary
disease were more likely to succumb earlier to COVID-19
infection, reducing the time available to develop stroke
(i.e., severe COVID-19 infection served as a competing
risk) or they were more likely to be sedated in an ICU
making stroke detection more difficult.
We also found that lack of fever at presentation was

associated with heightened stroke risk in patients hospi-
talized with COVID-19. A potential explanation for this
finding is that patients who can mount an appropriate
early febrile reaction to SARS2-CoV-2 may be less likely
to develop a maladaptive delayed inflammatory response
which is linked to more severe forms of COVID-19 infec-
tion and corresponding increased risks of
thromboembolism.33,34 In support of this hypothesis, high
fever has been associated with a lower risk of death
among patients hospitalized with COVID-19 pneumo-
nia.35 Alternatively, the observed association between a
normal presenting temperature and increased stroke risk
among patients hospitalized with COVID-19 could be
because in some patients the viral infection was asymp-
tomatic or mild and stroke or conditions predisposing to
stroke were the primary reason for hospital admission—
the registry does not distinguish patients hospitalized for
COVID-19 versus those hospitalized with COVID-19.
Our study had several notable limitations. First, it was

limited to patients enrolled into the AHA’s COVID-19
Cardiovascular Disease registry. While this registry
includes data from urban and rural hospitals from all



Fig. 1. CANDLE: a stroke risk stratification score for patients hospitalized with COVID-19 infection. The CANDLE score ranges from 0-6 and assigns 1 point each for Cerebrovascular disease history, Afebrile temperature
(<38.3 °C), No pulmonary disease history, Disorder of hypertension, Leukocytosis (white blood cell count >11 K/uL), and an Elevated systolic blood pressure (>140 mm Hg). Bar graphs display patients’ risk of an acute cere-
brovascular event during hospitalization with COVID-19 infection according to low-risk (score 0�1), medium-risk (score 2�3), and high-risk (score 4�6) groups. Separate graphs are shown for the derivation and validation
cohorts.
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geographic regions and settings in the U.S. during the first
13 months of the pandemic, this study’s findings may not
generalize to non-participating U.S. hospitals, other coun-
tries, or infection with novel COVID-19 variants, such as
the Delta or Omicron variants. Similarly, we lacked data
on vaccination status and most patients were enrolled in
2020 before vaccines became widely available; therefore,
the validity of our results amongst vaccinated patients is
uncertain. Second, we had few data on advanced labora-
tory tests that reflect heightened coagulability and inflam-
mation (e.g., interleukin-6, anti-phospholipid antibodies)
and therefore did not include these biomarkers in our risk
stratification models. Prior studies have found that ele-
vated markers of inflammation and coagulation, particu-
larly D-dimer, are associated with an increased risk for
stroke in patients with COVID-19 infection.19,36 Because
of a high rate of missingness predisposing to selection
bias, we restricted our analysis of D-dimer to an explor-
atory analysis, the results of which are hypothesis-gener-
ating. Third, as we aimed to build a stroke risk
stratification score that could be implemented upon hos-
pital presentation, we did not account for in-hospital
events such as acute respiratory distress syndrome,
mechanical ventilation, venous thromboembolism, or
administered anti-viral and anti-thrombotic medications,
which could have affected stroke risk among patients hos-
pitalized with COVID-19.3,13 Fourth, we lacked data on
stroke mechanisms and therefore could not evaluate our
risk stratification models for differential discriminatory
performance according to individual stroke subtypes.
Fifth, we could not account for potentially important
patient- and hospital-level factors that varied over time,
such as patient willingness to visit the hospital, evidence-
based treatments for COVID-19 treatment, and hospital
resources and thresholds for brain imaging.
In conclusion, we created and internally validated an

easy-to-use clinical score, entitled CANDLE, and several
complex machine learning estimators, to help clinicians in
stratifying patients’ stroke risk at the time of hospitalization
with COVID-19 infection. Before clinical use, these risk strat-
ification models should be validated in external cohorts
with more contemporaneous SARS-CoV-2 variants. Further,
they should be evaluated for their ability to predict all
thromboembolic events, not just stroke, as that may be more
helpful for frontline providers when deciding which patients
to treat with prophylactic antithrombotic therapy. In the
meantime, these risk stratification models, which were
derived from one of the largest and most diverse COVID-19
cohorts in the world, may provide clinicians with useful esti-
mates for stroke risk among patients presenting to their hos-
pital with COVID-19 infection.
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