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Background: Ischemic stroke is a brain dysfunction disease caused by vascular obstruction. The expression 
of many kinds of microRNAs (miRNAs) is related to ischemic stroke. MiRNA has the ability to reduce or 
save ischemic injury. Therefore, we aimed to explore the protective miRNA in the ischemia-reperfusion 
process.
Methods: The Gene Expression Omnibus (GEO) peripheral RNA sequencing (RNA-seq) datasets of 
ischemic stroke patients were analyzed to search for differentially expressed miRNAs in the ischemia-
reperfusion process. The expression level of miRNA in 60 patients with ischemic stroke and 23 age-matched 
healthy control inpatients was tested by quantitative reverse transcription polymerase chain reaction  
(qRT-PCR). The significantly changed miRNAs were verified through comparison of the peripheral blood of 
healthy people and patients of the hospital. The in-vitro ischemia-reperfusion model was established through 
oxygen-glucose deprivation (OGD) treated HEMC-1 cells. The cell viabilities and cell apoptosis are detected 
by 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide (MTT) assay and terminal deoxynucleotidyl 
transferase dUTP nick end labeling (TUNEL) assay, respectively. Apoptosis-related proteins including Bcl-2, 
Bax, caspase-3, and caspase-9 expression levels were verified by western blot. Predict the combination of hsa-
miR-21-5p and interleukin-6 receptor (IL-6R) through TargetScan database, clone the 2964-2961 site of  
IL-6R-3'-untranslated region (3'-UTR), establish IL-6R-3'-UTR and IL-6R-3'-UTR mutant plasmids, copy 
and clone wild type and mutant IL-6R-3'-UTR into luciferase report vector pGL3 respectively, and detect 
the activity of luciferase. The expression of hsa-miR-21-5p was regulated by using hsa-miR-21-5p mimic and 
hsa-miR-21-5p inhibitor.
Results: Through RNA-seq analysis, it was revealed that “hsa-miR-548ar-3p”, “hsa-miR-651-5p”, “hsa-miR-
142-3p”, “hsa-miR-21-5p”, and “hsa-miR-30e-5p” were notably lower in ischemia patients, and that “hsa-miR-
21-5p” was significantly decreased in the peripheral blood of hospital patients. Luciferase assay showed that 
hsa-miR-21-5p could directly bind to the 3'-UTR of the IL-6R gene and inhibit IL-6R translation; the level of 
IL-6R was also elevated in patients. In the OGD-treated HMEC-1 cells, overexpressed hsa-miR-21-5p mimic 
could enhance cell viabilities and decrease cell apoptosis. Moreover, IL-6R overexpression could reduce the 
protective effects of hsa-miR-21-5p.
Conclusions: In the peripheral blood of ischemia patients, hsa-miR-21-5p is significantly decreased and 
IL-6R is elevated. The “hsa-miR-21-5p” could bind to the IL-6R gene and suppress IL-6R expression, thus 
alleviating the damage of OGD treatment in HMEC-1 cells.

Keywords: Cerebral ischemia stroke; Gene Expression Omnibus (GEO); miR-21-5p; interleukin-6 receptor  

(IL-6R); apoptosis

17

https://crossmark.crossref.org/dialog/?doi=10.21037/atm-22-6451


Zhan et al. MiR-21-5p protects against ischemic strokePage 2 of 17

© Annals of Translational Medicine. All rights reserved.   Ann Transl Med 2023;11(2):101 | https://dx.doi.org/10.21037/atm-22-6451

Introduction

Ischemic stroke is a neurologic systematic disease, the 
major pathology of which is brain injury caused by short- 
or long-term vascular occlusion. There are an estimated 
40,000,000 ischemic stroke patients worldwide per year, 
and the incidence is still elevated in recent years. In 
developing countries, the morbidity of ischemic stroke 
is increasing with a 10% growth rate each year (1). 
Stroke can be dived into two subtypes: “ischemic stroke” 
caused by cerebral blood circulation insufficiency and 
“hemorrhagic stroke” caused by cerebral bleeding, both 
of which lead to brain damage and dysfunction (2,3). 
Currently, therapies for ischemic stroke patients include 
exercise, diet control, and drug treatment, but there are no 
effective methods to cure patients with brain dysfunction. 
Due to the lack treatment options to reverse brain 
damage, it is extremely important to explore ischemia-
related biomarkers in the early stage. The early diagnosis 
and treatment could effectively avoid severe complications 
and death (4).

MicroRNA (miRNA) is a type of short RNA containing 
20–24 nucleotides, which can bind to the 3'-untranslated 
region (3'-UTR) of messenger RNAs (mRNAs) and block 
mRNAs’ transcription, and then silence gene expression. 
There are numerous publications showing the important 
roles of miRNAs in regulating biological pathways related 
to cellular apoptosis, autophagy, and inflammation (5,6). For 

example, miR-543 could bind multiple mRNAs including 
WNT, PTEN, BRIP1, and SIRT1, thus regulating the 
WNT, PI3K/Akt, and MAPK/ERK signal pathways in 
various cancer cells (7). In ischemic stroke brain tissues, 
about 20% of miRNA expression levels are significantly 
changed with the advancement of disease (8). Therefore, 
miRNAs may be the key regulator of ischemic stroke and 
could be a kind of potential and powerful therapeutic 
target.

Recent articles show that miR-21-5p harbors the 
protective function by reducing cellular apoptosis levels 
in rat coronary heart disease models and regulating 
PTEN/PDCD4 expression to inhibit apoptosis in mice 
pulmonary ischemia-reperfusion models (9,10). As an 
important miRNA in cell proliferation and apoptosis, 
numerous publications have reported that the expression 
levels of hsa-miR-21-5p are changed in many ischemic 
diseases (11-14). The miRNA hsa-miR-21-5p is located on 
the human chromosome 17q23.2 locus, which is nearly 
downstream of vacuole membrane protein 1 (VMP1) (15). 
In many diseases, especially cancer, hsa-miR-21-5p usually 
regulates the PI3K/Akt pathway by suppressing PTEN 
and influencing cell proliferation and death (16). However, 
the role of hsa-miR-21-5p in stroke is still unclear. Hence, 
in this study, we established an in vivo ischemia cellular 
model and explored the function of hsa-miR-21-5p in 
microvascular epithelial cells, which provides a new insight 
and potential target for ischemic stroke treatment in the 
future. We present the following article in accordance with 
the MDAR reporting checklist (available at https://atm.
amegroups.com/article/view/10.21037/atm-22-6451/rc).

Methods

GEO datasets analysis

The datasets GSE158313, GSE22255, and GSE16561 
are downloaded from the Gene Expression Omnibus 
(GEO) database of the National Center for Biotechnology 
Information (NCBI) website (17-20). Sequencing data were 
analyzed for the exploration of ischemia stroke-related 
miRNAs using the “DEGs” package in R (R Foundation 
for Statistical Computing, Vienna, Austria), and the 
significantly changed miRNAs [|log2fold change (FC)| 
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>2, and P<0.05] were included in the following analysis. 
The top 30 of the expression level-changed miRNAs were 
plotted in the heatmap through the “HeatMap2” package. 
A Venn plot was drawn using the “Venn” package. The 
co-expression correlation coefficient of genes in R was 
calculated using “cor” function to verify the co-expression 
interaction relationship of genes. The Gene Ontology (GO) 
and Kyoto Encyclopedia of Genes and Genomes (KEGG) 
function enrichment analysis of target genes and “DEGs” 
was carried out through the “cluster profile” package of 
R software, and the results were analyzed and visualized 
through the cluster diagram generated by “org.Hs.eg.db” 
and “GOplot” R package.

Patient’s samples

A total of 60 ischemic stroke patients from the Second 
Affiliated Hospital of Qiqihar Medical University from 
September 2020 to January 2022 were included in this 
study. Peripheral blood samples were collected on the 
second day after patients’ admission. A total of 23 age-
matched healthy people were also recruited and had their 
peripheral blood samples collected as the control group. 
All clinical participants had been informed of the content 
of the experiment and signed the informed consent form. 
The exclusion criteria were as follows: (I) the presence of 
ischemia in any other organs; (II) any psychiatric diseases; 
(III) pregnancy; (IV) liver and kidney dysfunction or 
autoimmune disease patients. The study was conducted in 
accordance with the Declaration of Helsinki (as revised in 
2013). The study was approved by the Ethics Committee 
of The Second Affiliated Hospital of Qiqihar Medical 
University (No. 2021-0507).

Cell culture

The human microvascular epithelial cell line HMEC-1  
was purchased from American Type Culture Collection 
(ATCC), and the 293T cells were a gift from another lab. 

The HMEC-1 cells were cultured in MCBD 131 medium  
(10372-019, Gibco, Grand Island, NY, USA) containing10% 
fetal bovine serum (FBS; 10099141C, Gibco), 100 U/mL 
penicillin/streptomycin (Pen/Strep; 15140122, Gibco),  
2 mM L-glutamine (A2916801, Gibco), and 0.05 mg/mL 
hydrocortisone (H6909, Sigma Aldrich, St. Louis, MO, 
USA). The 293T cells were cultured in Dulbecco’s modified 
Eagle medium (DMEM; 11965092, Gibco) containing 10% 
FBS and 100 U/mL Pen/Strep. All cells were cultivated at 
37 ℃ with 5% CO2 environment.

The miRNA mimic/inhibitor and plasmids were 
transfected using Lipofectamine 3000 reagents (L3000015, 
Invitrogen, Carlsbad, CA, USA). All cells were transfected 
at the 70% cell fusion rate and following the manufacturer’s 
protocol, the cells are collected for analysis after 48 hours 
of transfection. The inhibitory effect of inhibitors on hsa-
miR-21-5p was stronger than that of inhibitors, therefore, 
inhibitors will be used to inhibit hsa-miR-21-5p in the 
study. The miRNA mimic/inhibitor were purchased from 
GenePharma (Shanghai, China), the sequences are shown 
in Table 1.

Oxygen-glucose deprivation (OGD) treatment

The OGD was performed to establish the in vivo ischemia-
reperfusion model. For OGD-treated cells, the culture 
medium was changed to DMEM with non-glucose and non-
FBS. Then, the cells were transferred to an environment 
containing 5% CO2 and 95% N2 at 37 ℃ and treated for 
2-, 4-, 6-, and 8-hour following the experimental design. 
Next, the cells were transferred to the original culture 
medium and cultivated in a normal oxygen concentration 
environment at 37 ℃ (15).

Dual-luciferase assay

The wild-type (WT) and mutant interleukin-6 receptor 
(IL-6R) 3'-UTR were replicated and cloned into luciferase 
reporter vector pGL3 (Promega, Madison, WI, USA) 
respectively. Then, the hsa-miR-21-5p mimic and control 
mimic were co-transfected with pGL3-IL-6R 3'-UTR 
plasmids or pGL3-IL-6R 3'-UTR mutant into 293T cells. 
After 48 hours of transfection, the luciferase activities 
were detected through dual-luciferase reporter assay 
system (Promega) following the manufacturer’s protocol. 
Fluorescence was measured using the Promega GloMaxTM 
20/20 Luminometer, and luciferase activity was normalized 

Table 1 The sequences of miRNA mimic/inhibitor

ID Sequence

Control mimic 5'-UUCUCCGAACGUGUCACGUTT-3'

Hsa-miR-21-5p mimic 5'-CAACACCAGUCGAUGGGCUGU-3'

Hsa-miR-21-5p inhibitor 5'-ACAGCCCAUCGACUGGUGUUG-3'

MiRNA, microRNA.
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with the ratio of fluorescence values of firefly luciferase and 
Renilla luciferase (16,17).

RNA extraction and quantitative reverse transcription 
polymerase chain reaction (qRT-PCR)

Total RNAs were extracted from blood or cells using Trizol 
(Invitrogen) reagent. For mRNA detection, the total RNAs 
were reverse transcribed to complementary DNA (cDNA) 
by Takara reverse transcription kit (RR047A, Takara, Shiga 
Japan). For miRNA detection, the reverse transcription was 
performed using a miRNA First Strand cDNA Synthesis 
(Tailing Reaction) kit (B532451-0020, Sangon, Shanghai, 
China). QRT-PCR was performed with SYBR® Premix Ex 
TaqTM II (Perfect Real Time) kit (DRR081, Takara, Japan) 
and detected by the real-time RT-PCR system (ABI 7500, 

ABI, Sterling, VA, USA). The RT-PCR reaction protocol 
was as follows: pre-denature, 95 ℃ for 30 seconds, PCR 
reaction: 95 ℃ for 5 seconds, and 60 ℃ for 35 seconds, 
recycle 40 times. Each sample was tested with 3 repeats. 
The universal reverse primer for miRNA was supplied 
by the miRNA First Strand cDNA Synthesis (Tailing 
Reaction) kit (Sangon, Shanghai, China), and other primers 
were synthesized by Sangon, the sequence details of which 
are listed in Table 2. The cycle threshold (Ct) values of 
each sample were recorded and calculated compared to 
glyceraldehyde-3-phosphate dehydrogenase (GAPDH) or 
U6 Ct values with 2−ΔΔCt methods (18,19).

Western blot

The cultured or treated cells were washed with warm 

Table 2 The sequences of RT-PCR

Gene Primer sequence

Hsa-miR-21-5p F: 5'-ACACTCCAGCTGGGTAGCTTATCAGACTGA-3'

R: 5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGTCAACATC-3'

Hsa-miR-548ar-3p F: 5'-ACACTCCAGCTGGGTAAAACTGCAGTTAT-3'

R: 5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAGGCAAAAAT-3'

Hsa-miR-651-5p F: 5'-ACACTCCAGCTGGGAAAGGAAAGTGTATCC-3'

R: 5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG CTTTTAGG-3'

Hsa-miR-142-5p F: 5'-ACACTCCAGCTGGGTGTAGTGTTTCCTACTTT-3'

R: 5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG TCCATAAA-3'

Hsa-miR-30e-5p F: 5'-ACACTCCAGCTGGGTGTAAACATCCTTGAC-3'

R: 5'-CTCAACTGGTGTCGTGGAGTCGGCAATTCAGTTGAG CTTCCAGT-3'

U6 F: 5'-CTCGCTTCGGCAGCACA-3'

R: 5'-AACGCTTCACGAATTTGCGT-3'

IL-6R F: 5'-CCCCTCAGCAATGTTGTTTGT-3'

R: 5'-CTCCGGGACTGCTAACTGG-3'

FBXO11 F: 5'-GGTCATCGTGCAAAACGTGC-3'

R: 5'-ACAAGCTGCTCTACAAAGATCC-3'

FAM46A F: 5'-AGGGTGAAGGGTACTTCGC-3'

R: 5'-CTTTCGCAATAGTCCAAGCAATG-3'

GAPDH F: 5'-CGACACTTTATCATGGCTA-3'

R: 5'-TTGTTGCCGATCACTGAAT-3'

RT-PCR, reverse transcription polymerase chain reaction; IL-6R, interleukin-6 receptor; GAPDH, glyceraldehyde-3-phosphate 
dehydrogenase.
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phosphate-buffered saline (PBS) 2 times, then collected 
with radioimmunoprecipitation assay (RIPA) solution and 
sonicated for 15 seconds to disrupt the cells, and the tube 
was then placed on ice for 30 minutes. The mixture was 
centrifuged at 12,000 rpm for 20 minutes at 4 ℃ and the 
supernatant was collected. The protein concentrations are 
tested by the bicinchoninic acid (BCA) Protein Assay Kit 
(PC0020, Solarbio, Beijing, China). About 100 μL protein 
solution was taken and 5× sodium dodecyl sulfate (SDS) 
loading buffer was added (P1040, Solarbio, China), then 
the samples were boiled at 95 ℃ for 10 minutes to denature 
the proteins. The samples were loaded into 10% SDS-
polyacrylamide gel electrophoresis (PAGE) gels (P0052A, 
Beyotime, China), then transferred to a polyvinylidene 
fluoride (PVDF) membrane (IPVH00010, Merck, 
Kenilworth, NJ, USA) and blocked with 5% non-fat milk 
(P0216, Beyotime, China) for 1 hour at room temperature. 
Next, the PVDF membranes were fertilized with the 
diluted primary antibody including GAPDH (ab8245, 
1:10,000, Abcam, Cambridge, UK), IL-6R (ab222101, 
1:1,000, Abcam), Bcl-2 (ab32124, 1:1,000, Abcam), Bax 
(ab182734, 1:1,000, Abcam), caspase-3 (ab32351, 1:1,000, 
Abcam), cleaved-caspase-3 (ab32042, 1:1,000, Abcam), 
caspase-9 (ab32539, 1:1,000, Abcam), and cleaved-
caspase-9 (ab2324, 1:1,000, Abcam) for overnight at 4 ℃. 
On the second day, the membranes were washed with 1× 
tris-buffered saline with Tween 20 (TBST) 3 times and 
fertilized with horseradish peroxidase (HRP)-conjugated 
secondary antibody for 1 hour at room temperature. Then, 
the membranes were exposed with chemiluminescent 
HRP Substrate enhanced chemiluminescence (ECL) 
(WBKLS0500, Millipore, Burlington, MA, USA) and 
captured by the Bio-Rad ChemiDoc MP Imaging system 
(Bio-Rad, Hercules, CA, USA). The images were quantified 
using Quantity One v4.6.2 software and normalized with 
the grey values of GAPDH, and each experiment was 
repeated at least 3 times (20).

3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium 
bromide (MTT) assay

The cells are planted in a 96-well plate and cultured for  
48 hours. After the treatment, the cells were added to 10 μL 
MTT solution (C0009S, Beyotime, China) and incubated 
at 37 ℃ for 4 hours, then added 100 μL formazan solution 
for 2 hours. The cell viabilities were detected by the optical 
density (OD) values at 570 nm and normalized to the 
control group.

Terminal deoxynucleotidyl transferase dUTP nick end 
labeling (TUNEL) assay

The cell apoptosis levels are detected using the One Step 
TUNEL Apoptosis Assay Kit (C1086, Beyotime, China) 
following the manufacturer’s protocol. In brief, the cultured 
cells were removed from the culture medium and washed 
with 1× PBS once, fixed with 4% paraformaldehyde (PFA) 
for 10 minutes then washed with 1× PBS once. The fixed 
cells were penetrated with 0.3% Triton X-100 in PBS for 
5 minutes at room temperature. Next, washed cells with 
1× PBS three times, and added 50 μL TUNEL solution 
fertilized at 37 ℃ for 1 hour. The TUNEL-positive cells of 
samples were then quantified using a microscope.

Statistical analysis

The statistical analysis was performed with SPSS 21.0 
software (IBM Corp., Armonk, NY, USA), and the error 
bars were mean ± standard deviation (SD). Statistical 
significance between experimental groups was assessed using 
one-way analysis of variance (ANOVA), unpaired Student’s 
t-test, or non-parametric test. Statistical significance was 
defined as the P value <0.05.

Results

Hsa-miR-21-5p is decreased in the peripheral blood of 
ischemia stroke patients

We first searched the GEO database to explore ischemia 
stroke-related non-coding RNAs sequencing data and find 
the GSE158313 dataset contained the miRNAs sequencing 
data of ischemia stroke patients. The GSE158313 datasets 
include 33 stroke patients and 10 healthy controls, the 
sequencing samples are the peripheral blood of healthy 
people and patients 2 days after stroke. Through analysis 
of differentially expressed miRNAs in the GSE1583131 
using the “DEGs” package, we identified a cluster of 
miRNAs which show variant expression in patients 
compared to healthy people, and the TOP30 differentially 
expressed miRNAs were plotted in a heatmap (Figure 1A). 
Our results showed that hsa-miR-548ar-3p, hsa-miR-651-
5p, hsa-miR-142-3p, hsa-miR-21-5p, and hsa-miR-30e-
5p were most decreased miRNAs in the patients’ blood. 
The expression levels of has-miR-6087, has-miR-4488, 
has-miR-3196, has-miR-6793-3p and has-miR-4508 
were up-regulated (Figure 1B). In the correlation heat 
map drawn by the interaction analysis of the 5 miRNAs 
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Figure 1 The analysis of decreased expression miRNAs in ischemia stroke patients. (A) The heatmap of top 30 differentially expressed 
miRNAs in ischemia stroke patients. (B) The box plots of the comparison of five most decreased and five increased miRNAs expression 
levels in control people and patients. (C) MiRNA correlation heat map. (D) Ten miRNAs’ expressions are detected by qRT-PCR in control 
people and patients of the hospital. Data are expressed as the mean ± SD, and the comparisons between the two groups are calculated 
through one-way ANOVA methods. The “ns” means “not significant”; “*” means P<0.05; “**” means P<0.01; “***” means P<0.001; and 
“****” means P<0.0001. Each experiment was repeated at least five times. MiRNA, microRNA; qRT-PCR, quantitative reverse transcription 
polymerase chain reaction; SD, standard deviation; ANOVA, analysis of variance.
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obtained, red represents positive correlation and blue 
represents negative correlation (Figure 1C). We performed 
qRT-PCR assay to verify these 10 miRNAs expression 
levels in 60 ischemia stroke patients and 23 age-matched 

healthy control people in hospital. The qRT-PCR results 
showed that hsa-miR-21-5p is the most reduced miRNA 
in patients’ blood compared with controls (P<0.001)  
(Figure 1D). Thus, we chose the hsa-miR-21-5p as our 
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focus miRNA in the subsequent experiments.

Functional enrichment analysis of target genes

To explore the function of hsa-miR-231-5p in the ischemic 
stroke process, we predicted the potential target mRNA 
of hsa-miR-21-5p through the TargetScan website (https://
www.targetscan.org/vert_80/) and retrieved a total of 384 
targeted mRNAs. Functional enrichment analysis of these 
384 target genes (Figure 2A-2D) illustrated the top 30 most 
significant GO terms and KEGG pathways.

Screening for target genes of hsa-miR-21-5p

We screened the RNA sequencing (RNA-seq) data of 
ischemic stroke patients in the NCBI database and found 
that the GSE22255 and GSE16561 datasets that meet our 
criteria. In the GSE22255 dataset, there are 20 patients 
and 20 age-matched healthy people, and there are also 
39 patients and 24 healthy people in the GSE16561. We 
uncovered 1,011 and 2,329 up-regulated genes in the 
GSE22255 and GSE16561 datasets, respectively, through 
analysis by the limma package (Figure 3A). Next, we 
intersected the 3 gene sets, the significantly changed genes 
in GSE22255, the significantly changed genes in GSE16561, 
and the hsa-miR-21-5p potential target genes, and ascertained 
3 genes: IL-6R, FBXO11, and FAM46A (Figure 3A).  
In the GSE22255 and GSE16561 datasets, the IL-6R 
showed more elevated expression compared to FBOX11 and 
FAM46A in patients (Figure 3B,3C). Also, IL-6R presents 
notable elevated expression in the peripheral blood of 
stroke patients (P<0.01). FBXO11 and FAM46A showed no 
significant changes in patients and healthy people’s blood 
(both P>0.05) (Figure 3D).

Functional enrichment analysis of differentially expressed 
genes (DEGs)

According to the median expression of IL-6R, stroke 
patients in the GSE22255 dataset were divided into a 
high expression group and a low expression group, and 
Bayesian t-test was performed between the two groups. 
According to |log2FC| >1 and P<0.05 as the cut-off value, 
177 DEGs were obtained, and functional enrichment 
analysis was conducted according to these 177 DEGs. The 
results showed that these DEGs were enriched in the lipid 
atherosclerosis and cytokine-cytokine receptor interaction 
pathways, and played a role in cell apoptosis. Figure 4A-4D 

illustrates the top 30 most significant GO terms and KEGG 
pathways.

The function of hsa-miR-21-5p in ischemia-reperfusion 
in-vivo model

To explore the role of  hsa-miR-21-5p  in ischemia-
reperfusion, we established the in vivo ischemia-reperfusion 
cell model on human microvascular epithelial cell lines 
HMEC-1 through OGD treatment. First, we detected the 
cell viabilities of OGD treated 0-, 2-, 4-, 6-, and 8-hour 
cells using the MTT assay kit, and the cell apoptosis levels 
were quantified using the TUNEL staining kit. The results 
showed that the cell viabilities were decreased after 4-, 
6-, and 8-hour of OGD treatment, and the cell viability 
levels were negatively affected following treatment time 
(Figure 5A). The apoptosis cells were significantly increased 
after 2-, 4-, 6-, and 8-hour of OGD treatment, and the 
TUNEL-positive cells were increased with treatment time 
(Figure 5B). The western blotting results also showed that 
apoptosis-related proteins including Bax, cleaved-capsase-3, 
and cleaved-caspase-9 were elevated following 4-, 6-, and 
8-hour of OGD treatment (P<0.05, P<0.01, P<0.001, 
respectively), and Bcl-2 protein are descended after 4-, 6-, 
and 8-hour of OGD treatment (P<0.05, P<0.01, P<0.001, 
respectively) (Figure 5C,5D). The above results hint that 
the OGD-treated HMEC-1 cells could successfully mimic 
the injury of ischemia-reperfusion caused by the prolonged 
deficit of oxygen and blood. Since the 6-hour OGD-treated 
cells showed significant changes of cell viability (P<0.01) 
(Figure 5A) and apoptosis level (P<0.01) (Figure 5B)  
compared to non-OGD-treated cells, the Bax (P<0.01), 
cleaved-caspase-3 (P<0.01), cleaved-caspase-6 (P<0.01), and 
Bcl-2 (P<0.01) levels were also significantly changed in the 
6-hour OGD-treated group (Figure 5C,5D). Thus, we chose 
the 6-hour OGD-treated cells as the treatment group in 
the following studies. After OGD treatment, the expression 
level of hsa-miR-21-5p was significantly decreased in the 
OGD group (P<0.05) (Figure 5E). Notably, both the IL-6R 
mRNA and protein levels were upregulated in the OGD 
treatment group compared with the controls (Figure 5F-5H).  
In general, the hsa-miR-21-5p was reduced and IL-6R was 
increased in HMEC-1 cells after OGD treatment.

Hsa-miR-21-5p could bind IL-6R mRNA and inhibit its 
translation

According to the prediction of the TargetScan database, 

https://www.targetscan.org/vert_80/
https://www.targetscan.org/vert_80/
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432999/figure/F2/
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Figure 2 The functional enrichment analysis of target genes. (A) The BP functional analysis of GO. (B) The CC functional analysis of 
GO. (C) The MF functional analysis of GO. (D) The KEGG pathway analysis. GO, Gene Ontology; BP, biological process; CC, cellular 
component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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IL-6R is a potential target of hsa-miR-21-5p. To verify this 
prediction, we cloned the 2964-2961 site of the IL-6R 3'-
UTR which is predicted to be bound into the luciferase 
reporter vector via hsa-miR-21-5p and constructed the 
mutant 3'-UTR of IL-6R into the vector. Thus, we 
established the IL-6R-3'-UTR and IL-6R-3'-UTR-mutant 
plasmids and transfected these plasmids into 293T cells 
(Figure 6A). The results showed that the luciferase activity 
of hsa-miR-21-5p + IL-6R-3'-UTR group was dramatically 
lower than that of the control mimic + IL-6R-3'-UTR group 

(P<0.001); the hsa-miR-21-5p + IL-6R-3'-UTR-mutant 
group showed no significant change compared with the 
control mimic + IL-6R-3'-UTR-mutant group (P>0.05) 
(Figure 6B). Therefore, the luciferase assay results implied 
that hsa-miR-21-5p could directly bind to the IL-6R-3'-
UTR and suppress IL-6R expression. Next, we explored how 
the hsa-miR-21-5p regulates IL-6R in HMEC-1 cells. We 
transfected the control mimic, hsa-miR-21-5p mimic, and 
hsa-miR-21-5p inhibitor into HMEC-1 cells and detected 
the IL-6R mRNA and protein levels after 48 hours of 
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Figure 3 Hsa-miR-21-5p is potentially related with IL-6R in ischemic stroke patients. (A) The Venn plot of hsa-miR-21-5p target genes, 
up-regulated genes in GSE22255 and GSE16561. (B) The boxplot of IL-6R, FBXO11, and FAM46A expression in GSE22255. (C) The 
boxplot of IL-6R, FBXO11, and FAM46A expression in GSE16561. (D) qRT-PCR results of IL-6R, FBXO11, and FAM46A expression 
levels in clinical stroke patients and healthy peoples’ blood. Data are expressed as the mean ± SD, and the comparisons between the two 
groups are calculated through one-way ANOVA methods. The “ns” means “not significant”; and “**” means P<0.01. Each experiment was 
repeated at least five times. IL-6R, interleukin-6 receptor; qRT-PCR, quantitative reverse transcription polymerase chain reaction; SD, 
standard deviation; ANOVA, analysis of variance.
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transfection. The qRT-PCR results showed that the hsa-
miR-21-5p expression levels were elevated in the hsa-MiR-
21-5p mimic group (P<0.001) and decreased in the hsa-
miR-21-5p inhibitor group (P<0.01) (Figure 6C). The IL-
6R mRNA levels were down-regulated in the hsa-miR-21-5p 
mimic group (P<0.001) and up-regulated in the miR-21-5p 
inhibitor group (P<0.001) (Figure 6D). Similarly, compared 
to the control mimic group, the IL-6R proteins were 
decreased in the hsa-miR-21-5p mimic group, and increased 
in the hsa-miR-21-5p mimic (Figure 6E,6F). Thus, these 
results suggest that hsa-miR-21-5p could bind the 3'-UTR of 
IL-6R and suppress IL-6R expression.

Overexpressed hsa-miR-21-5p alleviates cellular injury in 
HMEC-1

According to the above data, we hypothesized that hsa-
miR-21-5p could reduce the damage of OGD treatment by 
suppressing IL-6R expression. To validate this hypothesis, 
we transfected control mimic, hsa-miR-21-5p mimic, and 
hsa-miR-21-5p inhibitor into HMEC-1 cells respectively, 
and the 6-hour OGD-treated cells, then quantify the cell 
viabilities and apoptosis levels in different groups. In non-
OGD treated cells, overexpressed hsa-miR-21-5p mimic was 
shown to mildly increase cell viability (P<0.05) and decrease 
apoptosis level (P<0.05) (Figure 7A,7B). Decreased hsa-
miR-21-5p exerted no significant changes on cell viability 
(P>0.05) and apoptosis level (P>0.05) compared to the 
control mimic group. The overexpressed hsa-miR-21-5p in 
OGD-treated HMEC-1 cells, cell viability, and apoptosis 
levels showed a significant elevation (P<0.05) and reduction 
(P<0.05), respectively. Reduced hsa-miR-21-5p could induce 
dramatically descending cell viability (P<0.01) and increased 
apoptosis (P<0.01) (Figure 7C,7D). Hence, hsa-miR-21-5p 
could alleviate the damage induced by OGD treatment in 
HMEC-1 cells.

Then, we co-transfected the hsa-miR-21-5p mimic and 
green fluorescent protein (GFP) plasmids or hsa-miR-21-
5p mimic and IL-6R plasmids into HMEC-1 cells. After  
48 hours of transfection, we observed that the cell viabilities 
were decreased and the rates of apoptosis were elevated in 
hsa-miR-21-5p mimic + IL-6R group compared to hsa-miR-
21-5p mimic + GFP group cells (Figure 7E,7F). Therefore, 
overexpressed IL-6R could reduce the protection function 
of hsa-miR-21-5p in OGD-treated HMEC-1 cells.

In general, the hsa-miR-21-5p was significantly declined 
in HMEC-1 after OGD treatment. Overexpression of hsa-
miR-21-5p could enhance cell viability and reduce apoptosis 

by suppressing IL-6R expression in the OGD environment 
(Figure 8).

Discussion

In this study, we found that the expression of hsa-miR-21-
5p was significantly changed in the GSE158313 datasets and 
exhibited a decreased expression in the peripheral blood 
of clinical ischemic stroke patients compared to healthy 
people. Multiple recent publications have reported the 
important role of hsa-miR-21-5p in the ischemic stroke 
process. Dong et al. reported that miR-21 and miR-24 
harbor potential as diagnostic predictors in ischemic stroke 
patients (21). Zhang et al. also reported that the miR-21 
levels were changed with the progression of ischemic stroke 
disease in 2007 (22). Thus, we suggest that hsa-miR-21-
5p could be a clinical biomarker in future ischemic stroke 
diagnoses.

Interestingly, several articles have reported different and 
conflicting observations of the variation of hsa-miR-21-5p in 
peripheral blood. In stroke and atherosclerosis patients, the 
expression of miR-21 has been reported to be significantly 
elevated in peripheral blood samples compared to the 
control group (21). In male rats that has been subjected 
to middle cerebral artery occlusion (MCAO) surgery, the 
miR-21 has also been shown to be up-regulated in ischemic 
brain tissues compared to sham rats (22). Similarly, an in-
situ hybridization assay showed that miR-21 was increased 
in neurons around the ischemic boundary region, and the 
cultured primary neurons separated from the ischemic 
boundary also showed increased miR-21 expression 
compared to sham region primary neurons (23). However, 
other articles have suggested that miR-21 is reduced in 
cultured cortical primary neurons after OGD treatment and 
also presents decreased expression in the brain tissues of 
the central MCAO region (24). In this study, we explored 
the hsa-miR-21-5p levels in the peripheral blood of human 
ischemic stroke patients, and both the bioinformatics 
analysis and qRT-PCR results showed that hsa-miR-21-
5p was reduced in patients 2 days after stroke compared to 
controls. Meanwhile, hsa-miR-21-5p was down-regulated 
in the OGD-treated HMEC-1 cells. We speculate that the 
conflicting miR-21 expression variation in stroke patients or 
animal and cell models is caused by the different regions of 
samples, the difference in sampling time point after stroke, 
and the disparate cell lines in studies. Therefore, future 
miR-21-5p and stroke-related studies should pay attention 
to the sampling time and sample types, which may cause 
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Figure 4 The functional enrichment analysis of DEGs. (A) The BP functional analysis of GO. (B) The CC functional analysis of GO. (C) 
The MF functional analysis of GO. (D) The KEGG pathway analysis. GO, Gene Ontology; BP, biological process; CC, cellular component; 
MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes; DEGs, differentially expressed genes.
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Figure 5 Hsa-miR-21-5p is decreased with increased IL-6R after OGD treatment in HMEC-1 cells. (A) Cell viabilities of different groups 
detected by MTT assay kit. (B) TUNEL staining shows the apoptosis rate of different groups. (C,D) Western blotting of Bcl-2, Bax, pro-
caspase-3, cleaved-caspase-3, pro-caspase-9, and cleaved-caspase-9 expression levels in different groups. (E) qRT-PCR detects the hsa-miR-
21-5p levels in different groups. (F) qRT-PCR detects the IL-6R mRNA levels in different groups. (G,H) Western blotting of IL-6R protein 
expression levels in different groups. Data are expressed as the mean ± SD, and the comparisons between the two groups are calculated 
through one-way ANOVA methods. The “ns” means “not significant”; “*” means P<0.05; “**” means P<0.01; “***” means P<0.001; and “****” 
means P<0.0001. Each experiment was repeated at least five times. GAPDH, glyceraldehyde-3-phosphate dehydrogenase; OGD, oxygen-
glucose deprivation; IL-6R, interleukin-6 receptor; MTT, 3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide; TUNEL, terminal 
deoxynucleotidyl transferase dUTP nick end labeling; qRT-PCR, quantitative reverse transcription polymerase chain reaction; mRNA, 
messenger RNA; SD, standard deviation; ANOVA, analysis of variance.

variation from previous articles.
The protective function of hsa-miR-21-5p in the 

ischemic stroke process is well accepted in the field, but 

the mechanism by which hsa-miR-21-5p protects cells is 
complex and still unclear. A study suggested that miR-21  
could up-regulate the PI3K/Akt signaling pathway by 
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Figure 6 Hsa-miR-21-5p could target IL-6R and suppress its expression. (A) The schema of the binding site of IL-6R 3'-UTR and hsa-
miR-21-5p and present the mutant base pairs region of IL-6R 3'-UTR-mutant plasmids. (B) The luciferase activities of different cell 
groups. (C) qRT-PCR results of the hsa-miR-21-5p in different groups. (D) qRT-PCR results of the IL-6R in different groups. (E,F) 
Western blotting of the IL-6R protein in different groups. Data are expressed as the mean ± SD, and the comparisons between the two 
groups are calculated through one-way ANOVA methods. The “ns” means “not significant”; “**” means P<0.01; and “***” means P<0.001. 
Each experiment was repeated at least five times. IL-6R, interleukin-6 receptor; 3'-UTR, 3'-untranslated region; mRNA, messenger 
RNA; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; qRT-PCR, quantitative reverse transcription polymerase chain reaction; SD, 
standard deviation; ANOVA, analysis of variance.

suppressing PTEN expression, then inhibit caspase-3 levels 
to reduce the cell apoptosis ratio in OGD-treated cells or 
MCAO-treated mice (25). Also, miR-21 could inhibit p53 
expression to down-regulate apoptosis-related protein Bcl-
2 and Bax levels after OGD/reperfusion (R) treatment, then 
alleviate cellular apoptosis and impairment (24). Besides, 
in the OGD-treated newborn rat brain, miR021 could 
bind CCL3 mRNA and inhibit its expression to suppress 
the phosphorylation of p65, then inhibit the NF-κB 
signaling pathway to reduce the inflammatory reaction (26).  
In this study, we explored the role of hsa-miR-21-5p in 
microvascular epithelial cells in the ischemia-reperfusion 
process, the luciferase reporter assay results showed that 
hsa-miR-21-5p could bind the 3'-UTR of IL-6R mRNA 
then regulate apoptosis-related proteins including Bax, 

Bcl-2, cleaved-caspase-3, and cleaved-caspase-9, further 
suppressing cellular apoptosis and enhancing cell viability.

IL-6R also named CD126, as a cytokine receptor of IL-6,  
could regulate multiple biological process, such as cell 
proliferation, cell differentiation, and immunization. Several 
studies have reported that the serum IL-6 concentration 
shows a positive relationship with impaired volumes of 
stroke patients in magnetic resonance imaging (MRI) images 
(P<0.001, r=0.7) (27). In the brain of stroke patients, IL-6 
could activate the serum amyloid A (SAA) pathway and 
induce neutrophil cells to invade into ischemic neurons, 
and damage cells (28,29). Some researchers suggest that 
the damaging effects of IL-6R are caused by excessive 
inflammation and blood coagulation, which then influence 
the JAK-STAT pathways to upregulate STAT3 expression, 
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Figure 7 IL-6R could inhibit the protection function of hsa-miR-21-5p. (A) The MTT assay detected cell viabilities of different groups 
in non-OGD treatment. (B) The TUNEL assay show cellular apoptosis rates of different groups in non-OGD treatment. (C) Cell 
viabilities of different groups after OGD treated. (D) Apoptosis rates of different groups after OGD treatment. (E) Cell viabilities of 
cells co-overexpressed hsa-miR-21-5p with GFP or IL-6R after 6 hours of OGD treatment. (F) Apoptosis rates of different groups. 
Data are expressed as the mean ± SD, and the comparisons between the two groups are calculated through one-way ANOVA methods. 
The “ns” means “not significant”; “*” means P<0.05; and “**” means P<0.01. Each experiment was repeated at least five times. OGD, 
oxygen-glucose deprivation; GFP, green fluorescent protein; IL-6R, interleukin-6 receptor; MTT, 3-(4,5-dimethylthiazolyl-2)-2,5-
diphenyltetrazolium bromide; TUNEL, terminal deoxynucleotidyl transferase dUTP nick end labeling; SD, standard deviation; ANOVA, 
analysis of variance.
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Figure 8 Hsa-miR-21-5p shows a protective function by suppressing IL-6R translation in OGD-treated cells. IL-6R, interleukin-6 receptor; 
mRNA, messenger RNA; OGD, oxygen-glucose deprivation.

resulting in elevated inflammation to induce cell death, and 
injection of the IL-6R antibody after MCAO increased cell 
death and infarct volume (30-33). In this study, we found that 
the level of IL-6R in OGD treated cells was up-regulated, 
which may affect the IL-6 related signaling pathway and lead 
to the increase of apoptosis related proteins.

In general, this study focused on the in vivo ischemic 
stroke models of human microvascular epithelial cells and 
firstly reports that hsa-miR-21-5p could directly bind to 
IL-6R in HMEC-1 cells. Further, hsa-miR-21-5p could 
suppress IL-6R expression to decrease apoptosis levels and 
enhance cell viability. The results of this study provide a 
new sight into the injury of microvascular epithelial cells 
in cerebral ischemia and present a new potential target for 
future stroke treatment.

Conclusions

Hsa-miR-21-5p could bind to the IL-6R gene and suppress 
IL-6R expression, thus alleviating the damage of OGD 
treatment in HMEC-1 cells.
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