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Short environmental enrichment in adulthood reverses anxiety
and basolateral amygdala hypertrophy induced by maternal
separation
AS Koe, A Ashokan and R Mitra

Maternal separation during early childhood results in greater sensitivity to stressors later in adult life. This is reflected as greater
propensity to develop stress-related disorders in humans and animal models, including anxiety and depression. Environmental
enrichment (EE) reverses some of the damaging effects of maternal separation in rodent models when provided during
peripubescent life, temporally proximal to the separation. It is presently unknown if EE provided outside this critical window can still
rescue separation-induced anxiety and neural plasticity. In this report we use a rat model to demonstrate that a single short episode
of EE in adulthood reduced anxiety-like behaviour in maternally separated rats. We further show that maternal separation resulted
in hypertrophy of dendrites and increase in spine density of basolateral amygdala neurons in adulthood, long after initial stress
treatment. This is congruent with prior observations showing centrality of basolateral amygdala hypertrophy in anxiety induced by
stress during adulthood. In line with the ability of the adult enrichment to rescue stress-induced anxiety, we show that enrichment
renormalized stress-induced structural expansion of the amygdala neurons. These observations argue that behavioural plasticity
induced by early adversity can be rescued by environmental interventions much later in life, likely mediated by ameliorating effects
of enrichment on basolateral amygdala plasticity.
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INTRODUCTION
Adversity in early postnatal life has a lasting negative impact on
behavioural and emotional functioning of individuals.1–3 Compel-
ling evidence suggests that rodent maternal separation (MS), now
widely used to mimic early-life stress in human infants, leads to
hyper-reactivity of the hypothalamic− pituitary− adrenal axis in
adulthood.4–6 This is accompanied by anxious or depressive-like
behaviour or cognitive deficits in some instances.7–10 In addition,
these effects have been suggested to be downstream of
neuroplasticity alterations. In particular, early-life stress leads to
reductions in hippocampal neurogenesis11–13 as well as retraction
of dendrites and spine density of the hippocampus14–18 and
medial prefrontal cortex (mPFC).17,19,20 A single episode of MS for
24 h at postnatal day 3 does not affect dendritic complexity in the
basolateral amygdala (BLA).21 It is not known if repeated MS
results in BLA structural plasticity in parallel to its observed
potentiation of anxiety. This is an important gap in knowledge
because dendritic and spine changes in the BLA are central to
stress-induced anxiogenesis.22–24

While the effects of adversity in early life possess a degree of
permanence, peripubertal environmental enrichment (EE) has
been shown to reverse its effects on anxiety,25,26 depression27,28

and learning deficits.27–29 While reversibility of developmental
adversity has been demonstrated in young animals, it is presently
undetermined if EE in adulthood is able to reverse the persistent
effects of early-life stress long after the event. This is an important
question because, if effective, an adult intervention can provide
the opportunity to loosen the health burden of the temporally
distant adverse past.

In this background, we experimentally test whether MS results
in BLA plasticity during adulthood, and if adult EE rescues the
effects of MS on anxiety-like behaviour and BLA plasticity.

MATERIALS AND METHODS
Experimental animals
Wistar rats were procured from InVivos, Singapore. Animals were
maintained and mated in Nanyang Technological University vivarium on
a 12:12-h light−dark schedule (lights on at 0700 h). Sires were removed
from the cage once pregnancy was confirmed. All litters were weaned on
postnatal day 21 (PN21). Male pups were group-housed after weaning until
6 weeks of age, when they were assigned to a density of two animals per
cage. All procedures were approved by the Nanyang Technological
University Institutional Animal Care and Use Committee.

Maternal separation
On PN2, litters were randomly assigned to undergo MS, or to be reared
under animal facility rearing (AFR) conditions. MS was carried out from PN2
to PN14, inclusive, and consisted of daily separation of whole litters from
their dams for 3 h (0900–1200 h). First, dams were removed from the home
cage and placed in a clean cage in the same room. Pups were then removed
from the nest one at a time and placed together in a smaller cage and kept
in a quiet, separate room on a heating pad to maintain body temperature.
At the end of the separation period, pups were returned to the home cage,
followed by the dam. On PN2, PN9 and PN14, the pups and dam were
placed in a clean home cage. AFR litters were left undisturbed except for
cage change on PN2, PN9 and PN14. From PN15 to PN21, litters remained
housed with dams until weaning. A total of nine litters were used (four MS,
five AFR), generating a total of 49 male pups. Body weight was measured
once a week from weaning (PN21) to the end of the experiment.
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Environmental enrichment
On PN56, male offspring from AFR (n=23) and MS (n= 26) litters were
pseudorandomly divided into two housing subgroups: EE (AFR-EE, n=11;
MS-EE, n= 14) or standard housing (AFR-Standard, n=12; MS-Standard,
n= 12). Sample size was estimated based on historical variance in the
laboratory for similar experiments. Housing conditions were maintained for
the rest of the experiment. EE animals were housed in groups of 2–4 in a
complex highly sensory environment consisting of a large, three-level cage
(72× 51 × 110 cm3) containing a variety of cylindrical plastic pipes, nesting
material, toys, hanging platforms, baskets and treats. The objects within
the EE cage were rearranged and renewed every four days. Non-enriched
animals were housed in pairs in individually ventilated standard laboratory
cages (37 x 22 x 18 cm3).

Behavioural testing
Following 14 days of EE/standard housing, animals were subjected to the
home cage emergence test at PN70, and subsequently to the elevated plus
maze (PN74) to measure anxiety. All behavioural procedures commenced
at approximately 1000 h, with a 30-min habituation to ambient lighting
conditions (number of animals tested for behavioural experiments
mentioned in the previous section). The same cohort was used for all
behavioural tests in the sequence specified below. Animals stayed in the
EE for 14 days preceding testing and remained so until they were killed
(Supplementary Figure 1). The duration of EE before behavioural testing
was guided by the ability of a similar duration of EE to rescue the
behavioural effects of stress when both EE and stress were provided in
adulthood.30

Home cage emergence test
In the home cage emergence test, two standard laboratory rat
cages with lids removed were placed 10 cm apart, with a grid placed
against one of the edges of one (home cage) leading out into the other.
Rats were placed in the home cage, and latency to leave the cage was
measured. Leaving the cage was operationally defined when all four paws
were on the grid. If the rat did not emerge from its home cage within
10 min, the session was ended and the rat was given a maximum score
of 600 s. The test was carried out in dim light conditions (3− 4 lux in
both cages).

Elevated plus maze
The elevated plus maze apparatus consisted of a raised plus-shape maze
(60 cm from ground) with two opposite arms enclosed with walls
(75× 11 × 26 cm3) and the other two arms exposed (75 × 11 cm2). Dim
light was shone directly onto each open arm (6 lux). Each rat was placed in
the centre square of the maze and allowed to explore freely for 5 min. All
trials were video-recorded and manually analysed to quantify the
percentage open-arm time and open-arm entries, relative to the sum of
open and enclosed arm exploration. As a measure of risk assessment, the
number of head dips was also quantified. The experimenter analysing the
record was blind to animal number and treatment.

Open-field test
Animals were placed in an open circular arena (radius = 120 cm, trial
duration= 300 s, diffused dim lighting). Time spent in the centre of
the field was quantified as the reciprocal proxy of the anxiety (centre
defined as a concentric circle to the arena with 0.33 m radius). Total
distance travelled during the trial was also quantified as a measure of
locomotion.

Brain collection
On PN84, rats were killed by decapitation. Terminal trunk blood was
collected, serum was separated and used for estimation of corticosterone
concentration using a commercial EIA kit (Enzo Life Sciences, ADI-900-097,
Farmingdale, NY, USA). The brain was quickly removed and processed for
Golgi staining using the FD Rapid GolgiStainTM kit (FD Neurotechnologies,
Columbia, SC, USA). Coronal sections (100 μm thickness) were then cut
using a cryostat (Leica CM3050-S, Leica Biosystems, Wetzlar, Germany) and
collected on gelatinized slides. Sections were counterstained in 0.25%
cresyl violet solution and coverslipped using Permount mounting medium
(Fisher Scientific, Singapore).

Dendritic morphology of BLA neurons
A random proportion of animals from each group was used for
morphological analysis (AFR-Standard: n= 6; AFR-EE: n= 9; MS-Standard:
n= 9; MS-EE: n=9). Complete stellate or pyramidal-like neurons in the BLA,
consisting of the lateral and basal nuclei, were selected for tracing using a
microscope (Olympus BX43, Tokyo, Japan, × 40 objective lens) with the aid
of a camera lucida. For each animal, 10− 11 neurons were drawn to yield a
representative sample of BLA neurons for each group. Custom-designed
macros embedded in ImageJ (http://rsb.info.nih.gov/ij/) were used for analysis
of scanned images to quantify total dendritic length and total number of
branch points. All neurons were drawn and analysed by an experimenter blind
to treatment. The codes were not broken until quantification for dendritic
length and spine density was concluded. Dendritic length and branch points of
prelimbic mPFC neurons were quantified in the same cohort of animals.

Spine density of BLA neurons
Using the same microscope (Olympus BX43, 1.3 numerical aperture, × 100
objective lens), all protrusions from dendrite, irrespective of morphological
characteristics, were counted as spines. Dendrites directly originating from
the cell soma were classified as primary dendrites, and the first branch
emerging from the primary dendrite was classified as the secondary
dendrite. Starting from the origin of the branch, and continuing away from
the cell soma, spines were counted along a 60-μm stretch of the dendrite.
Spine density was quantified in 6–10 neurons per animal to yield a
representative sample of BLA neurons for each group.

Statistical analyses
Normality for behavioural and morphological end points was examined
using the Shapiro−Wilk test. Several end points exhibited significant
departure from normality (Table 1). Consequently non-parametric statistics
was used for intergroup comparisons (Kruskal–Wallis one-way analysis of
variance). When significant intergroup differences were indicated, group-
wise post-hoc comparisons were conducted using Mann−Whitney U test
(two-tailed). The AFR group was compared with the MS group, either in the
presence or in the absence of EE. Resultant type 1 error probabilities were
adjusted for multiple comparisons using Bonferroni correction. Figures
depict median and interquartile range. Effect size was calculated using
Cliff’s delta, a non-parametric statistic.31 All analyses were performed using
IBM SPSS statistics 21 (Armonk, NY, USA) or GraphPad Prism 6 software
(La Jolla, CA, USA).

Table 1. Tests for normality and effect size

End point Shapiro−Wilk test Cliff’s delta
statistics a

Statistics df P No EE With EE

Home cage emergence
Emergence latency 0.820 49 40.001 − 0.597 0.052

Elevated plus-maze
Percentage open entries 0.923 49 0.003 +0.653 +0.234
Percentage open time 0.940 49 0.015 +0.833 +0.000
Number of head dips 0.955 49 0.057 +0.764 − 0.247

BLA dendrites
Total dendritic length 0.975 33 0.625 − 0.778 +0.062
Total branch points 0.921 33 0.019 − 0.926 +0.062

BLA spine density
Primary dendrites 0.894 30 0.006 − 0.750 +0.031
Secondary dendrites 0.911 30 0.016 − 0.833 +0.375

Prefrontal cortex dendrites
Total dendritic length 0.987 30 0.965 +0.400 − 0.238
Total branch points 0.930 30 0.048 − 0.200 − 0.079

Abbreviations: BLA, basolateral amygdala; EE, environmental enrichment.
aNon-parametric estimate of effect size. Animal facility rearing (AFR) versus
maternal separation (MS). Ranges from − 1 (AFRoMS) to +1 (AFR4MS).
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RESULTS
There were no significant differences in litters randomly chosen to
undergo MS and AFR, in terms of both litter size (Student’s t-test;
t(7) = 1.49, P= 0.18) and number of male pups (t(7) = 1.76, P= 0.12).
At weaning (PN21), male pups exposed to MS weighed
significantly less compared to the AFR group (AFR: 45.50 ± 0.7 g;
MS: 42.60 ± 1.1 g; t(47) = 2.20, P= 0.03). MS-treated animals con-
tinued to weigh less than non-MS animals into the adulthood
(Supplementary Figure 2). Several behavioural and structural end
points exhibited non-normal frequency distribution (Table 1). A
rank transformation of data failed to institute normality. In view of
non-normal distribution, all subsequent data analysis employed
non-parametric alternatives.

Home cage emergence test
Latency to emerge from home cage was quantified as a reciprocal
end point for anxiety-like behaviour (Figure 1). Kruskal−Wallis test
revealed significant intergroup differences (χ2 = 25.3, df = 3,
P= 0.0001). Subsequent post-hoc analysis revealed significantly
higher emergence latency in MS rats compared to AFR when both
groups were housed in standard conditions during adulthood
(Figure 1; Mann−Whitney U test: |z| = 2.40, P= 0.032 after
Bonferroni correction for multiple comparisons; n= 12 for AFR-
Standard and MS-Standard). The 25th percentile of MS-Standard
animals was observed to be greater than the 75th percentile
of the AFR-Standard group, suggesting a robust increase in
emergence latency due to MS (effect size in Table 1). In contrast,
MS did not significantly increase emergence latency in the
presence of EE (Figure 1 and Table 1; |z| = 0.27, P= 0.784 before
Bonferroni correction; n= 11 for AFR-EE and 14 for MS-EE).

Elevated plus maze
The elevated plus maze was used as a second assessment for
anxiety-like behaviour, with decreased open-arm entries and time
indicative of heightened anxiety. Kruskal−Wallis test revealed
significant intergroup differences for percentage open-arm entries
(relative to sum of open and enclosed arms, %; X2 = 15.7, df = 3,
P= 0.0013) and percentage open-arm time (X2 = 24.7, df = 3,
P= 0.0002). Congruent to emergence latency from home cage,
MS caused robust decrease in percentage open-arm entries when
housed in standard conditions during adulthood (Figure 2a;

|z| = 3.00, P= 0.006 after Bonferroni correction). In contrast,
differences between MS and AFR groups were not statistically
significant when animals were housed in enriched environment
(|z| = 1.07, P= 0.57 after Bonferroni correction). Similarly, MS
significantly decreased percentage open-arm time in the absence
of EE (Figure 2b; |z| = 3.65, P= 0.001 after Bonferroni correction),
but not in the presence of EE (|z| = 0.06, P= 0.956 before Bonferroni
correction).
In addition to quantifying entries in open and enclosed arms,

we also measured the number of head dips as a measure of risk
assessment (Figure 2c). Kruskal−Wallis test revealed significant
intergroup differences for this end point (X2 = 28.6, df = 3,
Po0.0001). MS treatment resulted in a significant decrease in
risk assessment under standard housing conditions (Figure 2c;
|z| = 3.61, P= 0.001 after Bonferroni correction). The effect of MS on
head dips was absent when animals were housed under EE
(|z| = 0.80, P= 0.850 after Bonferroni correction).
Estimates of effect size (Table 1) demonstrated a robust effect of

MS on all parameters during elevated plus maze paradigms. Thus,
the effect size for anxiety parameters exceeded a relatively robust
level of 0.65 after exposure to MS. This is also borne out by the
observations that, in all parameters, the 75th percentile of MS
animals was lower than the 25th percentile of the AFR group
(Figure 2). Adult provision to EE substantially diminished the effect
sizes for MS exposure (Cliff’s delta between − 0.25 to 0.25; Table 1).

Open-field test
Time spent in the centre of the open-field arena and total
locomotion in the arena were quantified. Kruskal−Wallis test
revealed significant intergroup differences for occupancy in the
centre (Figure 2d; X2 = 22.8, df = 3, Po0.0001). Subsequent post-
hoc analysis did not reveal statistically significant effect of MS on
time spent in the centre, in either absence (P40.2) or presence
(P40.7) of EE. In the non-MS group of animals, EE significantly
increased time spent in the centre of the arena (Po0.001
after Bonferroni correction). Distance travelled in the open field
did not show significant intergroup differences (X2 = 0.98, df = 3,
P40.8), suggesting comparable locomotion between experimen-
tal groups.

Dendritic morphology of BLA neurons
Two parameters, total dendritic length and number of branch
points, were quantified in 334 BLA neurons (8− 11 neurons per
animal, average for each individual animal used for statistical
analysis). Kruskal−Wallis test revealed significant intergroup
differences for both total dendritic length (μm; X2 = 8.5, df = 3,
P= 0.037) and total number of branch points (X2 = 19.1, df = 3,
Po0.003).
MS resulted in a significant hypertrophy of BLA neurons. This

was evident as increase in both total dendritic length (Figure 3a;
|z| = 2.47, P= 0.026 after Bonferroni correction) and number of
branch points (Figure 3b; |z| = 2.95, P= 0.006 after Bonferroni
correction). MS-induced hypertrophy did not reach statistical
significance when animals were provided with EE (|z| = 0.22,
P= 0.863 before Bonferroni correction for both dendritic length
and branch points). In the absence of EE, the 25th percentile of MS
animals was greater than the 75th percentile of the AFR group
(Figures 3a and b), resulting in a robust effect size of 40.75
(Table 1). This increase in dendritic parameters was normalized in
the presence of EE (effect size = 0.06).
Figure 4 depicts camera lucida traces of representative neurons.
Dendritic length and branch points of prelimbic mPFC neurons

were quantified in the same cohort of animals (8 neurons per
animal, average for each individual animal used for statistical
analysis; Table 1). Kruskal−Wallis test did not reveal significant
intergroup differences for both total dendritic length

Figure 1. Effect of maternal separation (MS) and environmental
enrichment (EE) on latency to emerge from the home cage. The
figure depicts the median and interquartile range (between 25th to
75th percentiles) of emergence latency. *Po0.01 for comparison
between MS and animal facility rearing (AFR) groups; Mann−
Whitney U test, Bonferroni correction applied for multiple (X2)
comparisons. N= 12 animals for AFR-Standard, 12 for MS-Standard,
11 for AFR-EE and 14 for MS-EE.
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(Supplementary Figure 3; μm; X2 = 1.74, df = 3, P= 0.627) and total
number of branch points (X2 = 1.39, df = 3, P= 0.708).

Spine density of BLA neurons
The number of spines was quantified in a 60-μm segment of
primary and secondary dendrites (Figure 5). Kruskal−Wallis test

revealed significant intergroup differences for both primary
(number of spines per 60 μm; X2 = 7.7, df = 3, P= 0.05) and
secondary dendrites (X2 = 13.5, df = 3, Po0.004). In cases of both
primary and secondary dendrites, post-hoc analysis indicated
significant increase in spine density due to MS exposure
(Figures 5a and b; |z|42.32, Po0.04 after Bonferroni correction).
The MS-induced increase in spine density was renormalized when

Figure 2. Effect of maternal separation (MS) and environmental enrichment (EE) on percentage open-arm entries (a), percentage open time
(b), number of head dips (c) in elevated plus maze and time spent in the centre of an open-field arena (d). Percentage open-arm exploration is
quantified relative to the sum of open- and enclosed-arm exploration, in %. *Po0.01 for comparison between MS and animal facility rearing
(AFR) groups; Mann−Whitney U test with Bonferroni correction. N is similar to Figure 1. N= 14 animals for AFR-Standard, 10 for MS-Standard,
15 for AFR-EE and 10 for MS-EE for D.

Figure 3. Effect of maternal separation (MS) and environmental enrichment (EE) on total dendritic length (a, μm) and number of branch points
(b) of principal basolateral amygdala neurons. *Po0.01 for comparison between MS and animal facility rearing (AFR) groups; Mann−Whitney
U test with Bonferroni correction. N= 6 animals for AFR-Standard, 9 animals for all other groups; the value for each individual animal was
derived as the average of 8–11 unique neurons.

Adulthood enrichment reverses early-life stress effects
AS Koe et al

4

Translational Psychiatry (2016), 1 – 7



animals were exposed to EE during adulthood (|z|o0.85, P40.40
before Bonferroni correction). Consistent with dendritic para-
meters, the 25th percentile of MS-Standard animals exceeded the
75th percentile of the AFR-Standard group, suggesting a robust
experimental effect (Table 1; effect size40.75). In contrast,
exposure to EE reduced the effect sizes for MS treatment.

Serum corticosterone concentration
Serum concentration of stress hormone corticosterone was
quantified in trunk blood obtained during death. Corticosterone
concentration did not show significant intergroup differences
(X2 = 0.80, df = 3, P40.8). This suggests that stress hormones

circulating at the baseline in adulthood were not different
between experimental groups (Supplementary Figure 4).

DISCUSSION
The data presented in this report demonstrate that MS in early life
leads to structural changes in the BLA during adulthood. BLA is a
critical brain region in the generation and maintenance of
conditioned fear and generalized anxiety (succinctly reviewed in
Fanselow and LeDoux,32 Pare,33 Nathan et al.34 and Boyle35).
For example, traumatic stress in the form of predator exposure
in adult rats causes long-lasting anxiety. This anxiogenesis is
dependent on the BLA36 and secretion of stress hormones.37,38

Similarly, lesions of the BLA rescue the effects of stress hormones
on a variety of memory processes.39–42

Prior work has shown that chronic stress or exogenous
glucocorticoids during adulthood precipitate dendritic hypertro-
phy of the BLA projection neurons.23,24 Stress also enhances spine
density 22 and reduces synaptic inhibition on these neurons.43

These observations suggest that stress or stress hormones act
within the BLA, causing structural expansion and increased
excitability. Such stress-induced facilitation consequently leads
to greater anxiety, given the pivotal role of the BLA in the
generalized fear. This suggestion is buttressed by the observation
that augmentation of BLA dendrites co-occurs with more
anxiety;22,23,44 blockade of stress hormonal action in or experi-
mental reduction of dendritic length within the BLA reduces
anxiety;45,46 and inter-individual variation in stress-induced anxiety
co-elutes with the dendritic architecture of BLA neurons.47 In light
of these observations, we suggest that structural changes in BLA
projection neurons long after MS results in the increased anxiety
reported here and elsewhere.
Previous studies have reported effects of MS on the dendritic

architecture of PFC projection neurons.17,20 Adolescent and
postpubertal rats exhibit reduced dendritic complexity and lower
spine density in these neurons after MS. Similarly, MS suppresses
dendritic complexity of neurons in the hippocampus and nucleus
accumbens. These observations are in marked contrast to
dendritic expansion and denser spines reported in the present
study. Interestingly, chronic stress during adulthood also
results in contrasting changes in the BLA vis-à-vis the hippocampus
or the PFC.22–24,48,49,50 Congruently, MS causes contrasting
changes in the behaviours mediated by these structures. For
example, MS results in deficits of hippocampus dependent

Figure 4. Representative camera lucida drawings of Golgi-
impregnated basolateral amygdala neurons from animals exposed
to maternal separation and/or environmental enrichment. Scale
bar= 50 μm.

Figure 5. Effect of maternal separation (MS) and environmental enrichment (EE) on the spine density in primary (a, per 60 μm) and secondary
(b) dendrites of principal BLA neurons. *Po0.01 for comparison between MS and animal facility rearing (AFR) groups; Mann−Whitney U test
with Bonferroni correction. N= 6 animals for AFR-Standard, 8 animals for all other groups; the value for each individual animal was derived as
the average of 8–11 unique neurons.
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spatial memory and PFC dependent extinction recall of
conditioned fear.16,51 In contrast, MS increases anxiety-like
behaviour consistent with the role of the BLA in anxiety. We posit
that the differential effects of MS on BLA dendrites, compared to
hippocampal and prefrontal neurons, underlie the disparate effects
of early-life stress on anxiety and memory processes. Furthermore,
a single acute session of MS does not result in the dendritic
changes in BLA.21 Thus, the chronic and repetitive aspects of MS
employed here are likely necessary for the BLA's structural
plasticity.
EE is reported to have positive effects on a variety of emotional

and cognitive parameters (reviewed in Alwis and Rajan,52 Arai and
Feig,53 Eckert and Abraham,54 Hannan,55 Pang and Hannan,56 and
van Praag et al.57). In case of MS effects, peripubertal EE immediately
after weaning rescues the effects of MS on endocrine reactivity
to acute stress.25 Thus, MS increases stress-induced release of
corticosterone from adrenal glands and enhances the amount
of corticotrophin-releasing factor present in the hypothalamus,
suggesting greater sensitivity to acute stress during adulthood.
Fifty-days-long peripubertal EE starting at PN21 renormalizes such
stress reactivity, in parallel to also rescuing MS-induced anxiety in an
open-field test. Similarly, peripubertal EE also rescues the cognitive
effects of low maternal care in rats.29 In contrast to these reports,
the present observations suggest that a relatively short EE spanning
2 weeks and starting much later in adult life is sufficient to rescue
both behavioural consequences of MS and underlying neuronal
changes. Thus, the presence of a long environmental intervention
during adolescence is sufficient, but not necessary, for the rescue.
Similar renormalization can also be achieved outside the critical
peripubertal window and through a shorter intervention.
The current data suggest that circuits underlying emotional

behaviour maintain a degree of plasticity in adulthood, such that
positive and stimulating environments can overcome the effects
of adversity applied during a highly sensitive period of brain
development. In addition, our findings propose neuroplasticity in
the amygdala as a likely candidate in mediating the reversal of MS
effects. Altered neuronal morphology could therefore be a
phenotype for increased risk of affective behaviour following
early-life stress, and may provide a potential target for treatment
of mental disorders associated with early adversity. At the same
time, our findings also propose environmental stimulation in
adulthood as a possible therapy for neuropsychiatric conditions
associated with early-life stress, particularly those known to
involve altered amygdala structure and function.
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