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Analysis of single-cell transcriptomes links
enrichment of olfactory receptors with cancer
cell differentiation status and prognosis
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Ectopically expressed olfactory receptors (ORs) have been linked with multiple clinically-
relevant physiological processes. Previously used tissue-level expression estimation largely
shadowed the potential role of ORs due to their overall low expression levels. Even after the
introduction of the single-cell transcriptomics, a comprehensive delineation of expression
dynamics of ORs in tumors remained unexplored. Our targeted investigation into single
malignant cells revealed a complex landscape of combinatorial OR expression events. We
observed differentiation-dependent decline in expressed OR counts per cell as well as their
expression intensities in malignant cells. Further, we constructed expression signatures based
on a large spectrum of ORs and tracked their enrichment in bulk expression profiles of tumor
samples from The Cancer Genome Atlas (TCGA). TCGA tumor samples stratified based on
OR-centric signatures exhibited divergent survival probabilities. In summary, our compre-
hensive analysis positions ORs at the cross-road of tumor cell differentiation status and
cancer prognosis.

TDepartment of Computational Biology, Indraprastha Institute of Information Technology-Delhi (Il1IT-Delhi), Okhla, Phase II, New Delhi 110020, India.

2 Department of Computer Science and Engineering, Indraprastha Institute of Information Technology-Delhi (IIIT-Delhi), Okhla, Phase 1, New Delhi 110020,
India. 3 Pathfinder Research and Training Foundation, 30/7 and 8, Knowledge Park Ill, Greater Noida, Uttar Pradesh 201308, India. 4 Center for Biomedical
Engineering, Indian Institute of Technology Ropar, Bara Phool, Birla Seed Farms, Rupnagar, Punjab 1400071, India. ® Centre for Artificial Intelligence, Indraprastha
Institute of Information Technology, Okhla Phase Ill, New Delhi 110020, India. © Institute of Health and Biomedical Innovation, Queensland University of
Technology, Brisbane, Australia. “These authors contributed equally: Siddhant Kalra, Aayushi Mittal. ®email: debarka@iiitd.ac.in; gaurav.ahuja@iiitd.ac.in

COMMUNICATIONS BIOLOGY | (2020)3:506 | https://doi.org/10.1038/s42003-020-01232-5 | www.nature.com/commsbio 1


http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01232-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01232-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01232-5&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42003-020-01232-5&domain=pdf
http://orcid.org/0000-0002-3390-9494
http://orcid.org/0000-0002-3390-9494
http://orcid.org/0000-0002-3390-9494
http://orcid.org/0000-0002-3390-9494
http://orcid.org/0000-0002-3390-9494
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-6353-5411
http://orcid.org/0000-0002-2837-9361
http://orcid.org/0000-0002-2837-9361
http://orcid.org/0000-0002-2837-9361
http://orcid.org/0000-0002-2837-9361
http://orcid.org/0000-0002-2837-9361
mailto:debarka@iiitd.ac.in
mailto:gaurav.ahuja@iiitd.ac.in
www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01232-5

ranging from the identification of prey or peer mates to the

incoming danger!~4. Chemoreception, in particular, is a key
sensory system, which is largely mediated by olfactory and taste
receptors”™/. In the human genome, olfactory receptors (ORs)
constitute the largest gene family with ~400 functional and ~600
non-functional pseudogenes®. These functional olfactory receptors
are further classified into distinct subfamilies. In mammals, the
olfactory receptor families include odorant receptor (ORs)’,
vomeronasal type 1 and type 2 receptors (V1Rs and V2Rs)!0, trace
amine-associated receptors (TAARs)!!, formyl peptide receptors
(FPRs)!2, and the membrane guanylyl cyclase (GC-D)!3. Based on
their evolutionary relationship, ORs, the largest gene sub-family,
are further classified into Class I and Class II receptors’.
Vomeronasal receptors (VRs), also known as pheromone recep-
tors, are sub-classified into VIRs and V2Rs!0. TAARs, another
subfamily of chemosensory receptors, are known to detect trace
amines such as B-phenylethylamine, p-tyramine, tryptamine, and
octopamine!4. Membrane-associated Guanylyl cyclase receptors
have been shown to be activated by membrane diffusible nitric
oxide and other ligands such as uroguanylin and guanylin!>.

The olfactory signal transduction initiates with the binding of
odorants to the olfactory receptors, which in turn triggers the
Galpha protein-mediated activation of adenylate cyclase, leading to
an increase in cyclic adenosine monophosphate (cAMP) levels!©.
Elevated cAMP levels interact and instigate the opening of cyclic
nucleotide-gated (CNG) channels, resulting in the influx of
cations, mainly sodium (NaT) and calcium (Ca?*) ions, ulti-
mately leading to the depolarization of olfactory sensory neurons
(OSNs). This transient increase of the intracellular CaZ* ions
triggers the opening of Ca?*-activated chloride (CaCCs) channels
that amplify the CNG channel signall®.

Notably, in addition to their expression in the OSNs of the
olfactory epithelium, ORs exhibit ectopic expression in non-
olfactory tissues such as muscle, kidney, and keratinocytes!’-22.
Advancements in the high-throughput sequencing technologies
accelerated the systematic exploration of the ectopic chemosensory
receptors in almost all human tissues!®. In addition to this, OR-
expression has also been reported in epithelial malignancies?3-2°.
OR expression in non-olfactory tissues has been found to play a
crucial role in various physio-molecular processes including wound
healing, cellular motility, sperm chemotaxis, and the regeneration of
muscle cells?>26-28, Moreover, various functional studies high-
lighted the therapeutic promise of ligand-mediated OR activation in
cancer!®24, For instance, in the case of hepatocellular carcinoma,
the activation of OR1A2 by citronellal leads to a cAMP-dependent
increase in cytosolic Ca?* ions, thereby impeding cancer cell pro-
liferation. Similarly, Troenan induced activation of OR51B4 in
colorectal cancer cells inhibits their migratory potential and insti-
gates apoptosis®). Moreover, in prostate cancer, activation of
ORS51E2 by an endogenous agonist, 19-hydroxyandrostenedione
resulted in neuroendocrine trans-differentiation, revealing the
functional implication of ORs in diverse physio-molecular pro-
cesses’l. In addition to this, in vitro activation of OR51E2 in
vertical-growth phase melanoma cells by B-ionone resulted in the
activation of anti-proliferative, anti-migratory, and pro-apoptotic
pathways32. Similar findings have been reported for non-small-cell
lung cancer where OR2J3 activation by helional leads to the
induction of apoptosis and anti-proliferative pathways33. Notably,
due to their expression specificity in the tumor-state, a handful of
ORs have been identified as potential biomarkers e.g. OR51E1 in
small intestine neuroendocrine carcinomas34, OR7C1 in colorectal
cancer®, PSGR in prostate cancer3®, and OR2B6 in breast carci-
nomas?3. All these collectively reinforce the idea of the potential
therapeutic and diagnostic function of these ectopic olfactory
receptors.

S ensory inputs play a vital role in many essential behaviors,

Traditional bulk-tissue based transcriptomics estimates the
average expression of individual ORs across admixture of cell
types within the highly heterogeneous tumor biopsies, leading to
under-detection of lowly or selectively expressed ORs37-38. In the
present study, we investigated the expression profiles of ORs in
single malignant cells leveraging numerous publicly available
single-cell RNA sequencing (scRNA-Seq) datasets. We could
identify 59 previously unreported OR-tumor pairs. Our results
indicate that across cancer types, intra-tumoral heterogeneity
concurs with the number of expressed ORs per cell. Delineation
of the breast epithelial malignant cells along the cellular differ-
entiation trajectory revealed a substantial decrease in the cellular
count of expressed ORs and their expression, along with the
differentiation kinetics. Finally, we were able to construct OR-
centric transcriptomic signatures, which stratifies breast cancer
samples from TCGA into distinct groups with divergent survival
probabilities.

Results

Widespread expression of OR genes in malignant cells. Acti-
vation and upregulation of the olfactory receptor genes in various
cancer types are well established, however, in most cases, the
assessment of the OR transcripts is achieved by profiling of the bulk
tumor samples, which largely masks both the OR expression as
well as information about the contributing cell-types, thereby
obscuring their adaptation in diagnosis and management of can-
cers®8, To address this, we developed a computational workflow
(CancerSmell) that systematically estimates the activation status of
the chemosensory olfactory and taste receptors at the single-cell
resolution (Supplementary Fig. 1a). Using this, we evaluated the
expression of these chemosensory receptors across 49 scRNA-seq
datasets (tumor and cell lines), featuring 22 tumor types and col-
lectively comprising 42,529 malignant cells (Supplementary Fig. 1b).
Our workflow identified numerous chemoreceptor-tumor pairs
which were largely unreported in cancer literature (Figs. la, 2a,
Supplementary Fig. 2a, b, d-f). Notably, among them, we have
observed enrichment of OR genes in cancer, in contrast to TAARs,
V2Rs and taste receptors (T1Rs and T2Rs), which is in line with the
earlier reports, where the comparative enrichment of ORs is
reported in the cancer cells, in contrast to other chemosensory
receptors (Fig. 1a, c-f, Supplementary Fig. 2c, d-f; Supplementary
Data 1). Next, we sought to determine the specificity and exclusivity
of the identified ORs towards cancer-types. Further assessment of
these results revealed two distinct classes of ORs, based on their
tumor specificity. For example, OR8B8 and OR8H1 were exclu-
sively detected in malignant breast epithelial cells, whereas OR1A1
and OR2M3 activation were observed in 11 and 10 different tumor
types respectively, suggesting a distinct mode of expression reg-
ulation (Fig. 1a, Supplementary Fig. 2a, b; Supplementary Data 2).
Of note, ORs with pseudo-gene status were vastly undetected across
the studied expression datasets (Supplementary Fig. 2a, b). Next, we
asked if tumor-associated ORs exhibit bias towards certain genomic
loci. In our analysis, all the detected ORs were restricted to only 10
chromosomes, out of the 21 OR coding chromosomes®, with
chromosome 11 harboring the largest fraction of these receptors
(Fig. 1b). We observed a high degree of variability in their
expression and cellular detection frequency, alluding to their
potential contribution in tumor heterogeneity (Fig. le, f). Func-
tional studies elucidating the role of these tumor-associated olfac-
tory receptors indicate the involvement of these receptors in
regulating key cancer-related pathways*’. For this purpose, we used
the Gene Set Variation Analysis (GSVA) library. Our results indi-
cate that a significant proportion of the detected ORs are implicated
in processes such as stemness, metastasis, invasion and differ-
entiation (Fig. 2b-e, Supplementary Fig. 2g, Supplementary Data 3).
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Fig. 1 Comprehensive catalog of tumor-associated ORs at the single-cell resolution. a Phylogenetic tree representing ORs sequence relationships and
their detection status in 14 distinct cancer types. The tree was constructed using the PhyML algorithm. The protein sequences of the functional ORs were
aligned using the MUSCLE sequence alignment algorithm. Colored circles represent the tumor types and the branch colors represent the source
information. The green, purple, and red branch color represent the presence of the indicated OR in the cell line, tumor, or both respectively. b [deogram
illustrating the chromosomal location of all the functional ORs in humans. Red lines represent the genomic loci of the functional ORs reliably detected in the
malignant cells (tumor or cell lines), whereas cyan lines represent the genomic loci of ORs that are not detected in any tumor-types or cell lines under
investigation. The identities of the malignant cells-associated ORs are indicated in the box. ¢ Bar graph representing the percentage of OR-positive
malignant cells in the indicated ten different tumor single-cell datasets. zFPKM algorithm was used for the determination of the OR activation status
(zFPKM >-3, activated). The percentage of active cells (OR-positive) represents the proportion of cells possessing zFPKM values >—3 for any functional
OR. d Uniform Manifold Approximation and Projection (UMAP) based embedding of single-cell expression profiles representing the distinct cell types in
the indicated tumor datasets. Different clusters are depicted with distinct colors. Cells within a cluster represent similar cell types at the transcriptome
level. Markers for each cluster are indicated as text. These markers were identified by using the “FindAllMarkers" function of the Seurat (v 3.1.1). e Uniform
Manifold Approximation and Projection (UMAPs) depicting the relative expression of the representative ORs in the indicated single-cell tumor datasets.
Cells within a cluster represent similar cell types. f Density-histograms depicting the normalized expression of the indicated ORs in the corresponding
tumor type. Y-axis represents the number of malignant cells expressing the indicated OR whereas the X-axis denotes the normalized expression value as
log,(TPM+1).
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Fig. 2 Functional enrichment analysis of tumor-associated ORs revealed their potential role in regulating key cancer-related pathways. a Estimation of
the olfactory repertoire at the single-cell resolution revealed previous unreported cancer-associated olfactory receptors, represented here as a Pie Chart.
CancerSmell computational workflow identified 59 previously unreported malignant cells-associated ORs. b Gene Set Variation Analysis (GSVA) revealed
the functional relevance of the indicated olfactory receptors in tumor-related processes, indicated here as the Alluvial plot. The activated (GSVA score > 0
and corrected p-value < 0.01) and inactivated (GSVA score <0 and corrected p-value < 0.01) status of the indicated biological pathways is represented
along the horizontal bar. ¢ Box plots depicting the correlation between GSVA scores and the OR expression in the indicated tumor-related signatures. The
X-axis represents the total number of ORs identified to be regulating the indicated biological process. The color of the box represents distinct tumor
signatures (mentioned in Panel b of Fig. 2). d Scatter plots representing the correlation between GSVA scores for metastasis signature and OR4F17 in the
breast carcinoma cells. The R-value designates the correlation coefficient, whereas the p-value indicates the statistical significance. e Scatter plots
representing the correlation between GSVA scores for invasion signature and OR5AT1 in the lung adenocarcinoma cells. The R-value designates the
correlation coefficient, whereas the p-value indicates the statistical significance.

Aberration of the one-receptor one-cell rule in cancer. OR gene
expression is tightly regulated in the OSNs, leading to the
expression of a single OR gene in a mature neuronl42, We
sought to determine if similar transcriptional regulation is also
applicable during ectopic OR expression in the malignant cells.
To test this, we first estimated the cellular frequencies of co-
expressed ORs across scRNA-seq datasets of numerous tumors
or cell lines. Our results suggest that unlike mature OSNs, a
significant proportion of the malignant cells express multiple
ORs, except in the case of tumors related to the nervous system
i.e. glioblastoma and astrocytoma, where we found malignant
cells to obey the “one or none” rule (Fig. 3a, Supplementary
Fig. 3a). Next, we asked whether the co-expression of ORs in
tumors is tightly regulated or stochastic in nature. Our results
indicate that the selection of the expressed ORs within a single
cell is stochastic and is poorly correlated to their expression
(BRCA dataset; R =0.34; p-value <0.0001) (Fig. 3b, c, Supple-
mentary Fig. 3g, h). Past reports evaluating the expression of
chemosensory receptors in healthy tissues revealed the presence
of multiple ORs?343. We, therefore, examined the exclusivity of
the ORs expressed in tumors. Comparative analysis revealed that
the number of activated OR genes are systematically higher in

the malignant state. Only a sub-fraction of these (14 out of 53
BRCA-associated ORs) were detected in healthy cells (Fig. 3d-f;
Supplementary Fig. 3b-d; Supplementary Data 4), which is lar-
gely in line with the previous reports!®. Among all the studied
cancer types, breast malignancies portrayed the maximum rela-
tive abundance of OR transcripts, inspiring us to closely pursue
the concerned cancer type. We, therefore, estimated the pro-
pensity of expressing multiple ORs per cell in the distinct
molecular subtypes of breast cancer. Noteworthily Triple-
Negative Breast Cancer (TNBC) cells, being the most aggres-
sive breast cancer subtype*4, displayed the highest levels of
enrichment of OR repertoire (Supplementary Fig. 3e; Supple-
mentary Data 5). Moreover, we observed no significant varia-
tions in breast carcinoma-associated ORs expression across the
molecular subtypes (Bonferroni corrected P-value > 0.05) (Sup-
plementary Fig. 3f). Further, we inspected the coherence of OR
expression with the well-known, cancer-related functional states.
We observed an inverse relationship between OR enrichment
and pro-tumor signatures such as invasion, metastasis, pro-
liferation, and DNA damage (Fig. 3f). Notably, for some ORs, a
positive correlation was observed between their expression and
signatures related to stemness, differentiation, and angiogenesis,
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Fig. 3 Cancer cells express multiple olfactory receptors. a Cellular count of expressed ORs largely varies across multiple tumor types, depicted here as a
percentage bar graph in the indicated tumor-types. zFPKM algorithm was used for the determination of the OR activation status (zFPKM >—3, activated).
b Uniform Manifold Approximation and Projection (UMAPs) representation of the cellular expression of two representatives ORs in the breast carcinoma
single-cell dataset. The red-colored arrows indicate the OR2M3 expressing malignant cells, whereas the green arrow denotes the OR1AT expressing
malignant cells. Notably, the cells indicated via blue arrows co-express both of these receptors. The scale bar on the right represents the relative expression
values of the indicated ORs. ¢ Density plot depicting the expression variability between the indicated ORs in the breast carcinoma single-cell dataset. The
p-value significance and the correlation coefficient is depicted on the right. d Graphical illustration depicting the total number of single cells and the reliably
detected ORs in the healthy and malignant breast epithelial cells. e Percentage bar graph depicting the relative proportion of detected ORs in the indicated
healthy and malignant epithelial cells. The different conditions (healthy, tissue, CTC, and PDX) are indicated by different colors. f Venn diagram depicting
the number of overlapping ORs in the indicated conditions. g Bar graph depicting the correlation between GSVA scores of the indicated biological process
and ORs expression across all cells. Notably, the positive and negative correlated values are indicated in red and green colored bars, respectively.

h Schematic representation depicting the strategy employed for differential gene expression analysis. Notably, the malignant cells were segregated into two
subcategories based on the expression of ORs per cell. Differentially expressed genes were calculated using the Wilcox test. i Metascape analysis of
differentially expressed genes depicting the functional importance of BRCA-associated ORs in the highlighted biological/molecular processes. j Heatmap
depicting cluster-wise enrichment of the prominent biological functions. Scale bar represents the negatively log-transformed (base 10) p-values.

implying their contrasting implications in the activation of
cancer-related biological pathways (Fig. 3g). Past studies (both
in vivo or in vitro models) have linked ligand-mediated OR
activation with multiple non-canonical molecular processes. To
this end, we segregated the single-cell malignant breast epithelial
cells based on the overall enrichment of expressed OR genes and
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functionally annotated the differential genes between the con-
cerned cell-groups (Fig. 3h, Supplementary Data 6). Key mole-
cular processes thus retrieved, included regulation of cell cycle,
transcriptional or translational regulation, autophagy, etc.
(Fig. 3i, j, Supplementary Fig. 3i). To summarize, our results
suggest that cellular count of expressed ORs and their respective
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expression levels concur with clonal heterogeneity in breast
tumors, both at the molecular and functional levels.

Correlation between ORs and tumor differentiation status.
Recent reports studying mammals suggest the involvement of a
special epigenetic mechanism behind the simultaneous expression
of multiple ORs in developmentally immature neurons*!4>,
Cancer cells also undergo extensive epigenetic reprogramming
such as DNA methylation, promoter hypermethylation, change in
chromatin structure, and histone modifications during intratu-
mor cellular (de)differentiation4®. Such changes are known to be
responsible for the dysregulation of the cell cycle control, thereby
affecting cell proliferation and survival mechanisms of the cell. To
this end, we tracked the change in the cellular count of expressed
ORs in the context of cancer-cell differentiation. For this, we
performed pseudo-time based reconstruction of the differentia-
tion trajectories underpinning clonal expansion of malignant
breast epithelial cells*’. Notably, the breast cancer single-cell
dataset consists of single-cell expression profiles of 11 treatment-
naive and 1 under-treatment patients (Supplementary Data 7).
Our initial analysis was performed on cells from all molecular
subtypes, except the cells from patient BC05, who reportedly
underwent neoadjuvant immunotherapy. Monocle yielded three
main branches elucidating the emergence of differential patho-
logical stages entailing molecular subtypes (Supplementary
Fig. 4a-d). Notably, for this analysis, we manually selected the
starting-point of the inferred trajectory based on the low-
dimensional spatial agglomeration of cells harboring maximum

relative stemness scores (Supplementary Fig. 4c). A negative
correlation was observed between pseudotime and cellular
stemness (Rgemness = —0.27, p value = <0.0001) (Supplementary
Fig. 4e). In contrast, minor (R = 0.2) or no significant correlation
(R=—0.021, p-value = 0.75) was observed between cellular OR
expression or the number of expressed ORs per cell along the
pseudotime, respectively (Supplementary Fig. 4f, g). Upon closer
inspection of the individual subpopulation of Luminal cells, it
offered a strong negative correlation between pseudotime and
cellular count of expressed ORs (Rogfrequency = —0.85, p value =
<0.0001) (Fig. 4a-c, Supplementary Fig. 4i). Moreover, similar
results were obtained for cellular stemness along the pseudotime
(Rstemness = —0.77, p value = <0.0001) (Supplementary Fig. 4h).
Conversely, we have observed a strong positive correlation
between cellular stemness and its expressed OR repertoire (R=
0.55, p value = <0.001) (Supplementary Fig. 4j). Next, we asked
whether such a steep decline in the cellular count of expressed
ORs or their expression along the cellular differentiation trajec-
tory is specific to malignancy. To test this, we have conducted
a similar analysis with the healthy luminal breast epithelial
cells which revealed no significant anti-correlation (R = 0.048,
p value =0.4) (Fig. 4d-f, Supplementary Fig. 4k-n; Supplemen-
tary Data 7).

ORs-centric signatures stratify BRCA tumors. Tumor envir-
onments harbor multiple cell-types, thereby obscuring the
detectability of cancer-specific ORs through bulk transcriptomics.
In breast cancer, the differentiation stage is used as a parameter
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Fig. 4 Cellular decrease of expressed ORs with higher differentiation status. a Monocle-generated pseudotemporal trajectory of malignant breast
epithelial cells of luminal A molecular subtype of breast carcinoma, depicting the decrease in cellular stemness during cellular differentiation time-course
(pseudotime). The cells with high stemness properties were selected as a starting point. Arrowheads indicate the direction of cellular differentiation across
the pseudotime. Scale bar represents the pseudotime. b Uniform Manifold Approximation and Projection (UMAP) represents the decrease in the number
of expressed OR genes per malignant cell in luminal A subtype in breast carcinoma during pseudotemporal trajectory. Scale bar represents the number of
expressed OR genes per cell. Arrowheads indicate the direction of cellular differentiation across the pseudotime. ¢ Scatter plots depicting an overall
decrease in the expression of representative ORs along the pseudotemporal trajectory in the indicated conditions. Scale bar represents the number of
expressed OR genes per cell. d Pseudotemporal trajectory of healthy luminal breast epithelial cells. Arrowheads indicate the direction of cellular
differentiation. Scale bar represents the pseudotime. e Uniform Manifold Approximation and Projection (UMAP) representing the number of expressed OR
genes per cell in the healthy luminal breast epithelial cells along the pseudotemporal trajectory. f Scatter plots depicting the expression dynamics of
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for the histopathological grading of tumor samples. To date, the
clinical assessment and prognosis are largely done using The
Nottingham Grading System, which incorporates the differ-
entiation status of the tumor cells*®. In furtherance to our
observation about the overall decline in the cellular OR number/
expression associated with differentiation, we asked if multi-
variate OR signatures can be used to deconvolute the bulk
expression profiles and could segregate patients with distinct
survival. To test this, we first constructed the OR-centric sig-
nature capturing the co-activation of the expressed ORs (Sup-
plementary Fig. 5a-c; Supplementary Data 8). Next, we projected
these OR-centric signatures on TCGA bulk-transcriptomic breast
carcinoma data?®, annotated with survival information, and
obtained multiple patient groups, with at least two major groups
having significantly distinct survival probabilities (Fig. 5a-c).
Notably, we obtained consistent results from signatures con-
structed from three independent and biologically distinct breast
cancer single-cell datasets, suggesting the robustness of the OR-
centric signatures in tumor classification. Further dissection of
this multivariate analysis revealed that the patient group posses-
sing higher cosine distance with the OR-centric signatures
representing the low number of expressed OR genes per cell
harbors a good prognosis and better survival, which largely
unmatches with estimated tumor stage of the patients (Fig. 5d-f,
Supplementary Fig. 5d-f; Supplementary Fig. 6a-c). Taken
together, these results reinforce the potential clinical relevance of

tumor-associated ORs and demonstrate the prognostic value of
the cell-type-specific, OR-centric signatures inferred from single-
cell transcriptomes.

Discussion

Dysregulation of the core transcriptional regulatory mechanisms
in cancer results in the ectopic expression of normally silent
genes®%°1. One such example of the silent gene family is olfactory
receptors. In addition to their expression in the sensory epithe-
lium of the nose, a large proportion of the ORs are reported to be
expressed in non-olfactory tissues, both under homeostatic as
well as in pathological states such as cancer. Notably, both the
expression as well as the number of expressed ORs highly
increases in the malignant states (reviewed in ref. 1°). Although
functional analysis with a handful of ORs has shown promising
results in cancer diagnostics and therapeutics!?, still a compre-
hensive understanding of their presence in multiple tumor-types,
their functional role in tumorigenesis, and ultimately in the
tumor prognosis remains unclear. The present study addresses
this gap by tracking OR expression in single malignant cells
entailing 22 cancer types (tissues and cell lines) and 42,529
malignant cells. We reported 68 tumor-OR pairs, among which
only ~15% have been mentioned in cancer literature. To the best
of our knowledge, this is the first comprehensive single-cell study
presenting a comprehensive analysis of the ectopically expressed
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Fig. 5 Single-cell transcriptome signatures stratify breast tumors into subgroups with distinct patient survival. a Kaplan-Meier plot depicting the
patient’s survival in the indicated groups (indicated with colors) segregated based on the cosine similarity between OR-enrichment signatures, inferred
from tissue-derived scRNA-sequencing profiling of malignant cells. b Kaplan-Meier plot depicting the patient’s survival in the indicated groups (indicated
with colors) segregated based on the cosine similarity towards OR-enrichment signatures, inferred from single-cell transcriptional profiling of circulating
tumor cells. ¢ Kaplan-Meier plot depicting the patient's survival in the indicated groups (indicated with colors) segregated based on the cosine similarity
towards OR-enrichment signatures, inferred from transcriptomic profiling of breast carcinoma patient-derived xenograft-derived dataset. d Heatmap
depicting the relative enrichment of breast tumor-derived ORs in the indicated subgroups of TCGA patients of breast carcinoma. e Heatmap depicting the
relative enrichment of breast cancer circulating tumor cells-derived ORs in the indicated subgroups of TCGA patients of breast carcinoma. f Heatmap
depicting the relative enrichment of breast tumor PDX-derived ORs in the indicated subgroups of TCGA patients of breast carcinoma.

COMMUNICATIONS BIOLOGY | (2020)3:506 | https://doi.org/10.1038/s42003-020-01232-5 | www.nature.com/commsbio 7


www.nature.com/commsbio
www.nature.com/commsbio

ARTICLE

COMMUNICATIONS BIOLOGY | https://doi.org/10.1038/s42003-020-01232-5

olfactory and taste chemosensory receptors (functional ORs,
pseudo OR genes, TAARs, V2Rs, taste receptor type 1 (T1Rs),
and taste receptor type 2 (T2Rs) across multiple cancer-types.
Molecular and functional analysis of the breast carcinoma-
associated ORs alluded to their potential role in tumor cell (de)
differentiation. Moreover, assessment of the DNA aberrations in
the tumor-associated OR genes in breast carcinoma indicated
DNA amplification events, which could be one of the underlying
reasons for their upregulated expression in cancer (Supplemen-
tary Fig. 6d—f). In summary, we took advantage of the single-cell
transcriptomics datasets and derived OR-centric signatures which
could robustly stratify BRCA bulk tumor samples from TCGA
with divergent survival probabilities.

Ectopically expressed ORs were first reported in the mamma-
lian germ cells®? and soon after, a multitude of effort was invested
to uncover their expression across multiple human tissues. The
availability of the high throughput next-generation transcriptome
approaches, such as bulk RNA sequencing and microarray further
accelerated this search and till now the expression of multiple
ectopic ORs is reported in various human tissues under the
homeostatic condition!8>34, Interestingly, in addition to their
reported expression in the healthy tissues, the past literature also
offers a number of independent anecdotes linking elevated
expression of specific ORs with the molecular prognosis of spe-
cific cancers232427:33,36.43 Guch examples include OR51B5 and
OR2AT4 in leukemia®>, OR7CI in colorectal cancer3>, OR51E2 in
melanoma32, ORI0H] in bladder cancer®®, OR51E2 in prostate
cancer’!, OR5IEI in small intestine cancer®*, and OR2B6 in
breast carcinoma?343, Interestingly, the functional validations
involving ligand-mediated activation of the aforementioned
cancer-associated ORs resulted in a decrease in cancer cell pro-
liferation or the complete cessation of the cancer growth, which
further suggests their importance in clinical setups.

Notably, expression evaluation of these therapeutically relevant
OR transcripts has been primarily achieved by targeted assays®’,
which mask the information about the contributing cell-types and
the expressing ORs. Single-cell transcriptomics circumvents these
shortcomings by enabling investigation at the levels of individual
cells, wherein cell-type identifiability remains tractable>$>%,
Added to it, single-cell expression allowed us to track the func-
tionally interpretable combinatorial expression of ORs. Interest-
ingly, the number of expressed ORs per cell systematically
declined with luminal A cell differentiation, proving it to be a
powerful molecular signature for cancer grading. Notably, such a
negative correlation is exclusive to cell malignancy. Prognostic
value of ORs was reinforced as we obtained distinct survival
groups, simply by tracking the enrichment of key OR-centric
molecular signatures in TCGA tumor samples. In this study, we
make several observations shedding light on the potential rela-
tionship between widespread expression of a large spectrum of
ORs and expansion/differentiation of cancer clones. Despite their
presence in the malignant cells, so far the experimental validation
of their predictive role in tumor-related molecular pathways is
still elusive. Moreover, the majority of the identified ORs are
orphan receptors, therefore, in order to delineate their con-
tribution in tumor biology, identification of their agonist or
antagonist is the first step forward. We assume that the cancer-
specific metabolic intermediates could be the potential endo-
genous agonists for these cancer-specific ectopic ORs. Since the
present results link the cellular count of expressed ORs with
tumor cell differentiation, therefore, it is important to function-
ally validate these findings by the loss-of-function experiments.
Notably, in the field of cancer biology, there are numerous well
characterized phenotypic manifestations such as Epithelial-to-
Mesenchymal transition®, cancer cell stemness®! and blockage of
immune checkpoints®? that are known to play a significant role in

the disease progression and survival. Our results introduce ORs as
a new dimension to the understanding of cellular differentiation
and prognosis in cancer, which requires further investigations.

Methods

Computational workflow of Cancer Smell. Cancer Smell computational workflow
was used to identify the potential chemosensory receptor gene reliably expressed in
single-cell RNA sequencing cancer datasets. It contains inbuilt information about
human-specific chemosensory receptor repertoire, which was manually curated
from public databases i.e. The Human Olfactory Data Explorer, Horde database
(https://genome.weizmann.ac.il/horde/)®3 and Uniprot (https://www.uniprot.org).
Cancer Smell takes a raw TPM matrix as input in which the genes and cell 1d
information are arranged in rows and columns, respectively. To ensure that the
input data matrix represents single cells, Cancer Smell utilizes “scrublet” (v0.2.1)%4,
a python package that was used on python v3.7.0. Notably, the cells which qualify
the singlet criteria were used in the subsequent downstream analysis. Cancer Smell
utilizes ZFPKM (v1.8.0)%°, a Bioconductor package for the estimation of the gene
activation status. It uses a recommended cutoff i.e. ZFPKM value >—3 for the active
genes65. For the downstream steps, Cancer Smell utilizes Seurat (v3.1.1)° for data
scaling, normalization, dimension reduction, and clustering.

Removal of doublet cells in scRNA-seq datasets. This step is performed to
selectively identify and filter concatenated cells in the scRNA-seq dataset. The
python script based on scrublet (0.2.1)%4 (available on the GitHub link), takes a raw
TPM or FPKM matrix as an input. The cell information is represented in rows
whereas the columns contain gene names. Scrublet returns a boolean matrix with
information about the doublet status of each cell. The doublet cells were filtered
from the matrix and the remaining cells were subjected to further downstream
analysis.

Identification of gene activation status. zFPKM approach was used to determine
the set of genes that are functionally active and inactive in a particular cell®. By
using the zZFPKM package in R, the expression scores were converted into zFPKM
scores and the median value of these scores for each gene was computed. The genes
which possess the median value of the scores >—3 were considered as active.

Classification of cell-types by Seurat software suite. The downstream analysis
for every single cell across a pan tumor was implemented using Seurat (v3.1.1)%.
The filtered expression matrix is used as an input file for the downstream analysis.
The inbuilt function “CreateSeuratObject” converts the input data file into a Seurat
class R object. Further, the data was scaled and normalized and the principal
components were identified using ScaleData and RunPCA functions respectively.
KNN graph-based approach based on euclidean distance was used to cluster the
data points for which “FindCluster” inbuilt function was used with its default
parameters. Once the clusters were obtained, they were overlaid with the metadata
to decipher meaningful biological information. Each cell was classified as positive
and negative depending on the expression of chemosensory receptors within

that cell.

Pathway enrichment analysis using GSVA. The functional state of the cell
harboring chemosensory receptors was estimated using Gene Set Variation Ana-
lysis (GSVA; v1.34.0)%7, a non-parametric unsupervised method used for pathway
enrichment for each sample. In this study, fourteen distinct tumor-related sig-
natures were used, namely angiogenesis, apoptosis, cell cycle, differentiation, DNA
damage, DNA repair, EMT, hypoxia, inflammation, invasion, metastasis, pro-
liferation, quiescence, and stemness.

Construction of phylogenetic tree. SeaView software (v1:4.6.4-1) was used for
constructing a sequence-based phylogenetic tree. FASTA sequences of functional
ORs were downloaded from the Ensembl genome browser (BioMart) and were used
to construct the unrooted phylogenetic tree. The sequences were aligned using
MUSCLE (Multiple Sequence Comparison by Log Expectation) and the PhyML
algorithm was used for tree construction. Implementation of additional graphical
features was performed using an interactive tree of life (iTOL) (https://itol.embl.de/).

Ideogram construction. WashU Epigenome Browser (v46.2) with human genome
version Hg38 as a reference genome was used for the ideogram construction. The
two-color scheme was used to discriminate between cancer-associated (red) and
non-cancer-associated ORs (blue).

Functional enrichment analysis. To identify the differentially expressed genes
between the cells harboring high and low numbers of expressed ORs, we first
calculated the median of the OR count across all cells. Next, we segregated the cell
population (cluster-wise) based on the median value. Lastly, we calculated the
differential gene expression analysis using the Wilcox-test. Only statistically sig-
nificant genes were selected for the functional enrichment analysis (fold change
cutoff +—4; p-value < 0.05) using Metascape (http://metascape.org/).
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Pseudo temporal Ordering of single cells using Monocle 3. Cell fate decisions
and differentiation trajectories were reconstructed with the Monocle 3 package.
This computational workflow utilizes reverse graph embedding based on a user-
defined gene list to generate a pseudotime plot that can account for both branched
and linear differentiation processes. In order to understand how the changes in the
OR expression or their cellular counts relate to breast cancer cell stemness, we
initially computed the degree of stemness in each individual malignant cell for the
determination of the starting point for the trajectory formation. The extent of
stemness for a particular cell was calculated using the GSVA scores for Stemness,
which collectively assigns a stemness score for each cell using known bonafide stem
cell signatures. Ordering of the cells in the 2D space was achieved using an inbuilt
function of Monocle 347. We manually set the starting point of the trajectory from
the cluster where the cells collectively possess a maximum stemness score. Esti-
mation of the cellular count of expressed ORs and their mean expression pattern
were plotted along the pseudotime.

Classification of bulk tumor profiles. Generation of a fine-grained gene expres-
sion signature that harbors information about the cellular count of expressed ORs
and their individual expression levels from single-cell sequencing datasets was
performed as follows. The Expression data matrix (TCGA and single-cell breast
cancer datasets) were log, transformed (log,(TPM+1)) and the estimation of the
number of expressed ORs per cell was performed based on zFPKM cutoff (>—3).
We applied this criterion for the estimation of active/non-active ORs in each
malignant cell and obtained the binary matrix for downstream clustering (if
zFPKM = <—3 then 0, otherwise 1). Clustering on the resulting OR binary matrix
was performed using the hierarchical clustering method. In all the cases (three
independent breast cancer datasets), we obtained multiple clusters representing cell
subpopulations with distinct numbers of expressed ORs per cell. Using this
information, we computed the OR signatures (each signature represents a different
number of expressed ORs per cell) and projected them on tumor samples from
TCGA. Single cell-based OR signatures were generated by averaging all cells within
a cluster. The projection of the obtained signatures on the TCGA bulk tumor
profiles was determined using

A-B S A;xB;

ine similarity (A, B) = = e
corne sty (8 B) = AT~ oy, e /S 7
i=14% i=1"1

where A and B are two independent vectors.

Finally, we segregated the TCGA bulk expression profiles based on hierarchical
clustering on the basis of the cosine similarity matrix. Group-specific survival
probabilities were estimated using the Kaplan-Meier method. Notably,
Kaplan-Meier is a non-parametric estimator of survival probabilities based on
patients’ longitudinal lifetime data%8.

Statistics and reproducibility. Graphical illustrations are plotted with R Stats
packages. The P-value cut-off used in this study is 0.05. *, **, *** and **** in the
figures refer to P-values < 0.05, <0.01, <0.001, and <0.0001, respectively. For
comparison of the medians of the two distributions, the Mann-Whitney U Test
was performed, whereas the Shapiro-Wilk test was used for the correlation.

All the scripts, along with the raw data to reproduce every figure is provided in
this link. (https://github.com/the-ahuja-lab/CancerSmell/tree/master/Figures).

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

The single-cell expression matrices (non-normalized) of malignant cells across multiple
cancer cell lines and tumor samples were downloaded from CancerSea, a PanTumor
single-cell RNAseq database (http://biocc.hrbmu.edu.cn/CancerSEA/home.jsp)®.
Following are the accession ids of the datasets used in this study: GSE102130, GSE69405,
GSE73121, GSE77308, GSE83142, GSE85534, GSE67980, GSE75367, GSE110499,
GSE76312, GSE83533, GSE102130, GSE57872, GSE70630, GSE84465, GSE89567,
GSE75688, GSE81861, E-MTAB-6149, GSE103322, GSE72056, GSE81383, GSE99330,
GSE97681, GSE113660, DRP003981, GSE99305, E-MTAB-6142, GSE99795, DRP001358,
GSE81812, GSE68596, GSE81861, GSE85534, GSE76312, GSE98734, GSE65525,
ERP020478, GSE51254, GSE57872, GSE102130, GSE80297, GSE81861, DRP003337.
Notably, datasets provided in the CancerSea include only those cells which were positive
for cellular malignancy. We implemented CancerSmell on those datasets in which the
minimum number of malignant single cells was at least 60. Notably, to recheck the
authenticity of the downloaded data, we have randomly downloaded a subset of raw files
and reanalyzed, and found no discrepancies.

Code availability

An end-to-end bioinformatics pipeline (CancerSmell) for chemosensory receptor
detection in single-cells datasets is provided from the following GitHub (CancerSmell:
https://github.com/the-ahuja-lab/CancerSmell) and Zenodo (https://zenodo.org/badge/
latestdoi/236710981). An R package enabling OR-based stratification of the patient’s

cohort using a single-cell expression-based gene signature (ORsurv: https://github.com/
krishan57gupta/ORsurv).
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