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Abstract

The results of our recent study on mathematical modeling of microbial genome evolution

indicate that, on average, genomes of bacteria and archaea evolve in the regime of muta-

tion-selection balance defined by positive selection coefficients associated with gene acqui-

sition that is counter-acted by the intrinsic deletion bias. This analysis was based on the

strong assumption that parameters of genome evolution are universal across the diversity of

bacteria and archaea, and yielded extremely low values of the selection coefficient. Here we

further refine the modeling approach by taking into account evolutionary factors specific for

individual groups of microbes using two independent fitting strategies, an ad hoc hard fitting

scheme and a mixture model. The resulting estimate of the mean selection coefficient of

s*10−10 associated with the gain of one gene implies that, on average, acquisition of a

gene is beneficial, and that microbial genomes typically evolve under a weak selection

regime that might transition to strong selection in highly abundant organisms with large

effective population sizes. The apparent selective pressure towards larger genomes is bal-

anced by the deletion bias, which is estimated to be consistently greater than unity for all

analyzed groups of microbes. The estimated values of s are more realistic than the lower

values obtained previously, indicating that global and group-specific evolutionary factors

synergistically affect microbial genome evolution that seems to be driven primarily by adap-

tation to existence in diverse niches.

Introduction

Prokaryotes have compact genomes, in terms of the number of genes and especially gene den-

sity, with typically short intergenic regions comprising less than 10% of the genome [1–3].

Deciphering the evolutionary forces that keep prokaryotic genomes compact is an important

problem in evolutionary biology. The common view, steeped in a population-genetic argu-

ment, is that selection favors compact genomes in the fast-reproducing prokaryotes with large

effective population sizes, to minimize the replication time and the energetic burden that is

associated with gene expression [1,4]. This theory provides a plausible explanation for the

observed dramatic differences in the typical size and architecture between prokaryotic and

eukaryotic genomes, with the latter being up to several orders of magnitude larger than the
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former and, in many case, containing extensive non-coding regions [5]. Under the popula-

tion-genetic perspective, the large effective population sizes of prokaryotes enhance the selec-

tion pressure and allow efficient elimination of superfluous genetic material [1,4,6,7].

The population-genetic theory predicts an inverse correlation between genome size and the

strength of selection, and this prediction generally holds across the full range of genome sizes,

from viruses to multicellular eukaryotes [1,6]. However, a detailed analysis of the relationship

between the genome size and selection strength among prokaryotes reveals the opposite trend:

genome size correlates positively and significantly with the protein-level selection strength

indicating that larger genomes are typically subject to stronger selection on the protein level

[8–10]. The protein-level selection is measured by the ratio of non-synonymous to synony-

mous mutation rates (dN/dS ratio) [11] in core genes that are common across (nearly) all pro-

karyotes [12]. The underlying assumption is that the effects of single non-synonymous

mutations in these core, functionally conserved genes are similar (associated with similar selec-

tion coefficients) across all prokaryotes [10]. The differences in the observed dN/dS values

between groups of prokaryotes are accordingly assumed to reflect differences in selection

strength. At least formally, within the population-genetic theory, this assumption translates to

similar selection coefficients but different effective population sizes.

Recently, we performed an analysis of the factors that govern prokaryotic genome size evolu-

tion by developing a population-genetic evolutionary model and testing its predictions against

empirical genome size distributions in groups of closely related bacterial and archaeal genomes

[10]. Within the modeling framework of our previous study [10], the genome size evolution is

represented as stochastic gain and loss of genes, an approach that is motivated by the dominant

role of horizontal gene transfer in microbial evolution [13–17]. Specifically, the model predicts

a distribution of the genome sizes for the given values of the effective population size, the dele-

tion bias and the selection coefficient associated with the gain of a gene. Using maximum-likeli-

hood optimization methods, the values of the deletion bias and the selection coefficients can be

inferred from the data. Under the simplifying assumption that the mean selection coefficients

and deletion bias are similar across the diversity of prokaryotes, the global mean values of these

factors can be used in the model. Under this assumption, the different observed mean genome

sizes among prokaryotic groups are due to the differences in the effective population sizes (Ne).

The model then predicts a global trend curve, which represents the dependency of the mean

genome size on the effective population size. More realistically, however, the selection coeffi-

cients and the deletion bias values can differ between prokaryotic groups, and the observed

genome sizes therefore deviate from the global trend. The challenge is to account for such devia-

tions as fully as possible, without discounting the effect of the universal behavior.

In our previous study [10], the data were fitted to the model in two stages: first, the global

parameters were fitted, and at the second stage, some parameters were taken as latent variables

and were optimized to maximize the log-likelihood. This methodology is most accurate when

deviations from the global trend are small compared to the distribution width. Here, we sub-

stantially modify the fitting procedure, to account for the specific factors affecting the genome

evolution in different groups of prokaryotes, without obscuring the global trend. The resulting

parameters of microbial evolution appear to be more realistic than those obtained with the pre-

vious, simplified approach.

Results

The workflow and genomic data

This work extends our previous theoretical analysis of prokaryotic genome evolution and is

tightly linked to that study [10]. Accordingly, in what follows, we briefly describe the main
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result of the previous analysis (Fig 1), including description of the genomic data set, applied

methodologies and mathematical modeling framework. The objective is to infer from the data

model parameters, which describe the mean deletion bias and selection coefficient that are

associated with a single gene gain. Next, we present the general maximum likelihood frame-

work, which is used to optimize model parameters to fit the data. Finally, we develop and

apply two fitting methodologies to infer from the data optimal, lineage-specific model.

A data set of 707 bacterial and archaeal genomes clustered in 60 groups of closely related

organisms was constructed using the Alignable Tight Genomic Cluster (ATGC) database

[18,19]. In the ATGCs, genomes are grouped based on the conservation of orthologous gene

sequences and local gene order. In addition to the genome size, which is known for all species

in the database, a characteristic value of selection strength was assigned to each cluster (see Fig

1A and Materials and Methods for more details). The effective population size Ne for each clus-

ter was then deduced for each ATGC from the typical associated selection strength (see Fig

1B), using the approach of Kryazhimskiy and Plotkin [20].

Global model of genome evolution

The mean genome sizes and the dN/dS values correlate negatively and significantly, with the

Spearman’s rank correlation coefficient ρ = −0.397 and p-value 0.0017, in agreement with the

previous observations [8–10](Fig 1A). Effective population sizes are extracted from the dN/dS
values for each ATGC, resulting in the same correlation, but with the opposite sign, between

genome size x and Ne. These correlations indicate that the genome size is determined, to a

large extent, by global evolutionary factors that are shared by all prokaryotes. On top of the

global factors, there obviously are local influences, such as different lifestyles, environments

and availability of genetic material. The goal of the present work is to accurately assess the

global factors that govern genome size evolution and are partially masked by local effects, and

additionally, to compare the local factors for different groups of bacteria and archaea.

Fig 1. Genome size and selection strength in prokaryotes. (A) Mean number of genes x is plotted against inferred selection strength dN/dS where each point

represents one prokaryotic cluster (ATGC). Error bars represent genome sizes distributions widths and indicate one standard deviation. (B) Mean number of

genes is plotted against extracted effective population size Ne. A representative global trend curve of mean genome size as predicted by the model (see Eq (7)),

where all model parameters are assumed to be global θ = {s,r0,λ} is indicated by a red line. The approach implemented in the hard fitting methodology, where Eq

(7) is used in order to set latent variable value such that model distributions are centered around observed genome sizes, is illustrated in a dashed orange line.

https://doi.org/10.1371/journal.pone.0195571.g001
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Evolution of prokaryotic genomes can be described within the framework of population

genetics by a stochastic process of gene gain and loss events [10]. In brief, a genome is modeled

as a collection of x genes, where genome size is assumed to evolve through elementary events

of acquisition or deletion of one gene at a time. These acquisition or deletion events affect the

fitness of the organism, which is assumed to be a function of genome size x only. Acquisition

and deletion events occur with rates α and β, respectively. Genes are assumed to be acquired

from an infinite gene pool. Gene gains and losses are either fixed or eliminated stochastically,

with a fixation probability F. In the weak mutation limit, the fixation probability can be

expressed as [21]

F sð Þ ¼
s

1 � e� Ne�s
½1�

where Ne is the effective population size and s is the selection coefficient associated with acqui-

sition of a single gene. That is, assuming that the reproduction rate for genome of size x is 1,

the reproduction rate for a genome of size x + 1 is 1 + s. To obtain the selection coefficient

associated with deletion of a gene, the event of gene deletion is considered: the reproduction

rate for genome size x + 1 is set as 1, and the reproduction rate for genome size x can be there-

fore approximated by 1 − s, so that

sdeletion¼� sacquisition ½2�

It should be emphasized that the relation in Eq (2) stems from the single assumption, i.e. that

the fitness landscape is a function of genome size only. The gain rate, P+, is given by the multi-

plication of the acquisition rate α, and the fixation probability of a gene acquisition event. In

general, both the acquisition rate and the selection coefficient associated with the acquisition

of a gene depend on the genome size:

PþðxÞ ¼ aðxÞ � FðsðxÞÞ ½3�

Using the relation sdeletion = −sacquisition derived above, we get a similar expression for the loss

rate, denoted by P_

P� ðxÞ ¼ bðxÞ � Fð� sðxÞÞ ½4�

Genome size dynamics is then a chain of stochastic gain and loss events, and can be described

by the equation

_x ¼ PþðxÞ � P� ðxÞ ½5�

If for a some value of x, denoted x0, gain and loss rates are equal, i.e. the evolving genome fluc-

tuates stochastically around this value (under a condition discussed below, see Eq (9) below),

the dynamics of Eq (5) implies a steady state distribution f(x) of the genomes sizes. This distri-

bution has an extremum at x0, and is given by (see Materials and Methods for derivation)

f xð Þ / ½PþðxÞ þ P� ðxÞ�
� 1
�e2

R xPþðuÞ� P� ðuÞ
PþðuÞþP� ðuÞ

du
½6�

If the distribution is symmetric, x0 is the mean genome size, and given that f(x) is only slightly

skewed with relevant model parameters (see Fig 2), x0 is taken as an approximation for the

mean genome size. With respect to the model parameters, x0 satisfies the relation

rðx0Þ ¼ eNe �sðx0Þ ½7�

Selection and deletion bias in prokaryotic evolution
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where r(x) is the deletion bias, defined as the ratio of the deletion and acquisition rates:

rðxÞ ¼ bðxÞ=aðxÞ ½8�

The extremum point of f(x) at x0 can be either a maximum or a minimum. The case where f
(x) has a minimum at x0 corresponds to genomes that are either collapsing or growing infi-

nitely, and is biologically irrelevant. The extremum point at x0 is a maximum when

P0
þ
ðx0Þ < P0

�
ðx0Þ ½9�

Finally, explicit functional forms for s(x), α(x) and β(x) are assumed in the fitting process.

The selection coefficient is taken as constant with respect to genome size

sðxÞ ¼ const ½10�

and two forms of acquisition and deletion rates are considered. The first corresponds to the

deletion bias in the form of a power law

aðxÞ ¼ xlþ ½11�

bðxÞ ¼ r0xl� ½12�

Fig 2. Comparison of the observed and model-generated genome size distributions for 6 ATGCs that consist of at least 20 species. Empirical genome sizes are

indicated by bars and model distributions by red solid lines. For model distributions Eq (6) was used, together with the deletion bias of Eq (16). Model parameters

were optimized using the mixture model method, with the linear coefficient a of the acquisition rate (see Eq (14)) as latent variable. Optimized parameters are listed

in Table 2 and in S2 Table. The ATGCs are as follows (the numbers of genomes for each ATGC are indicated in parentheses): (A) ATGC0001 (109), (B) ATGC0003

(22), (C) ATGC0004 (22), (D) ATGC0014 (31). (E) ATGC0021 (45) and (F) ATGC0050 (51).

https://doi.org/10.1371/journal.pone.0195571.g002
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with

rðxÞ ¼ r0xl ½13�

where λ = λ− − λ+; because the distribution given by Eq (6) is not sensitive to λ+ values, it was

set to the value of 10−3. In addition, a linear model was considered, where

aðxÞ ¼ a � x þ b ½14�

bðxÞ ¼ x ½15�

and the deletion bias is then given by

r xð Þ ¼
x

a � x þ b
½16�

The selection coefficient was taken as constant (independent of genome size) for simplicity.

Preliminary calculations with additional linear term in genome size (which in principle can

be either negative or positive) gave similar results, both in terms of the log likelihood and

fitted parameter values (see S1 Table). Importantly, the sign of the selection coefficient is not

assumed a priori, but rather, results from optimizing the population model to fit the genomic

data. The value of the selection coefficient represents the average selective advantage (for posi-

tive s) or disadvantage (for negative s), which is associated with the acquisition of one gene,

when averaging is performed over genes, genomes, environments and time. The deletion

bias is modelled by a power law with respect to genome size because it encompasses the two

extreme cases of constant or linear dependence, along with all intermediates. For compatibility

with birth-death-transfer models, in which linear acquisition and deletion rates are assumed

[22], the deletion bias given by Eq (16) was studied as well. In this analysis, there is no assump-

tion that of a deletion bias [r(x)> 1]. The deletion bias value is an outcome of the fitting of the

model to the genomic data. With the formulations given above, the population model for

genome size evolution contains one known parameter, Ne, and a set of three unknown param-

eters: either {s,r0,λ} or {s,a,b}, depending to the choice of the model for the acquisition and dele-

tion rates.

Group-specific factors in prokaryotic genome evolution

The assumption that all model parameters are universal across the diversity of prokaryotes

translates into a global trend curve (see Fig 1B) because in this case, groups of prokaryotic spe-

cies differ from each other only by the typical effective population size. However, when the

model parameters are fitted under the assumption that all unknown parameters are universal,

the distributions predicted by the model are much wider than the observed distributions of the

microbial genome sizes (see Fig 3A) indicating that ATGC-specific factors play a non-negligi-

ble role in genome evolution. Deviations from the global trend curve due to local effects can be

incorporated into the model by introducing a latent variable φ, i. e. assigning ATGC-specific

values to one of the model parameters. The underlying assumption is that the universal depen-

dency of the genome size on the effective population size is captured by the global parameters

θ, whereas the deviations from the universal behavior caused by ATGC-specific effects are

incorporated in the model through different values of a latent variable φ. Because variation in

one parameter of the model can be compensated by variation in a different parameter (e.g. the

s value can be adjusted to compensate for variation in r0 resulting in the same distribution; see

S1 Fig), standard methods for latent parameters fitting are not applicable. A proper fitting

scheme in this case will not regard the different ATGCs as independent, but rather will allow

Selection and deletion bias in prokaryotic evolution
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incorporation of a latent variable without compromising the global trendline across the differ-

ent ATGCs. The comparison of different ATGCs, with different effective population sizes, is a

crucial ingredient in the fitting schemes presented below. Consideration of different ATGCs

provides for an additional constraint, thus enabling disentanglement of the different model

parameters.

Accordingly, we developed two fitting methodologies: i) an ad hoc hard-fitting algorithm,

which incorporates into the optimization scheme the resulting global trend curve, and ii) mix-

ture model fitting procedure that assumes a prior distribution for the latent variable. In both

methodologies, ATGC-specific fixed φ values are assigned according to the θ values. The prob-

ability of the observed genome sizes, Po(X|θ,φ,Z), is calculated numerically using the steady

state genome size distribution f(x) of Eq (6), as explained below. It is assumed that the genomes

in each ATGC are sufficiently diverged, such that enough acquisition and deletion events have

occurred to explore the relevant genome size range. Under the assumption of a steady state,

the relevant range is spanned by the steady state genome size distribution. The stochastic

nature of the dynamics assures that, after sufficiently many time steps, genome size can attain

any value that has non-zero probability, regardless of the starting point. A lower bound for the

number of acquisition and deletion events can be drawn by counting the number of singleton

genes in each genome. We verified that the number of singleton genes is sufficiently large in all

genomes to justify this assumption [10].

The distributions produced by the model under optimized parameters are compared to the

observed distributions in each ATGC, as shown for 6 ATGCs in Fig 2. It should be noted that

the population model accounts for genome size distribution within an individual ATGC,

where evolution factors are similar for all genomes, and should not be confused with the over-

all genome size distribution among prokaryotes [3,23]. In the first step of the optimization,

latent variable values are set for each ATGC, such that values are assigned to all three unknown

model parameters. The details of this stage are discussed below. For each ATGC, acquisition

and deletion rates are then calculated, using either Eqs (11) and (12), or Eqs (14) and (15).

Together with the fixation probability, which is given by Eq (1) and calculated using the θ and

Z values, the acquisition and deletion rates are used to calculate the gain and loss rates of Eqs

(3) and (4). The gain and loss rates are then substituted into Eq (6), and the genome size distri-

bution is calculated and normalized numerically. Finally, the probability of the observed

Fig 3. Prokaryotic genome size distribution width plotted vs. genome size. The standard deviation is taken as the proxy for the distribution width. ATGCs are

indicated by circles and model fits by lines. (A) Model prediction using the deletion bias of Eq (13) with parameters optimized under the assumption that all three

model parameters as universal [10]. (B) Six model fits with the deletion bias of Eq (13) (fitted parameters are given in Table 1). In all fits, one model parameter was

set as a latent variable. The model parameter that was set as a latent variable and the methodology used for fitting are indicated in the inset; fits that were visually

indistinguishable are represented by the same line. H, hard fitting method; B, mixture model. (C) Same as panel B, for the deletion bias of Eq (16) (fitted parameters

are given in Table 2).

https://doi.org/10.1371/journal.pone.0195571.g003
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genome sizes is given by the product of the distribution values at the observed genome sizes X

PoðXjθ;φ;ZÞ ¼
Q60

i¼1

QMi
j¼1

Poðxijjθ;φi;ZiÞ ½17�

where xij is observed genome size for species j out of Mi species of ATGC i, and φi and Zi are

ATGC-specific values of the latent variable and effective population size, respectively. For

example, when setting the linear coefficient a of the acquisition rate of Eq (14) as the latent var-

iable, we have

θ ¼ fs; bg ½18�

φ ¼ a ½19�

Z ¼ Ne ½20�

For given s and b values, an ATGC-specific value is assigned for a, such that values are assigned

to all model parameters and Po(X|θ,φ,Z) can be calculated following the steps described above.

In the ad-hoc fitting procedure, one model parameter is set as a latent variable, and the two

remaining unknown model parameters are considered global and included in θ. Eq (7) is used

to adjust the latent variable value according to the θ values such that the mean genome size in

the model is the same as mean genome size in the data (see Fig 1B)

φ ¼ φðθ;X;ZÞ ½21�

The log-likelihood is then calculated using Eq (32) (see Materials and Methods) with

PyðXjθ;ZÞ ¼ PoðXjθ;φðθ;X;ZÞ;ZÞ ½22�

and Po(X|θ,φ(θ,X,Z),Z) is calculated using Eq (6) as explained above. However, different values

of global parameters θ can be compensated by the value of the latent variable φ to yield similar

genome size distributions (see S1 Fig). Therefore, an additional constraint is applied to the θ
values in the optimization procedure and combined with the log likelihood ‘ðθÞ (see Materials

and Methods). The global parameters θ represent the universal evolutionary factors that entail

the observed genome size and effective population size correlation. It is therefore natural to

use in the optimization not only the log-likelihood but also the goodness of fit of the global

trend curve associated with the θ values. The global trend is produced using Eq (7) by assum-

ing that all three model parameters are universal; however, under this optimization methodol-

ogy, θ is a set of only two global model parameters. The set of global parameters θ is therefore

completed by a single representative value of the latent variable, denoted hφi, to produce the

global trend curve. The goodness of fit is then given by the R2 value for the global trend curve

and mean genome sizes of the different ATGCs (see Fig 1B). The R2 value clearly depends not

only on the values of the two universal model parameters θ, but also on the value of hφi. For

the optimization of θ values, the maximum possible R2 value for the given θ values is taken.

The goodness of fit for the global trend curve is optimized together with the log likelihood,

by minimizing a goal function G(θ):

GðθÞ ¼ � ‘ðθÞ=j‘0j � R2ðθÞ=R2

0
½23�

where the log-likelihood and goodness of fit are normalized to give comparable values. Specifi-

cally, the values j‘0j ¼ 4773 and R2
0
¼ 0:1793 were used as these are close to the optimal values

of log-likelihood and goodness of fit, respectively, for our data set. Fitting was performed for

all three assignments of the latent parameter and the two representations of the deletion bias,

namely, φ = s, φ = λ and φ = r0 for the deletion bias of Eq (13), and φ = s, φ = a and φ = b for

Selection and deletion bias in prokaryotic evolution
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the deletion bias of Eq (16). In all 6 cases, the results were similar, in terms of both the opti-

mized values of the selection coefficient and log-likelihood. The results are summarized in

Tables 1 and 2, and the fitted latent variable values are shown in Figs 4 and 5. Notably, there

was no significant correlation of the fitted latent variable values and effective population size

(Tables 1 and 2), suggesting that the universal correlation between the genome size and the

effective population size is not masked by assigning ATGC-specific value to model parameters

using this approach. For comparison with the mixture model approach (see below), the opti-

mized latent variable values for all cases but φ = b, were fitted to a normal distribution. For φ =

b, the fitted values formed a long-tailed distribution (Fig 5) and were accordingly fitted to a

log-normal distribution. Fitting was performed by assuming that fitted fixed φi values are sam-

ples drawn from a normal distribution with mean φ0 and standard variation σφ (for φ = b, it

was assumed that ln(φ) is drawn from a normal distribution)

φi � Nðφ
0
; sφÞ ½24�

where φ0 and σφ were optimized by maximizing

‘ðφ
0
; sφÞ ¼ log½

Q60

i¼1
Pðφijφ0

; sφÞ� ½25�

and P(φi|φ0,σφ) was calculated using a normal distribution. To assess the fit quality, normality

test was performed for (φi − φ0)/σφ using the Kolmogorov-Smirnov test against standard nor-

mal distribution, with mean 0 and standard deviation 1 (the log of fitted values were tested for

normality for φ = b). For all cases, the null hypothesis that the optimized fixed φi values are

drawn from a normal distribution could not be rejected. The fitted normal distributions are

shown in Figs 4 and 5, and the normal distributions parameters and Kolmogorov-Smirnov

test p −values are given in Tables 1 and 2.

Table 1. Optimal fits for the genome evolution model parameters using the power law model of deletion bias (Eq (13)).

Methodology φ s r0 λ lðθÞ R2 KS p-value φ0 σφ ρ ρ
p−value

H s - 0.693 0.061 −4782 0.179 0.35 1.20 � 10−10 2.8 � 10−11 −0.06 0.67

B 0.703 0.056 −4975 - - 9.0 � 10−11 2.5 � 10−11 0.04 0.78

H r0 1.25 � 10−10 - 0.061 −4782 0.179 0.35 0.70 0.018 0.03 0.83

B 1.01 � 10−10 0.056 −4975 - - 0.710 0.017 −0.02 0.87

H λ 1.27 � 10−10 0.688 - −4770 0.179 0.32 0.0628 0.004 0.03 0.80

B 8.7 � 10−11 0.666 −4924 - - 0.062 0.003 −0.1 0.42

H, hard fitting methodology; B, mixture model fitting.

https://doi.org/10.1371/journal.pone.0195571.t001

Table 2. Optimal fits for the genome evolution model parameters using the linear model of deletion bias (Eq (16)).

Methodology φ s a b lðθÞ R2 KS p-value φ0 σφ ρ ρ
p−value

H s - 0.810 186 −4700 0.175 0.52 1.26 � 10−10 2.8 � 10−11 −0.01 0.92

B 0.825 167 −4913 - - 1.18 � 10−10 2.5 � 10−11 −0.04 0.79

H a 1.41 � 10−10 - 187 −4696 0.175 0.4 0.80 0.04 −0.02 0.88

B 1.28 � 10−10 167 −4909 - - 0.816 0.03 −0.03 0.79

H b 1.30 � 10−10 0.824 - −4759 0.175 0.35 174 77 0.01 0.92

B 1.91 � 10−10 0.782 −4944 - - 148 68 −0.24 0.06

H, hard fitting methodology; B, mixture model fitting. For the description of the columns, see Table 1.

https://doi.org/10.1371/journal.pone.0195571.t002
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In the ad-hoc hard fitting method described above, Eq (7) was used to adjust latent variable

values such that the model distributions centered around the observed genome sizes. The fitted

latent variable values are then scattered around some typical value (Figs 4 and 5). Moreover,

fitted values form distributions that are statistically indistinguishable from normal distribu-

tions (with the exception of the case φ = b, which forms a log-normal distribution). It is possi-

ble to rely on this observation and implement an alternative optimization methodology, where

a prior distribution Pφ is assumed for the latent variable. In the following, normal distributions

were assumed as priors, with the exception of a log-normal distribution for the case when b is

set as the latent variable. Normal (or log-normal) distribution was chosen because the latent

variable values fitted using the ad-hoc methodology form a distribution which is indistinguish-

able from a normal (or log-normal) distribution (see Tables 1 and 2, and Fig 5). As explained

Fig 4. Fitted latent variable values under the power law deletion bias model (Eq (13)) for φ = s (A–C), φ = r0 (D–F) and φ = λ (G–I). The fits were obtained using

the hard fitting methodology (blue) and the mixture model (orange). Fitted φ values for all ATGCs are plotted against the effective population size in the leftmost

column. The mean values of the distributions are indicated by dashed lines. The fitted φ values histograms are shown together with the latent variable distributions,

which are indicated by solid lines. The distribution parameters are given in Table 1. Histograms obtained using the hard fitting methodology are shown in the middle

column, and histograms obtained under the mixture model are shown in the rightmost column.

https://doi.org/10.1371/journal.pone.0195571.g004
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below, the mean and variance of the prior distribution are also optimized in the fitting process,

and it is only the shape of the prior distribution that is assumed. Accordingly, a specific value

φi of the latent variable is associated with a probability Pφ(φi|φ0,σφ). The probability of the

observed genome sizes xij for species j of ATGC i can be then calculated using the Bayes rule,

and is given by [24]

Pðxijjθ;φi;Zi;φ0
; sφÞ ¼ Poðxijjθ;φi;ZiÞ � Pφðφijφ0

; sφÞ: ½26�

The probability of xij depends on the prior distribution of φi parameters (φ0 and σφ) indi-

rectly: xij depends directly on φi, which in turn occurs with the probability Pφ that depends on

hyperparameters φ0 and σφ. The prior distribution hyperparameters are optimized as well dur-

ing the fitting process and are therefore included in the set of global parameters θ. The log-

Fig 5. Fitted latent variable values under the linear deletion bias model (Eq (16)) for φ = s (A–C), φ = a (D–F) and φ = b (G–I). The fits were obtained using the

hard fitting methodology (blue) and the mixture model (orange). The fitted φ values for all ATGCs are plotted against the effective population size in the leftmost

column. Values are indicated by markers and mean values of the distributions are indicated by dashed lines. Fitted φ values histograms are shown together with

latent variable distributions, which are indicated by solid lines. The parameters of the distributions are given in Table 2. Histograms obtained using the hard fitting

methodology are shown in the middle column, and histograms obtained using the mixture model are shown in the rightmost column.

https://doi.org/10.1371/journal.pone.0195571.g005
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likelihood is then given by ‘ðθ;φÞ

‘ðθ;φÞ ¼ log½
Q60

i¼1
PφðφijθÞ �

QMi
j¼1

Poðxijjθ;φi;Zi; Þ� ½27�

where xij is observed genome size for species j out of Mi species of ATGC i. In more compact

way, the equation above can be written as

‘ðθ; φÞ ¼ log½PoðXjθ;φ;ZÞ � PφðφjθÞ� ½28�

Under this formulation, the maximization of ‘ðθ;φÞ is performed in a 64-dimensional param-

eter space (60 φ latent variable values, 2 global model parameters θ and 2 parameters describ-

ing the prior distribution Pφ of the latent variable). However, for the optimization of θ, it is

possible to sum over all possible values of the latent variable φ, such that Pθ(X|θ,Z) of Eq (32)

(see Materials and Methods) is given by

PyðXjθ;ZÞ ¼
Z

dφ � PoðXjθ;φ;ZÞ � PφðφjθÞ ½29�

and the optimization of θ is performed by maximizing ‘ðθÞ. To test the validity of the two fit-

ting methodologies presented here, when applied using the population-genetic model of

genome evolution, 9 realizations of artificial ATGCs ware generated using the distribution of

genome sizes given by the model (Eq (6); see Materials and Methods for details). The realiza-

tions were generated using parameter values similar to the fitted parameters obtained using

the hard fitting methodology. We then applied both, the mixture model fitting algorithm and

the ad-hoc hard fitting methodology to the artificial ATGCs and verified that the optimized

parameters values were similar to those of the parameters used for generating the artificial

ATGCs. The results for the mixture model are shown in S2 Fig and the hard fitting results in

S3 Fig. In all realizations, the λ value was inferred to high accuracy. The fitted values of s and r0

typically have larger errors because variation of s can be compensated by the variation of r0,
and vice versa. Accordingly, the fitted values of s and r0 follow a line (Panel D in S2 Fig and

Panel B in S3 Fig). Notably, the error percentage for r0 is modest, and the correct order of mag-

nitude was retrieved for the s value, where the overall range of error is similar for both fitting

methodologies. For the mixture model, the under-estimation of λ is compensated by slightly

greater values of r0, resulting in a slight offset of the s − r0 trend curve with respect to the actual

values. Accordingly, a slight over-estimation of λ, which is observed for the hard fitting optimi-

zation, is translated to a slight offset of the s − r0 trend curve in the opposite direction. Finally,

the mixture model was applied to optimize model parameters according to the genomic data,

where one genome size model parameter is set as latent variable. Fitted values of global parame-

ters θ are summarized in Tables 1 and 2, where global parameters now include the parameters

of the prior distribution of the latent variable, φ0 and σφ. Using these optimized θ values together

with Eq (27) allows fitting the ATGC-specific fixed φ values (Figs 4 and 5). As with the ad-hoc

hard-fitting methodology, there was no significant correlation between fitted φ values and Ne

(see Tables 1 and 2), with the exception of φ = b, where the Spearman’s correlation coefficient is

ρ = −0.24 with p –value 0.06. Notably, both optimization methodologies gave similar results in

terms of the optimized values of θ and φ, as shown in Tables 1 and 2, and Figs 4 and 5.

In all cases, the genome size distributions produced by the model centered on the observed

genome sizes, either by design, as in the hard-fitting algorithm, or as a result of maximizing

the log-likelihood, as in the mixture model. However, the observed widths of the genome size

distributions are not predicted perfectly by the model, as shown in Fig 3. It is therefore natural

to consider the case where more than one model parameter is set as a latent variable. Although

generalizing the mixture model to account for more than one latent variable is straightforward,
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the calculation of the integral of Eq (29) is computationally intensive for more than one latent

variable. However, it is possible to explore a setting with more than one latent variable in the

mixture model that is expected to produce similar results. As the calculation of the integral in

Eq (29) is computationally expensive, the assessment is performed using the expression for

‘ðθ;φÞ of Eq (27). Specifically, for deletion bias modelled as in Eq (13), all three genome size

model parameters (s,λ and r0) are set as latent variables, and the normal distributions fitted to

the latent variables values obtained by applying the hard-fitting methodology are used as pri-

ors. Prior distributions are not optimized such that the product term of Eq (27) can be calcu-

lated separately for each ATGC, with high efficiency. It is important to note that this is an

approximation because the prior distributions that are used here were obtained when optimiz-

ing one latent variable at a time. Another possibility is to perform the optimization in the 64

dimensional parameter space of ‘ðθ;φÞ in two stages: for the given θ values, latent variables

are fitted for each ATGC separately such that ‘ðθ;φiÞ is maximized. This approach was applied

for φ = {λ,r0}. Both assessments produced results similar to those obtained for one latent vari-

able, so we conclude that, within the current modeling framework, the agreement between the

model and the observed genome size distributions cannot be significantly improved further by

considering additional latent variables under the mixture model.

Finally, the distributions for the latent variable can be used in order to derive estimations

for maximum and minimum genome sizes. The optimized θ values together with φ values

from the optimized prior distributions tails were substituted into the model approximation for

mean genome size of Eq (7). Specifically, φ values from percentiles 1 to 10 and 90 to 99 were

used, where each of the two ranges corresponds either to the maximum or to the minimum

genome size estimates, depending on the choice of the latent variable. For example, when φ =

λ or φ = r0, the left tail of the distribution (1 to 10 percentile) corresponds to the maximum

genome size estimates, whereas for all other choices of φ, the left tail corresponds to the mini-

mum genome size estimates. The effective population size was set arbitrarily to Ne = 109. Esti-

mations for φ = s, φ = λ, φ = r0 and φ = a are shown in Fig 6. For deletion bias modeled by Eq

(13), the estimates are roughly consistent with the observed minimum and maximum genome

Fig 6. Maximum and minimum equilibrium genome sizes calculated using Eq (7) with parameters fitted under the mixture model. Latent variables and

deletion bias models are indicated in the inset. The effective population size was set as Ne = 109. For each fit, the latent variable was taken from the left tail

(percentiles 1–10) or the right tail (percentiles 90–99) of the optimized distribution of the latent variable. All estimates for maximum or minimum genome sizes,

based on the different choices of the latent variable, are plotted together. As a result the same figure mixes distributions left and right tail for different choices of φ.

(A) For φ = r0 and φ = λ the x axis indicates 1 – P, where P is the percentile. (B) For φ = s and φ = a the x axis indicates 1 − P, where P is the percentile.

https://doi.org/10.1371/journal.pone.0195571.g006
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sizes of prokaryotes (excluding the smallest genomes of intracellular parasitic bacteria) [3].

Notably, genome size diverges for the deletion bias of Eq (16) with φ = s or φ = a as a latent var-

iable. The deletion bias of Eq (16) results from linear approximations for the acquisition and

the deletion rates. Accordingly, gain and loss rates are linear with respect to genome size,

where the slope of P+ is smaller than the slope of P−, albeit with a non-zero intercept (model

parameter b). A finite genome size x0, for which P+ = P− (stationary state), therefore exists, and

the condition of Eq (9) is satisfied. In contrast, for a ¼ e� Nes, both rates, P+ and P−, have the

same slope and P+ > P− for all genome sizes, such that the genome size diverges.

Columns: φ indicates which model parameter is set as a latent variable; s, r0 and λ indicate

global parameters values; ‘ðθÞ indicates the log-likelihood of the fit, calculated as detailed in

Materials and Method section; R2 indicates the goodness of fit of the global trend-line and data

points as used in the hard fitting methodology (see main text for details); KS p-value indicates

the p-value for rejecting the null hypothesis that the latent variable fitted values distribution is

different from a normal distribution, using the KS (Kolmogorov-Smirnov) test; φ0 is the latent

variable normal distribution mean; σφ is the latent variable normal distribution standard devia-

tion; ρ is the Spearman rank correlation coefficient between fitted latent variable values and

Ne; ρ p−value indicates the significance of the Spearman correlation coefficient ρ.

Discussion

Our previous effort on modeling microbial genome evolution [10] has shown that for all

ATGCs, the best fit between the model-generated and observed distributions of genome sizes

were obtained with positive s values and r>1 (deletion bias). Given that the deletion bias

indeed appears to be a universal characteristic of genome evolution [25–27], we have con-

cluded that prokaryotic genomes typically evolve under a selection-mutation balance regime

as opposed to a streamlining regime. In biologically oriented terms, these results seem to indi-

cate that, on average, benefits of new genes acquired by microbial genomes outweigh the cost

of gene maintenance and expression, conceivably, thanks to the gain of extra metabolic and

signaling versatility. However, the actual values of the selection coefficient yielded by the

model were extremely low, on the order of 10−12, suggesting that the selection affecting an

average gene was weak, but also that these values could be under-estimates. The latter possibil-

ity was additionally suggested by the observation that, although the model yielded good fits for

the means of the genome size distributions, the width of the distributions was significantly

over-estimated (Fig 3A). In the previous study [10], we made the strong assumption that the

parameters of microbial genome evolution were universal across the entire prokaryotic di-

versity represented in the ATGCs. The results indicate that the contribution of the universal

factors is indeed substantial but fails to account for all or even most of the variation in the

genome size distributions indicating that, perhaps not unexpectedly, ATGC-specific factors

are important for genome evolution as well. The application of the two methodologies de-

scribed above significantly improved the agreement between observed and fitted distributions

width (Fig 3B and 3C). Notably, all possible combinations of fitting methodologies and latent

variables (ad-hoc hard fitting or mixture model combined with either one of model parameters

as a latent variable) gave similar results. However, for some ATGCs, the width of the fitted dis-

tribution deviates from the observed one (e.g. ATGC021 and ATGC050 which are shown in

Fig 2E and 2F). An over-estimation of genome size distribution width by the model can result

from insufficient exploration of genome sizes by genomes in the respective ATGC. Indeed, the

currently available genomes represent a sample from the totality of extant genomes, and it

seems most likely that, with the growing number of sequenced genomes, the observed genome

size distributions become wider.
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The two fitting methodologies presented here account for the variability in model parame-

ters across different groups of prokaryotes. However, within each ATGC, a single set of param-

eters applies to all genes. Actually, however, genes that belong to different functional classes

differ in their selective benefit (or cost) [19], acquisition rates [28], and the duration of persis-

tence in the genome [29]. For example, selfish genetic elements are typically associated with

proliferation bursts and incur a fitness cost, in contrast to house-keeping genes that are rarely

acquired and, being highly beneficial, are even more rarely lost [19][28]. However, under the

assumption of a steady state genome size distribution, the differences between the replacement

rates of different gene classes are irrelevant for the evolution of the genome size [29]. A single

value that represents all genes in the genome can be regarded as an average over all acquisition

and deletion events, over time and gene classes.

In the present work, we attempted to take into account the group-specific evolutionary fac-

tors by using two independent optimization approaches. Both procedures were used together

with two different functional forms of the deletion bias. In all cases, the results were similar,

with s*10−10, λ*0.06 and r0*0.7 for a power law deletion bias (Table 1), and s*10−10,

a*0.8 and b*175 for a deletion bias based on linear acquisition and deletion rates (Table 2).

It should be stressed that, when optimizing model parameters to fit the data, only partial disen-

tanglement of s and r0 is achievable, and accordingly, it is the order of magnitude of s rather

than the actual value which should be taken into account. Introducing latent variables allowed

incorporation of ATGC-specific effects into the fitting process. However, variation in one

model parameter can be compensated by adjustment of another model parameter, such that

all fits are similar in terms of log-likelihood, and thus it is impossible to disambiguate global

from local factors affecting the evolution of genome size in terms of model parameters. Never-

theless, the optimized values of the latent variables form relatively narrow distributions around

the means (Figs 4 and 5), such that, for the deletion bias of Eq (13), the ratios between standard

deviation and mean values are 0.28, 0.06 and 0.03 for φ = s, φ = λ and φ = r0, respectively. For

the linear deletion bias given by Eq (16), the ratios between standard deviation and mean val-

ues are 0.35, 0.05 and 0.46 for φ = s, φ = a and φ = b, respectively. In both cases, the higher

value among those obtained with the hard fitting and the mixture model methodologies is

indicated. Thus, the mean values give good estimates for model parameters for all ATGCs. The

mean selection coefficient of s*10−10 associated with the gain of one gene implies that, on

average, acquisition of a gene is beneficial, and that microbial genomes typically evolve under

a weak selection regime, with the characteristic selection strength Ne � s*0.1. In highly abun-

dant organisms, transition to a strong selection regime, with Ne � s> 1.0, appears possible. It

should be noted that Ne � s and the deletion bias are invariant to the calibration of Ne that here

was based on the assumption of Ne = 109 for ATGC001. These values of Ne � s appear to be sub-

stantially more realistic than the lower values obtained in our previous study [10], indicating

that global and group-specific evolutionary factors synergistically affect microbial genome evo-

lution. This result is consistent with the observed significant, positive correlation between the

genome size and selection strength on the protein level and appears intuitive given the diversity

of bacterial lifestyles that conceivably drives adaptive gene acquisition. The selective pressure

towards larger genomes, manifested in the positive selection coefficients, is balanced by the

deletion bias, which is consistently greater than unity. Crucially, this particular form of the

mutation-selection balance, whereby the stationary state involves positive selective pressure for

gene acquisition being offset by deletion bias, is an outcome of the fitting process and not an

assumption of the model (values of r for all ATGCs for all fittings are given in S4 and S5 Tables).

The opposite situation, whereby selective pressure towards compact genomes is balanced by an

insertion bias, is fully compatible with the modelling framework but is inconsistent with the

genomic data. Notably, an independent duplication-loss-transfer model of microbial evolution
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that we have developed recently in order to compare the evolutionary regimes of different clas-

ses of genes has yielded closely similar mean values of the selection coefficient [22].

In this work, the deletion bias is considered genome size-dependent and is modelled as a

power law or as the ratio of linear approximations for the acquisition and the deletion rates.

We found that the best fitted power value is λ*0.06. This value indicates that the genome size

dependencies of gene acquisition and deletion rates are generally similar but the deletion rate

grows slightly faster with the genome size. This difference, although slight, could put a limit on

microbial genome growth. Estimates for minimal and maximal genome sizes were derived

using model parameters from the edges of latent variables distributions (percentiles 1% and

99%). The estimations derived using a power law deletion bias were consistent with the ob-

served prokaryotic genome sizes, genome size diverged when considering values from the

edges of the distributions together with a linear approximation for the deletion bias. This

divergence suggests that the linear approximation for the acquisition and deletion rates holds

only locally, and breaks down when a wide range of parameters is considered.

Given the compensation between the s and r’ values, the comparison between the values of

these parameters obtained for different ATGCs should be approached with caution. Neverthe-

less, with this caveat, it is worth noting that the lowest mean values of the selections coefficient

were estimated for parasitic bacteria with degraded genomes, such as Mycoplasma and Chla-
mydia, whereas the highest values were obtained for complex environmental bacteria with

large genomes, such as Rhizobium and Serratia (S2 and S3 Tables). These differences are com-

patible with the proposed regime of adaptive evolution of microbial genomes under (generally)

weak selection for functional diversification.

Materials and methods

Genomic dataset and estimation of selection pressure and effective

population size

A dataset of 707 bacterial and archaeal genomes clustered in 60 groups of closely related organ-

isms, referred to as ATGCs, was constructed using the Alignable Tight Genomic Cluster

(ATGC) database [18,19]. Genomes are clustered based on the conservation of orthologous

gene sequences and local gene order (for a detailed description of clustering criteria see (Kris-

tensen et al., 2017). For simplicity, these individual genomes will be referred to as “species”

although many of them represent strains and isolates within the formally described microbial

species. For each ATGC, selection strength was inferred on the protein level, by estimating the

dN/dS ratio of 54 core gene families that are common for all or nearly all prokaryotes. Specifi-

cally, these alignments of the core proteins constructed using the MUSCLE program [30] were

concatenated, converted to the underlying nucleotide sequence alignments, and the dN/dS
ratio was calculated for each species using the PAML software [31]. The characteristic dN/dS
value for each cluster was estimated as the median dN/dS for all species pairs in the cluster. As

shown previously, the median dN/dS is a stable characteristic of an ATGC that is robust to var-

iations in the set of genome pairs employed for the estimation, and is independent of tree

depth within the ATGCs [9]. For each ATGC, the effective population size Ne is deduced from

the typical dN/dS value, using the approach developed by Kryazhimskiy and Plotkin [20] and

discussed in detail previously [10]. The effective population size calculation is performed

under the following assumptions. Core genes are assumed to evolve under the weak mutation

limit regime, where the mutation rate is low such that mutations appear sequentially. In ad-

dition, it is assumed that synonymous mutations are strictly neutral, and that the selection

coefficient associated with non-synonymous mutations is similar for all core genes in all pro-

karyotes. It has to be emphasized that the latter assumption is made only for the 54 core gene
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families that were used for the calculation of the dN/dS ratio and that are common for nearly

all prokaryotes. Finally, the selection coefficient value of non-synonymous mutations is set

such that the effective population size for ATGC001, that contains Escherichia coli strains, is

109 and the effective population size for all other clusters is calculated accordingly. This arbi-

trary calibration of Ne will affect the fitted value of s, the selection coefficient which is associ-

ated with variation in genome size. However, because the population model for genome size

evolution depends only on the product γ = Ne � s (and not on Ne or s separately), γ is invariant

with respect to the calibration of Ne and the deletion bias is invariant as well.

Derivation of steady state genome size distribution

Following the genome size dynamics of Eq (5), the genome size distribution satisfies the differ-

ence equation

f ðx; t þ DtÞ ¼ f ðx; tÞð1 � PþðxÞ � P� ðxÞÞ þ f ðx � Dx; tÞPþðx � DxÞ þ f ðx þ Dx; tÞP� ðx
þ DxÞ ½30�

Keeping the first two leading terms in a Kramers-Moyal expansion of the master equation

above gives the corresponding Fokker-Planck equation [32]

_f � �
Dx
Dt
@x ðPþ � P� Þf
� �

þ
ðDxÞ2

Dt
1

2
@2

x ðPþ þ P� Þf
� �

½31�

The steady state distribution given by Eq (6) is the solution of the second order differential

equation which is obtained from Eq (31) for _f ¼ 0. Comparison of the analytical steady state

distribution of Eq (6) and steady state genome size distributions obtained from simulations of

the stochastic dynamics of Eq (5), are shown in S4 Fig.

Maximum-likelihood framework for model parameters optimization

The objective is to infer the unknown parameters of the genome size model presented below

from the genomic dataset. The probability of a set of observations X, namely, observed genome

sizes in all species in all ATGCs, is given by a distribution predicted by the genome size popula-

tion model. The distribution depends on two types of parameters: known parameters Z, and

unknown parameters θ. For the genome size population model, the known parameter is the

effective population size Ne, which is calculated for each ATGC. The unknown parameters are

deletion bias (r) and selection coefficient (s) associated with the gain of a single gene. Simply

put, the goal is to optimize θ by fitting the model distribution to the observed genome sizes in

terms of log-likelihood. Optimization is performed by maximizing ‘ðθÞ using using Matlab1

for simplex multidimensional search in the parameter space where

‘ðθÞ ¼ log½PyðXjθ;ZÞ� ½32�

The calculation of Pθ(X|θ,Z) from the genome size population model is presented in detail in

the Results section.

Supporting information

S1 Fig. Genome size distribution in ATGC001 that contains 109 species, primarily E. coli
strains. The bars show the observed genome sizes histogram. Solid lines show genome size

model steady state distribution of Eq (7) with model parameters as indicated in the legend, for

the acquisition and the deletion rates of Eqs (11 and 12) (A) and of Eqs (14 and 15) (B).

(PNG)
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S2 Fig. Artificial ATGCs realizations using the deletion bias of Eq (13). Model parameters

optimization was performed using the mixture model methodology. (A): Example for one

realization of artificial ATGCs. Error bars correspond to one standard deviation. Solid lines

indicate the global trend line given by Eq (7), where mean value of latent variable prior distri-

bution is used. Global trend line for actual model parameters used for the realization is indi-

cated by blue line, and the same line with fitted parameters is indicated by a red line. (B):

Latent variable r0 values in the different artificial ATGCs for the same realization that is shown

in panel A. Actual values are indicated by blue circles and fitted values are indicated by red x

marks. Mean value of the normal prior distribution is indicated by a dashed line. (C): Error

percentage is shown for fitted θ values for 9 realizations by box plots. The error is calculated as

100 � (ξinfected – ξactual)/ξactual. (D): Scatter plot for fitted s and r0 values in 9 different realiza-

tions. Actual values are indicated by black filled circle.

(PNG)

S3 Fig. Artificial ATGCs realizations. The analysis is similar to that in S2 Fig, only. in this

case, the hard fitting methodology was used to optimize model parameters. Panels (A) and (B)

are the same as panels (C) and (D), respectively, of S2 Fig.

(PNG)

S4 Fig. Comparison of analytical genome size distribution with numerical simulations.

Genome size evolution was simulated according to the stochastic dynamics of Eq (5) using Gil-

lespie simulation scheme. For each set of parameters histogram of 1000 replicas (blue bars) is

shown together with steady state genome size distribution, as calculated using Eq (6) (solid red

line). The gain and loss rates of Eqs (11) and (12) were used in the simulations. All simulations

started with genome size x = 1000 lasted 109 steps, and were performed with r0 = 0.7 and λ+ =

10−3. The rest of model parameters that were used are indicated in each panel.

(PNG)

S1 Table. Optimal fits for the genome evolution model parameters using the power law

model of deletion bias (Eq. (13)) together with a linear selection coefficient s(x) = s1 + s2 � x.

H hard fitting methodology; B, hierarchical Bayesian model fitting.

(DOCX)

S2 Table. Optimal fits for the genome evolution model latent variables using the power

law model of deletion bias (Eq (13)).

(CSV)

S3 Table. Optimal fits for the genome evolution model latent variables using the linear

model of deletion bias (Eq (16)).

(CSV)

S4 Table. Deletion bias values for all ATGCs for the power law deletion bias (Eq (13)). The

deletion bias is calculated using the mean genome size for each ATGC. Column headers indi-

cate the latent variable (s, r0 or λ) and the fitting scheme used–H for the hard fitting methodol-

ogy and B for the mixture model.

(CSV)

S5 Table. Deletion bias values for all ATGCs for the linear deletion bias (Eq (16)). The dele-

tion bias is calculated using the mean genome size for each ATGC. Column headers indicate

the latent variable (s, a or b) and the fitting scheme used–H for the hard fitting methodology

and B for the mixture model.

(CSV)
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