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Abstract: Hemophagocytic lymphohistiocytosis is a hyperinflammatory syndrome characterized by
uncontrolled activation of immune cells and mediators. Two diagnostic tools are widely used in
clinical practice: the HLH-2004 criteria and the Hscore. Despite their good diagnostic performance,
these scores were constructed after a selection of variables based on expert consensus. We propose
here a machine learning approach to build a classification model for HLH in a cohort of patients
selected by glycosylated ferritin dosage in our tertiary center in Lyon, France. On a dataset of 207
adult patients with 26 variables, our model showed good overall diagnostic performances with a
sensitivity of 71.4% and high specificity, and positive and negative predictive values which were
100%, 100%, and 96.9%, respectively. Although generalization is difficult on a selected population,
this is the first study to date to provide a machine-learning model for HLH detection. Further studies
will be required to improve the machine learning model performances with a large number of HLH
cases and with appropriate controls.

Keywords: hemophagocytic lymphohistiocytosis; inflammation; machine learning; Hscore; HLH-2004

1. Introduction

Hemophagocytic lymphohistiocytosis (HLH) is a hyperinflammatory syndrome char-
acterized by uncontrolled activation of T cells and macrophages, triggered by a genetic
(primary) or acquired (secondary) cause [1,2]. When HLH occurs in the setting of an
immune-mediated inflammatory disease (IMID) it is consensually termed macrophage
activation syndrome (MAS) [3]. The pathogenesis of HLH may involve a defect in lym-
phocyte cytotoxicity or an overactivation of inflammatory pathways resulting in a genuine
cytokine storm. In secondary HLH (sHLH), the trigger can be of several natures: infections
(e.g., Epstein Barr virus, EBV; cytomegalovirus, CMV; tuberculosis, etc.); hematological
malignancies, IMIDs (mainly Still’s disease and systemic lupus erythematosus); and other
conditions including drug reactions and heavy surgeries (e.g., post-transplant) [4,5].

HLH diagnosis in adults relies mainly on the clinical expertise of physicians, although
the classification criteria proposed by The Histiocyte Society (HLH-2004) are regularly
used as a reference in studies [6]. However, these criteria were developed for children
with primary HLH and have not been formally validated for sHLH or adults [7]. In
addition, these criteria may hamper early diagnosis as some criteria (e.g., cytopenias and
hemophagocytosis) may occur late and some tests (e.g., NK cell activity and sCD25 levels)
are not routinely available in hospital laboratories [1]. Finally, although considered a
hallmark of HLH, hemophagocytosis on bone marrow smears is not specific and can be
found in up to 2/3 of patients without HLH [8,9].
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The median delay to HLH diagnosis is 10 days [10,11]. The overall mortality rate
of sHLH is 40% with a 30-day mortality of 20% [10]. Therefore, prompt recognition of
HLH is mandatory. Several diagnostic or classification scores have been proposed. The
PRINTO criteria (MAS score-05) and then the classification criteria (MAS score-16) as well
as the MAS/sJIA score (MS score) are to be used for children with MAS complicating
systemic juvenile idiopathic arthritis (sJIA) [12–14]. The Hscore was developed in adults
with sHLH but the original study included a very limited number of patients with IMIDs
(3%), while the vast majority of patients had hematological malignancies [15]. Several
subsequent studies aimed at testing the validity of the Hscore on cohorts of patients with
more varied triggers have all found poorer diagnostic performance. In particular, specificity
was variable (specificity between 71–93%, depending on the study vs. 86% in the original
population) [7,15–17]. In total, none of these scores are completely satisfactory for the
diagnosis of sHLH and none have achieved complete consensus. Moreover, the external
validation in these studies is limited by their retrospective nature. Rather than the static
view provided by the classification criteria, some authors have proposed a dynamic study
of different clinical and biological parameters in HLH [18]. In this perspective, several
biomarkers (e.g., ferritin, glycosylated ferritin, IL-18, sIL-2R, etc.) have been evaluated but
none of them have reached sufficient accuracy to be of diagnostic value in HLH [6,19]. It
now seems clear that a reductionist approach to a single parameter will not achieve an
interesting specificity.

Over the last decade, artificial intelligence has become a powerful tool to assist and im-
prove medical decision making, mainly through deep learning models in various specialties
(e.g., radiology, dermatology, ophthalmology) [20]. Yet, no machine learning model is cur-
rently available for HLH diagnosis. Our study aimed to build a reliable machine-learning
model for the diagnosis of HLH in adults.

2. Materials and Methods
2.1. Study Design and Population

We used data from a French cohort, which we previously analyzed, to investigate the
diagnostic performance of glycosylated ferritin (GF) in HLH and adult-onset Still’s disease
(AOSD) [21]. In brief, we conducted a retrospective, case-control study by collecting data
from all adult patients who had at least one GF measurement between 1 January 2018
and 31 December 2019 (before the COVID-19 pandemic). The institutional biochemistry
laboratory in Lyon, France, where the assays were performed, receives samples from five
French university hospitals. The institutional review board approved the study protocol
(#22-862). In accordance with French legislation on non-interventional retrospective studies,
no written informed consent was required for inclusion.

2.2. Data Classification

All these methods were previously reported [21]. Biological data were automatically
extracted from two electronic patient data management systems (GLIMS9-MIPS (Clinisys,
Gent, Belgium), and EASILY-HCL (Hospices Civils de Lyon, Lyon, France)). Clinical data
were collected using a standardized form. The study period was defined as the time
between the GF measurement and the last available data in the medical record.

The diagnosis of HLH was based on the final opinion of the clinician (i.e., compatible
clinicobiological presentation, disease course, treatments, and management). We systemat-
ically collected on our forms the presence of a hemophagocytosis pattern if a pathology
test was performed (within bone marrow, spleen, or lymph node) and the Hscore [15] was
calculated retrospectively to assist in the classification of patients but was not mandatory
to retain the diagnosis. The diagnosis was retained if: (i) it was confirmed by the referring
physician at the last follow-up; (ii) it was validated by two independent investigators (YJ
and AG), with conflicting cases discussed with a third expert (PS) and finally classified by
consensus. Differential diagnoses were always sought and ruled out. Controls included
patients who did not meet the predefined definition of HLH.
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Six etiological subgroups were considered, whether in the HLH or in the control
group: infectious diseases, solid cancers, hematological malignancies, immune-mediated
inflammatory diseases (IMIDs), acute hepatitis, and a group encompassing all other less
frequent conditions. The classification of patients into each subgroup was based on the
diagnosis made by the treating physician. Each case was reviewed by the two independent
investigators (YJ and AG) and confirmed by a third expert (PS), if necessary. In the case of
residual uncertainty, cases were excluded.

2.3. Predictive Model Building

Data preprocessing was performed with R version 4.1.2. (R core team, Vienna, Austria)
and model building was performed with Python version 3.9.7. (Centrum voor Wiskunde
en Informatica, Amsterdam, The Netherlands) using the scikit-learn version 1.0.2 (Inria,
Paris, France) [22]. The machine learning procedure was performed with an 11th Gen Intel®

Core™ i7-11850H at 2.50 GHz with 32 GB of RAM. No graphics processing unit was used
in this work.

The dataset was first described by comparing the population with and without HLH.
Categorical variables were described as mean and percentages when following a normal
distribution and with medians and interquartile ranges when not. Categorical variables
compared using a Fisher’s test (if one of the contingency table’s cells was equal or below 5)
or using a Chi2 test. Continuous variables were described as means and standard devia-
tions when normally distributed and compared with a Student’s t-test or as medians and
interquartile ranges and compared with a Wilcoxon signed rank test when they followed a
skewed distribution.

In the first step, we kept only the variables with less than 20% missing values. The
remaining missing values were imputed using multiple imputations with a chained equa-
tions algorithm using the classification and regression trees method from the R package
mice [23]. We then subtracted from the remaining variables all treatment-related variables
or variables that could be collected after the diagnosis of HLH (e.g., death and treatments),
thus not relevant for predicting HLH.

The final dataset consisted of 26 variables for each patient, with 10 being categorical
(sex, hepatomegaly, splenomegaly, lymph node enlargement, immunosuppression, known
genetic predisposition to HLH, human immunodeficiency virus (HIV) infection, hematolog-
ical malignancy, solid neoplasia, and liver disease) and 16 continuous (age, body mass index
(BMI), ferritin, glycosylated ferritin, C-reactive protein, aspartate aminotransferase (AST),
alanine aminotransferase (ALT), total bilirubin, creatinine, prothrombin rate, hemoglobin
concentration, platelet count, leukocyte count, neutrophil count, lymphocyte count, and
maximal body temperature) variables. Due to performance loss, no scaling procedure was
applied for continuous variables and categorical variables were encoded 0 if the criterion
was absent (or if male sex) and 1 if present. Again, due to performance loss, no variables
among the 26 were removed from the final model.

The dataset was then randomly split into training and test sets with respectively 70%
and 30% of the initial population. The resulting training dataset was strongly imbalanced
with 10% of patients with HLH. In addition, as the total number of observations was rather
small from a machine learning perspective, a synthetic minority oversampling technique
(SMOTE) was used on the training set to improve the upcoming model performances [24].

Regarding model selection, there is no consensus nor simple way to anticipate which
machine learning algorithm will perform best on a specific prediction task [25]. For that
reason, we have implemented a three-step benchmark of the most widespread algorithms.

Step 1: In order to quickly establish the relevance of using a machine learning approach
and to decipher the most performant type of algorithm, we used an automated machine
learning model from autoML to run naive (i.e., non-tuned) algorithms. This step was
performed through the MLJAR-autoML tool [26]. We chose to run nine different algorithms
to investigate a large variety of patterns: a random forest, an extreme gradient boosting
(XGBoost), a decision tree classifier, a light gradient boosting, an extra-trees, a CatBoost,



J. Clin. Med. 2022, 11, 6219 4 of 13

a linear model-a K-nearest neighbors, a neural network (although neural networks are
not expected to perform well on datasets with only hundreds of observations), and a final
ensemble model which consists in a linear ponderation of all the previous classifiers. A
baseline algorithm, always predicting the majority class (i.e., “without HLH”), was used
as a reference and performed in an 0.5 area under the curve (AUC) by definition. At this
stage, the AUC was used to evaluate the algorithms’ performances, rather than accuracy,
since data were imbalanced (more patients without HLH than with HLH) and we were
more interested in predicting well HLH patients.

Step 2: The three most performing algorithms according to AUC were chosen to be
further configured. For the configuration, tuning of their hyperparameters followed a grid
search with a five-fold cross-validation procedure (80–20% ratio) for which optimization
was based on the AUC metric.

Step 3: Finally, the three algorithms were trained altogether with a stacking classi-
fier [25], with the meta-estimator being an XGBoost classifier. Stacking has been proven
to lead to increased performance [27]. To compare the different models on the test
set, sensitivity, specificity, positive predictive value, negative predictive value, accuracy
(true positive (TP) + true negative (TN)/(positive (P) + negative (N)), and F1-scores
(2 × TP/(2 × TP + false positive + false negative)) were calculated. In order to ease
the understanding of how the final model dealt with variable weights, Shapley values were
computed with a Kernel Explainer from the Shap library [28]. Shapley values represent
the contribution of a feature to the model in a specific condition (i.e., a specific patient).
For linear models, Shapley values are equal to the weight of the feature in the model times
the value of the feature. In non-linear models, Shapley values represent the contribution
of a feature depending on all other features in the model (e.g., in HLH detection for a 68
year old male patient with splenomegaly and immunosuppression, the Shapley value of
splenomegaly for this patient represents the contribution of the feature “splenomegaly” to
predict HLH given an age of 68, male sex, and immunosuppression).

3. Results
3.1. Descriptive Statistics

Considering age at disease onset and sex, there were no significant differences between
the HLH and the control group (Table 1). Nearly half the patients in the HLH group had
hematological malignancy at the time of data collection while patients in the control group
were more frequently experiencing inflammatory disorders (p < 0.001). Maximal body
temperature was higher in the HLH group (p < 0.001) as well as ferritin levels (p < 0.001).
Patients with HLH had also more frequent enlarged lymph nodes, splenomegaly, and
hepatomegaly (p < 0.05). Glycosylated ferritin was significantly lower in the HLH group
(23.5 vs. 39.0, p < 0.001). The description of other variables from the original dataset is
provided in Table 1.

Table 1. Summary description of the original dataset.

Control HLH
p. Overall

N = 207 N = 24

Clinical characteristics

Sex (male) 122 (58.9%) 9 (37.5%) 0.074
Age at onset 53.0 [37.0; 65.5] 49.5 [32.8; 64.2] 0.562

Etiological subgroups <0.001
Hematological malignancies 13 (6.28%) 11 (45.8%)

Inflammatory diseases 90 (43.5%) 8 (33.3%)
Infectious diseases 48 (23.2%) 3 (12.5%)
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Table 1. Cont.

Control HLH
p. Overall

N = 207 N = 24

Liver diseases 10 (4.83%) 0 (0.00%)
Solid neoplasia 10 (4.83%) 1 (4.17%)

Other 36 (17.4%) 1 (4.17%)
Chronic liver disease 7 (3.38%) 2 (8.33%) 0.237

CKD 12 (5.80%) 1 (4.17%) 1.000
Underlying IS 69 (33.3%) 18 (75.0%) <0.001

HIV 2 (0.97%) 2 (8.33%) 0.055
Solid neoplasia 18 (8.70%) 1 (4.17%) 0.701

Hematological malignancy 24 (11.6%) 9 (37.5%) 0.002
HLH-inducer treatment 56 (27.1%) 10 (41.7%) 0.207
Genetic predisposition 2 (0.97%) 1 (4.17%) 0.282

Physical exam features

Max body temperature 37.7 [36.8; 38.9] 39.5 [39.0; 40.0] <0.001
Hepatomegaly 17 (8.21%) 6 (25.0%) 0.020
Splenomegaly 15 (7.25%) 10 (41.7%) <0.001
Lymph nodes 26 (12.6%) 15 (62.5%) <0.001
Papular rash 36 (17.4%) 7 (29.2%) 0.170

Transient rash 6 (2.90%) 1 (4.17%) 0.541
Arthritis 37 (17.9%) 2 (8.33%) 0.386

Arthralgias 67 (32.4%) 5 (20.8%) 0.357
Odynophagia 25 (12.1%) 3 (12.5%) 1.000

BMI 24.0 [21.0; 27.0] 21.0 [20.0; 25.0] 0.166

Biology

Ferritin 633 [276; 1618] 8749 [2402; 25,713] <0.001
Glycosylated ferritin (%) 39.0 [26.0; 53.5] 23.5 [8.00; 34.0] <0.001

TSR 0.16 [0.10; 0.31] 0.12 [0.09; 0.31] 0.628
CRP 71.0 [18.0; 155] 77.0 [29.2; 205] 0.203
PCT 0.50 [0.10;1.50] 4.00 [0.20; 10.2] 0.112
AST 30.0 [20.0; 54.0] 112 [67.0; 172] <0.001
ALT 32.0 [18.2; 62.2] 79.0 [46.2; 160] 0.001

Total bilirubin 8.00 [6.00; 13.0] 15.5 [6.75; 33.8] 0.009
LDH 295 [220; 404] 590 [394; 946] <0.001
CPK 43.0 [21.8; 87.5] 106 [31.0; 173] 0.138

Creatinine 68.0 [57.0; 81.0] 55.0 [45.5; 71.0] 0.017
Triglycerids 1.40 [1.00; 1.90] 2.85 [2.15; 3.97] <0.001

PR 78.0 [67.0; 90.0] 74.5 [55.2; 90.2] 0.225
Fibrinogen 5.40 [3.27; 8.40] 2.75 [1.75; 4.75] 0.002

Hemoglobin 114 [93.0; 135] 90.0 [78.2; 100] <0.001
Platelets 255 [184; 334] 62.0 [32.8; 138] <0.001

Leukocytes 8.40 [5.60; 11.6] 2.30 [1.25; 4.93] <0.001
Neutrophils 5.10 [3.25; 8.40] 1.55 [0.75; 3.20] <0.001

Neutrophils (%) 0.67 [0.57; 0.77] 0.72 [0.54; 0.81] 0.730
Lymphocytes 1.60 [1.00; 2.10] 0.70 [0.32; 1.00] <0.001

Evolution

ICU 36 (17.4%) 10 (41.7%) 0.012
Death 17 (8.21%) 4 (16.7%) 0.248

Abbreviations: ALT/AST: alanine/aspartate aminotransferase; BMI: body mass index; CKD: chronic kidney
disease; CPK: creatinine phosphokinase; CRP: C reactive protein; HIV: human immunodeficiency virus; HLH:
hemophagocytic lymphohistiocytosis; ICU: intensive care unit; LDH: lactate dehydrogenase; PCT: procalcitonin;
PR: prothrombin ratio; and TSR: transferrin saturation ratio. Medians and their interquartile ranges (brackets)
were provided for quantitative variables.
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3.2. Running the Automated Machine Learning Procedure

First, we ran a naive automated machine learning model (autoML) without hyperpa-
rameter tuning in order to decipher which algorithm types would best fit the dataset. Since
the initial problem is a binary classification problem, we ran the autoML algorithm with
classifiers and metrics on the train set are displayed in Table 2.

Table 2. Area under the receiving operator characteristics curves (AUC) of different algorithms from
the autoML pipeline on the training set.

Model Type AUC Train Time (s)

Ensemble 0.997475 0.47
CatBoost 0.994949 1.57

Linear 0.989899 1.88
Nearest neighbors 0.988636 1.66

Neural network 0.987374 1.22
LightGBM 0.984848 3.37

Xgboost 0.982323 3.71
Random forest 0.967172 3.73

Extra trees 0.959596 2.09
Decision tree 0.767677 2.5

Baseline 0.5 1.59
Abbreviations: AUC: area under the curve; GBM: gradient boosting machine.

The ensemble model had an AUC metric of 0.966 on the test set (Figure 1A). The model
yields a sensitivity (recall) and specificity of respectively 71.4% and 98.4% on the test set
(Table 3 and Figure 2). The positive predictive value/precision (PPV) and the negative
predictive value (NPV) were respectively 83.3% and 96.9%. The F1-score and accuracy were
respectively 76.9% and 95.7%. The total autoML procedure took 19.4 s.
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Figure 1. Receiver operating characteristic curves for the five different algorithms used for HLH
detection. (A) AutoML ensemble model, (B) ridge classifier, (C) CatBoost classifier, (D) K nearest
neighbors (KNN) classifier, and (E) stacking classifier with XGBoost as a meta-estimator. Red dots
are used to mark the true positive rate and the false positive rate at the threshold used for predictions.
Abbreviations: AUC: area under curve; HLH: hemophagocytic lymphohistiocytosis; and ROC:
receiver operating characteristic.



J. Clin. Med. 2022, 11, 6219 7 of 13

Table 3. Performance metrics on the test data for the five different algorithms used for HLH detection.
The highest metric value for each model is displayed in bold type.

AutoML-
Ensemble

Model

Tuned Ridge
Classifier

Tuned CatBoost
Classifier

Tuned KNN
Classifier

Stacking
Classifier Hscore

Sensitivity 0.714 1.000 0.714 0.857 0.714 0.857
Specificity 0.984 0.873 0.952 0.921 1.000 0.952

Positive predictive value 0.833 0.467 0.625 0.545 1.000 0.667
Negative predictive value 0.969 1.000 0.968 0.983 0.969 0.984

F1-score 0.769 0.636 0.667 0.667 0.8333 0.750
Accuracy 0.957 0.886 0.929 0.914 0.971 0.943

Threshold for probability 0.50 0.36 0.49 0.50 0.50 NA

Abbreviations: KNN: K nearest neighbors; ML: machine learning; PPV: positive predictive value; and NPV:
negative predictive value.
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3.3. Hyperparameter Tuning and Fitting of the Ridge Classifier

Among the top three machine learning (ML) algorithms with the best AUC in the
autoML procedure, we first fit a linear model with a ridge classifier. The ridge classifier
after hyperparameter tuning had an AUC of 0.930 on the test set (Figure 1B). The model
had a sensitivity, specificity, PPV, and NPV of 100%, 87.3%, 46.7%, and 100%, respectively
(Table 3 and Figure 2). Furthermore, the F1-score and the accuracy were respectively 63.6%
and 88.6%. Hyperparameter tuning took 24.7 s and the best model fit took 14 ms.

3.4. Hyperparameter Tuning and Fitting of the CatBoost Classifier

The second-ranked machine learning algorithm in terms of AUC in the autoML
procedure was the CatBoost classifier. Like the ridge classifier, a five-fold cross validation
was performed on a grid search for hyperparameter tuning. The AUC was 0.934 (Figure 1C).
The sensitivity, specificity, PPV, and NPV were 71.4%, 95.2%, 62.5%, and 96.8%, respectively
(Table 3 and Figure 2). The F1-score and the accuracy were respectively 66.7% and 92.9%.
The grid search cross validation took 2 min and 33 s and it took 453 ms for the best model
to fit.
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3.5. Hyperparameter Tuning and Fitting of the K Nearest Neighbors Classifier

Finally, we trained a K nearest neighbors classifier (KNNC). The KNNC AUC was
0.873 (Figure 1D). The sensitivity, specificity, PPV, and NPV were 85.7%, 92.1%, 54.5%, and
98.3%, respectively (Table 3 and Figure 2). The F1-score and the accuracy were respectively
66.7% and 91.4%. The grid search cross validation took 38.5 s and it took 36 ms for the best
model to fit.

3.6. Stacking Efficient Classifiers
3.6.1. Classifier Metrics

In order to further improve model metrics, we chose to stack the previous three clas-
sifiers within an XGBoost classifier with the following parameters: ‘n_estimators’ = 10,000;
‘min_child_weight’ = 5; ‘min_sample_weight’ = 5; ‘max_depth’ = 7; and ‘learning_rate’ = 0.15.
With those parameters, the sensitivity, specificity, PPV, and NPV were 71.4%, 100%, 100%, and
96.9% respectively (Table 3 and Figure 2). The F1-score and the accuracy were 83.3% and 97.1%
respectively. The AUC of the ensemble model yielded an AUC of 0.899 (Figure 1E). The threshold
value for the ‘predict_proba’ function that ensured the lowest number of misclassified patients
(false negative + false positive) was 0.5.

3.6.2. Variable Importance Using Shapley Values

The Shapley values for each patient and each variable is plotted in Figure 3.
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Figure 3. Beeswarm plot of Shap values for all patients and for each feature. The right side of the
plot favors the output “HLH” and the left side favors the output “not HLH”. The gradient color
corresponds to the feature value (dark pink if high or present for categorical features and blue if low
or absent for categorical features). Abbreviations: BMI: body mass index; CRP: C reactive protein;
PR: prothrombin rate; SGOT/AST: serum glutamic-oxaloacetic transaminase; and SGPT/ALT: serum
glutamic-pyruvate transaminase.

The ten most important features for prediction in this algorithm were ferritin levels,
lymph node enlargement, maximal body temperature, platelet count, serum glutamic-
oxaloacetic transaminase (SGOT/AST) levels, underlying immunosuppression, hemoglobin
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level, BMI, C-reactive protein, and lymphocyte count. Here, we found that high ferritin
levels, the presence of a lymph node enlargement, a higher maximal temperature, a low
platelet count, high levels of SGOT/AST, and the presence of an underlying immunosup-
pression are associated with the prediction of HLH.

4. Discussion

This study is the first to date to propose a machine-learning approach to diagnose
HLH. Hemophagocytic lymphohistiocytosis is a rare entity with a poor prognosis, which
is even worse as the diagnosis delay increases [17]. Unfortunately, there is no “gold
standard” for diagnosing HLH, and most of the time the diagnosis is based on the clinician’s
decision, which is based on clinicobiological considerations and mostly confirmed with
the evolution of the disease and/or with the treatment efficacy and/or available scoring
solutions. Therefore, the main goal of early diagnosis in HLH is to avoid its complications,
admission to an intensive care unit (ICU), and death. The two main available scores
for HLH diagnosis are currently the HLH-2004 criteria and the Hscore [6,15]. External
validation studies revealed that those scores had high sensitivity and specificity, which
could vary depending on the scored population [7,17]. HLH-2004 criteria and Hscore
perform better in critically ill patients. Hscore performs better in non-IMID-related HLH
patients since the original study included only 3% of patients with IMID-related HLH and
thus, this linear model is probably unsuitable for populations with a high proportion of
IMID-related HLH [7,16]. These performances are to be modulated depending on the cutoff
score that is chosen to define HLH when using Hscore. However, these two scores suffer
from several limitations.

First, the HLH-2004 diagnostic criteria were based on an expert consensus on sig-
nificant changes that are usually found in HLH in children. These revised criteria were
adapted from the 1991 criteria by Henter et al. that were meant to be used as a classification
tool for the HLH-94 prospective trial [29,30]. Thus, one should not consider the criteria as
a diagnostic tool but rather a classification tool for research purposes. The criteria were
arbitrarily equally weighted, and so were the number of criteria to be fulfilled to establish
the diagnosis of HLH. However, the diagnostic performances of the HLH-2004 diagnostic
criteria are probably insufficient in early-stage HLH where important markers such as bone
marrow hemophagocytosis and cytopenias are usually lacking.

The Hscore resulted from a logistic regression model [15]. In this score, all quantitative
variables were discretized. This choice may lead to information loss, especially for extreme
values (i.e., in the case of extreme hyperferritinemia), but was essential for the deployment
of the tool in order to be as simple as possible without significant performance loss. Al-
though in external validation studies, the cutoff that was proposed by the authors failed
to be sufficiently specific, yielding to high sensitivity, the logistic regression design allows
to adapt the score cutoff to fit a given population [7,16,17]. Finally, the parameters that
were selected to build this tool were chosen from a web-based Delphi study [31]. Another
limitation could be the interpretation that a clinician would make of such a score. Indeed,
the Hscore also provides a tool to predict the probability of having HLH in any patient. In
fact, the given probability corresponds to the basal probability of a patient of the original
Hscore dataset who fulfills none of the Hscore criteria which is:

e−(intercept)

1 + e−(intercept)

And this probability increases according to β coefficients and according to variables
that are present in the tested patient:

e−(intercept+β1∗var1+ β2∗var2+···)

1 + e−(intercept+β1∗var1+ β2∗var2+···)



J. Clin. Med. 2022, 11, 6219 10 of 13

This probability represents the probability of having the H score compared with a
patient without any symptoms in the Hscore original cohort, and should not be taken as an
absolute probability of having HLH. Hence, clinicians should keep in mind that predictions
or diagnostic tools have to be used on the precise population that they were built on
(i.e., patients with at least HLH suspicion). In the initial study, there were more than 50% of
patients with hematological malignancies. Although this is one of the limitations of the
Hscore, any score or machine-learning model (including the present one) would have the
same problem, making generalization a major pitfall for a model deployment for medical
diagnosis especially without big data.

In the past decade, the democratization of machine learning through more accessible
and popular programming languages such as Python or R allowed the spreading of various
solutions for medical purposes. In the case of HLH, the main goal is to establish an
early diagnosis in order to treat patients as soon as possible to avoid major complications
(e.g., organ failure, ICU admission, death). Here, we propose a proof-of-concept approach
for HLH diagnosis through the scope of machine learning. Our model reached high
diagnostic performances in the test set and has the advantage to be possibly trained again
to adapt to new data. Another advantage of this ML approach is the use of potentially
unsuspected factors as important features for diagnosis, such as BMI. Moreover, in tree-
based models, features are not analyzed one by one but in a succession of nodes that
allows the combination of features to be considered for predictions. Finally, our model
seems to outperform the Hscore in the test dataset in terms of misclassification rate: three
patients being wrongly classified as HLH vs. zero in our model, and one patient not being
diagnosed with HLH vs. two in our model. This increased performance compared with
the Hscore is probably due to the difference in the patient selection process. Moreover, our
model did not need any information on bone marrow, spleen, or liver hemophagocytosis
for making predictions, contrarily to other available scores. Still, this should not be an
argument for replacing Hscore with our model as it is only a proof-of-concept approach
for HLH diagnosis at this stage. Our model provides clues for further considerations
on diagnostic tools and metrics to be used to assess diagnostic performance of scores in
HLH patients.

A limitation of our study is its retrospective nature, and thus all biases brought with
it. In our case, missing values had to be imputed, which introduced a bias in the sense
that using a specific pattern to replace missing values may influence the model predictions.
To mitigate this issue, we did not impute and removed variables with more than 20% of
missing values. Another limiting point was the inhomogeneous time at data collection.
Indeed, every biological dosage was performed at the time of GF dosage and thus, in our
data collection, the time was not taken into account. Such considerations in further studies
may help to distinguish early markers for HLH detection.

Moreover, the retrospective nature of the study led us to select our patients through
glycosylated ferritin dosage in patients from our center. This criterion makes our population
a selected one since glycosylated ferritin is not measured in every patient with HLH
suspicion. This may lead to three major issues. First, we expose ourselves to the risk of
having a ratio of HLH (here 10%) which is not representative of the national incidence. This
imbalanced ratio, combined with the fact of having a rather small number of observations
from the machine-learning perspective, led us to use a SMOTE method to achieve better
predictive performances. Without it, the trained models were constantly overfitting due
to the overrepresentation of non-HLH patients. Indeed, the latter models were having
a satisfying specificity and negative predictive value but poor sensitivity and positive
predictive value. The use of SMOTE would differ on a larger cohort or with a different
HLH ratio in the training set. Secondly, there is a potential bias toward more severe patients,
thus making it perform worse on patients with HLH and mild symptoms or early disease.
Finally, by training and testing our model only on a specific population (i.e., selected
through biological testing), our model might badly generalize on ‘real-life’ populations.
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Another limitation of this study is that HLH diagnosis was based on clinicians’ opin-
ions. Yet no other approach would be entirely satisfactory in a condition for which, to
date, there is no gold standard or consensus definition for sHLH in adults. This is why
the PRINTO MAS score, the MS score, and the Hscore also used expert judgment as a
gold standard [12–15]. Indeed, defining HLH cases by the existing classification criteria
would exclude all conflicting cases from the analysis and prevent the evaluation of those
same previous sets of criteria. However, the real added value of such a diagnostic tool is
essentially based on improving the disease outcome (i.e., organ failure, ICU admission,
or death). A machine-learning model built on a target in which the definition is based on
expert opinion would only help to make a diagnosis as an expert would. Thus, our tool is
only intended to provide an expert’s perspective to non-expert clinicians, not to replace
an expert’s opinion in HLH diagnosis. As is the case for all machine-learning approaches,
the model will only be able to reproduce the behavior suggested to it by the training data
set. Thus, in the context of complex diseases, the algorithm will at best only be able to
reproduce the decision resulting from an evaluation by experts, which is an interesting
point if we place ourselves in the context of a diagnostic aid for non-experts. A better
comparison for conditions without gold standard would be improvements in length or
quality of life, such as in early-stage cancer [32].

5. Conclusions

We provided a proof-of-concept model for HLH prediction based on a machine-
learning approach. As a proof of concept, this model is not intended to be deployed for a
specific population but provides evidence that machine learning is likely to be the most
powerful approach to medical diagnosis in the years to come for HLH and probably for
other complex diseases. Further studies will provide a more generalizable diagnostic tool
for HLH that would take into account more robust criteria such as survival in the absence
of a gold standard for HLH diagnosis.

6. Patents

This section is not mandatory but may be added if there are patents resulting from the
work reported in this manuscript.
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