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Abstract

Complex structural connectivity of the mammalian brain is believed to underlie the versatility

of neural computations. Many previous studies have investigated properties of small sub-

systems or coarse connectivity among large brain regions that are often binarized and lack

spatial information. Yet little is known about spatial embedding of the detailed whole-brain

connectivity and its functional implications. We focus on closing this gap by analyzing how

spatially-constrained neural connectivity shapes synchronization of the brain dynamics

based on a system of coupled phase oscillators on a mammalian whole-brain network at the

mesoscopic level. This was made possible by the recent development of the Allen Mouse

Brain Connectivity Atlas constructed from viral tracing experiments together with a new

mapping algorithm. We investigated whether the network can be compactly represented

based on the spatial dependence of the network topology. We found that the connectivity

has a significant spatial dependence, with spatially close brain regions strongly connected

and distal regions weakly connected, following a power law. However, there are a number of

residuals above the power-law fit, indicating connections between brain regions that are

stronger than predicted by the power-law relationship. By measuring the sensitivity of the

network order parameter, we show how these strong connections dispersed across multiple

spatial scales of the network promote rapid transitions between partial synchronization and

more global synchronization as the global coupling coefficient changes. We further demon-

strate the significance of the locations of the residual connections, suggesting a possible

link between the network complexity and the brain’s exceptional ability to swiftly switch

computational states depending on stimulus and behavioral context.

Author summary

In a previous study, a data-driven large-scale model of mouse brain connectivity was con-

structed. This mouse brain connectivity model is estimated by a simplified model which

only takes in account anatomy and distance dependence of connection strength which is

best fit by a power law. The distance dependence model captures the connection strengths
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of the mouse whole-brain network well. But can it capture the dynamics? In this study, we

show that a small number of connections which are missed by the simple spatial model

lead to significant differences in dynamics. The presence of a small number of strong con-

nections over longer distances increases sensitivity of synchronization to perturbations.

Unlike the data-driven network, the network without these long-range connections, as

well as the network in which these long range connections are shuffled, lose global syn-

chronization while maintaining localized synchrony, underlining the significance of the

exact topology of these distal connections in the data-driven brain network.

Introduction

Structural neural connectivity and its implications for brain function have been a long-sought

subject in neuroscience. Many previous studies have been limited either to small networks of

few cells or coarser connectivity among larger brain regions [1–9], often binarized and without

spatial information. Recent development of the Allen Mouse Brain Connectivity Atlas from

anterograde fluorescent viral tracing experiments [10] provides us the unique opportunity to

investigate precise weighted anatomical connectivity of the mammalian whole brain network.

Combining the mesoscopic connectivity data with spatial information of the network, we seek

a parsimonious representation of the weighted whole-brain network that captures salient net-

work properties. Specifically, we investigate whether the network can be compactly repre-

sented solely based on the spatial dependence of the network topology.

Biological networks are inherently spatially constrained. Recent studies have shown that

geographic constraints play a critical role in generating graph properties of real-world neuro-

nal networks [5, 11–20], which cannot be fully captured by classical generative network models

such as the small-world network [2] and the scale-free network [21]. Yet many of the studies

are limited to binarized networks [11, 12, 17, 19, 20] and are focused explicitly on comparing

graph theoretical measures [11, 13–20]. In this paper, we examine spatial embedding of a

weighted whole-brain connectivity, and ask whether spatial dependence alone can depict the

full computational capability of the brain network by studying dynamics of the network.

By analyzing the latest connectivity data from a new mapping algorithm, we find that the

network connectivity strongly depends on its spatial embedding, with spatially close brain

regions strongly connected and distal regions weakly connected. We study the precise relation-

ship between connectivity and distance, and investigate possible computational roles of posi-

tive residual connection strengths that are not captured by the spatial dependence. To probe

the possible implications of the residual connections on the network dynamics, we construct a

network of phase oscillators with the data-driven adjacency matrix and compare its dynamics

to those of the oscillator network with the connections strictly dependent on distance. We

analyze spatial structures of synchronization by measuring the order parameter for varied

amounts of global coupling coefficient. We further examine the strong connections between

distal brain regions by studying network dynamics when fractions of the strong residual con-

nections are added to the spatially constrained network. Finally, we relocate the positive resid-

uals either to connections between nearby brain regions or to different fractions of longest-

range connections, thus increasing the connection strengths for the spatially close or distal

brain regions while eliminating sparse, strong connections spread across different edge

lengths. The networks restructured this way maintain overall connection strength of the brain

network but have a connectivity topology different from that of the brain network. By compar-

ing dynamics of such restructured networks and the data-driven whole brain network, we
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show that the spatial locations of the strong positive residuals are important. Specifically, our

study reveals that strong connections distributed over the brain network across many length-

scales enhance the capability of the system to switch between asynchronous and synchronous

states, underlining the significance of the existence of these connections. The network without

these long-range connections, as well as the network in which these long-range connections

are shuffled, when pushed by perturbations or low coupling coefficient, lose global synchroni-

zation but maintain local synchronization over small spatial scales. In the same conditions, the

data-driven network loses synchronization over all spatial scales. It is interesting to speculate

that this phenomenon is necessary for the integrative processes necessary for global cognitive

functions.

Results

Spatial dependence of the mouse whole-brain connectivity

The mesoscopic mouse whole-brain connectivity was constructed based on viral tracing exper-

iments available on the Allen Mouse Brain Connectivity Atlas [10] with a recently developed

interpolative mapping algorithm [22]. This produced a weighted and directed structural con-

nectivity matrix with 244 brain regions as source nodes and 488 brain regions as ipsilateral

(244) and contralateral (244) target nodes. By combining the ipsilateral and contralateral con-

nections for each hemisphere, we constructed a whole-brain connectivity matrix with 488

nodes. The data-driven mouse brain network is shown in Fig 1A, left column.

We analyzed the relationship between connection strength and spatial distance between

brain regions in the data set. In accordance with previous studies on brain networks [5, 15–

20], the connectome strongly depends on the spatial embedding; connections are stronger

between spatially close regions and weaker between distal regions. Specifically, the connection

strengths decrease with distances between brain regions following a power law (Fig 1B) rather

than an exponential relationship, in agreement with previous studies on Allen Mouse Brain

Connectivity data [18, 22]. Additional details on the fitting are available in Methods (“Depen-

dence of connection strengths on interregional distance”).

Fig 1. Connectivity matrices constructed from viral injection data and the power-law dependence on distance. (A) Connectivity matrix from viral

tracing data (left); reconstructed connectivity from the power-law dependence on distance between nodes (middle); residual connection strengths of

the data-driven network above the power-law distance dependence. We show 244 brain regions divided in to coarser major brain divisions defined in

the Allen Mouse Brain Reference Atlas. These divisions are: Isocortex, Olfactory Bulb, Hippocampus, Cortical Subplate, Striatum, Pallidum, Thalamus,

Hypothalamus, Midbrain, Pons, Medulla, and Cerebellum. (B) Connection strengths as a function of distance between brain regions (left panels). The

connections obtained from experiments (gray) are fit by a power law (red) on the log scale with base 10 (right panels). Inset: Goodness of fit.

https://doi.org/10.1371/journal.pcbi.1006978.g001
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We constructed adjacency matrices for the ipsilateral and the contralateral networks based

on the power-law relationship, as shown in Fig 1A, middle column. While the general trend of

decrease in connection strength with distance is clear and well-predicted by a power law, there

are also a number of residual connection strengths that are not captured by the power-law rela-

tionship (Fig 1A, right column).

To understand the structure and effects of the residual connection weights that are not cap-

tured by the power-law dependence on distance, we had a closer look at these residuals. For

both ipsilateral and contralateral connections, a long, positive tail is observed in the distribu-

tion of residual connection weights, suggesting strong distal connections above the power-law

dependence on distance (Fig 2A and 2B). The strongest 20 residual connections are plotted in

Fig 2C. We observed that for the ipsilateral network, connections from preparasubthalamic

nucleus (PST) to subthalamic nucleus (STN), laterodorsal tegmental nucleus (LDT) to Bar-

rington’s nucleus (B), dorsal motor nucleus of the vagus nerve (DMX) to gracile nucleus (GR),

cuneate nucleus(CU) to gracile nucleus (GR), and locus ceruleus (LC) to Barrington’s nucleus

(B) are a few examples of the strong distal connections unexplained by the power-law depen-

dence on distance. For the contralateral connectivity, on the other hand, many of the strongest

residuals above the power-law relationship include connections between the same regions in

different hemispheres as well as connections to and from hippocampal areas.

Phase oscillators and network coherence measures

Do these positive residual connections between distal regions have any computational signifi-

cance? In other words, can we capture the full computational capacity of the mesoscopic brain

network with connectivity governed by strictly distance-dependent rules, with the residuals

removed? To test this, we compare dynamics of the data-driven brain network to those of

an artificial, strictly distance-dependent network generated by the power-law relationship.

Fig 2. Residual connection weights unexplained by the power-law distance dependence. (A) Distributions of the connection strengths from the data

(blue) and the residual connection strengths (red). The x-axes are restricted here to better visualize the positive tails and many of the residuals clustered

around zero. (B) Residual connection weights as a function of distance between nodes. (C) Directed pairs of brain regions with large positive residual

connections. These represent pairs of regions with connections stronger than predicted by the interregional distance. For reference on the acronyms of

the regions, see the Allen Mouse Brain Reference Atlas (https://mouse.brain-map.org/static/atlas).

https://doi.org/10.1371/journal.pcbi.1006978.g002
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Specifically, we built a network of coupled phase oscillators whose coupling strengths are

described by the weighted adjacency matrix of the data-driven brain network or the power-law

distance-dependent connectivity. Each of these Kuramoto-type phase oscillators corresponds

to a brain area. Kuramoto-type coupled phase oscillators have been widely used to model oscil-

latory brain dynamics [23–25]. The phase of region i, represented by θi, is described by:

_y i ¼ oi þ k
XN

j¼1

Aij sin ðyjðt � tijÞ � yiðtÞÞ þ ZiðtÞ ð1Þ

where ωi denotes the natural frequency, and k describes the coupling coefficient. Aij is the adja-

cency matrix of the network. For the case of the data-driven brain network, Aij = Jij where Jij
indicates the adjacency matrix obtained from viral tracing data, for both ipsilateral and contra-

lateral connections. For simulations of the artificial, distance-dependent network, Aij = Kij

indicates the adjacency matrix constructed by making the connection weights strictly follow

the power-law dependence on distance. The last term ηi(t) represents an additive Gaussian

white noise with zero mean (hηi(t)it = 0) and variance s2
n=TðhZiðtÞZjðt

0Þit ¼ dijdðt � t0Þs2
n=TÞ,

where δij is the Kronecker delta and δ(�) denotes the Dirac delta function. The standard devia-

tion σn is in radians and T is a timescale, which is set to 1 second in our study. N denotes the

number of nodes of the network, which is 488 in our whole-brain simulations. The natural fre-

quencies ωi are randomly chosen from a symmetric, unimodal distribution g(ω). In this paper,

we used a Gaussian distribution with the mean at 40 Hz and the standard deviation σd for

g(ω), as done in other studies of modeling large-scale brain dynamics with phase oscillators

[24–27]. Note that this falls within a frequency range of gamma rhythms (30-80 Hz) that are

frequently observed in oscillatory brain dynamics.

Numerous previous studies have shown the importance of distance-dependent delays in

networks of oscillators [28–33]. For example, time delays can destabilize synchrony in neuro-

nal networks, leading to travelling waves [29–33]. To reproduce synaptic and axonal conduc-

tion delays dependent on connection distance, we incorporated distance-dependent time

delays in our model as done in other studies [23–27, 34–37]. In the rodent brain, the conduc-

tion velocity ranges from values as low as 0.5 (m/s) to much higher speed around 10 (m/s)

depending on various factors such as axonal myelination [32, 38, 39]. Experimental studies

show that the propagation speed distributions peak in between 2-5 (m/s) [32, 39]. While time

delays are heterogeneous over different regions in the brain, we simplified the model by using

a fixed conduction speed at 3.5 (m/s) for the whole brain, which falls in the middle of the prop-

agation speed distribution peak. In Eq 1, the distance-dependent time delay between areas i
and j is denoted by τij, which is computed by dividing the Euclidean distance dij between

nodes i and j by the fixed conduction speed.

We investigated the dynamics of the data-driven network and the power-law generated net-

work using Eq 1, and measured the network coherence by calculating the “universal” order

parameter r, recently proposed in [40] as following:

r �
1

PN
i¼1

ki

XN

i;j¼1

AijhReðe
iðyi � yjÞÞit

¼
1

PN
i¼1

ki

XN

i;j¼1

Aijhcosðyi � yjÞit

ð2Þ

where ki ¼
PN

j¼1
Aij is the input strength of node i. Unlike the original order parameter

which was proposed by Kuramoto [41, 42] for all-to-all coupled phase oscillators (see Eq 6 in
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Methods), the universal order parameter [40] was developed to quantify coherence in more

general, weighted networks of oscillators. The universal order parameter accounts for the net-

work topology and its influence on the phase coherence. Therefore, we can compare network

coherence in topologically different weighted networks even when their total connections

strengths are not the same. Furthermore, the universal order parameter captures partially

phase-locked states accurately. To quantify different degrees of network coherence and to visu-

alize localized and global synchrony, we measured the universal order parameter, both for the

whole network of oscillators (Eq 7 in Methods) as well as for subnetworks of different spatial

scales (Eq 8 in Methods). To compute order parameters of subnetworks on the spatial scale d,

we measured the averaged phase difference for each node i, with all the other nodes that are

within the given spatial distance d from the node i. Thus computed averaged phase difference

for each node is weighted by the inverse of input strengths to the given node i provided by its

neighbors within the distance d from the node, and summed over all regions in the whole net-

work. By thus computing the order parameter for the subnetworks, we describe the order

parameter as a function of distance.

Obtaining an explicit, analytical relationship between the order parameter and generalized

network structures has been a challenging problem in studies of phase oscillators on complex

networks [43, 44]. While analytical expressions for the order parameter as a function of the

adjacency matrix have been derived in previous works, these mean-field approaches are based

on strong assumptions of a large network with sufficiently high average degree, valid only near

the onset of synchronization [41, 45–48]. Existing analytical approaches, therefore, are not

applicable to the complex mesoscopic brain network of a finite size. We thus address the rela-

tionship between the network coherence and the network structure by computing the order

parameter based on numerically obtained time series of the oscillators.

Phases were initialized randomly, and Eq 1 was integrated numerically using the Forward

Euler method, with a sufficiently small time step Δt = 10−4 (s) for 4 seconds (Nt = 40000 steps),

until a stationary state is reached. In our simulations, the time step size Δt = 10−4 (s) satisfies

the condition Dt � 0:01=max max ðk � AijÞ; 0:05m;
s2
n

2T ; 1
� �

, as in [37]. The data from the first

Nt/2 steps are discarded in measuring the order parameter. The order parameter, representing

network coherence, can be modulated by the global coupling coefficient k, the standard devia-

tion σd of the intrinsic frequency distribution, and the standard deviation σn in the additive

Gaussian white noise. In this paper, we computed the order parameter using Eq 8 in Methods

for varied global coupling coefficient k, with the standard deviation of the natural frequency

distribution fixed at σd = 0 (Hz) and the standard deviation of the Gaussian noise fixed at σn =

2 (rad). For each value of coupling coefficient k, we performed 10 independent runs, and plot-

ted the average and the standard deviation of the order parameter as a function of distance

between nodes (Fig 3B) as well as a function of global coupling coefficient k (Fig 3C). We also

show the order parameter as a function of the coupling coefficient k, with a nonzero standard

deviation in the natural frequency distribution in the Supporting Information S2(C) Fig. In

this figure, the order parameter was averaged over 100 repeats with σd = 0.2 (Hz) and σn = 2

(rad), to offset different effects of each configuataion of the intrinsic frequencies due to the

nonzero σd.
When the standard deviation of the white noise is held constant, increasing the coupling

coefficient k with fixed σd has qualitatively the same effect as decreasing σd with k fixed, as the

ratio of k/σd determines the network coherence. The same is true for decreasing the amount of

σn. We show that varying σn and σd produces the same qualitative results as with varying k in

the Supporting Information S2 Fig. When σn is varied, the intrinsic frequency distribution and

the coupling coefficient are held constant, at σd = 0 and k = 3, and the order parameter was

Synchronization of a mesoscopic whole-brain network
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averaged over 10 repeats. When σd is varied, the other two parameters are fixed at σn = 0 and

k = 2, and the order parameter was averaged over 100 repeats to account for the dependence

of the time series on different configurations of the intrinsic frequencies. By computing the

sensitivity of the network synchronizability on perturbation in each of these parameters—k,

σn, or σd, we show that the observed trend in the data-driven brain network and the power-law

approximated network is robust.

Sensitivity of the network coherence

In Fig 3A, we show the phase difference cos(θi − θj) for pairs of nodes (i,j) plotted against time

and distance between the nodes. Interestingly, for the same amount of change in coupling

coefficient Δk, the data-driven brain network switches between an asynchronous state and

near-global synchrony, while the power-law governed network fails to make such a drastic

change in synchronization state. This difference is manifested in the order parameter. Fig 3B

shows the universal order parameter (Eq 8) for subnetworks of different spatial ranges. When

k is small, both the data-driven brain network and the power-law approximated network have

overall low order parameters. In both cases, however, the order parameter is higher for small

Fig 3. Local and global synchronization of the data-driven brain network and the power-law network. (A) Phase differences cos(θi − θj) of pairs of

nodes (i,j) as a function of time (x-axis) and distance between nodes (y-axis) for the data-driven and power-law networks. For both networks, the

intrinsic frequencies of the oscillators were at 40 Hz (σd = 0) and the standard deviation of the Gaussian white noise was fixed at σn = 2. (B) Universal

order parameter r for subnetworks at different spatial scales, for the data-driven and the artificial power-law networks with different amounts of global

coupling coefficient k. Order parameter r is averaged over 10 simulations. (C) Universal order parameter (solid) and Kuramoto’s original order

parameter (dotted) for the whole networks of the data-driven connectivity (red) and the power-law distance-dependent connectivity (blue), as a

function of global coupling coefficient k. (D) Sensitivity of the order parameter as a function of the coupling coefficient k, for the data-driven

connectivity (red) and the power-law approximated connectivity (blue). Lines and shades correspond to the mean and the standard deviation over

multiple simulations.

https://doi.org/10.1371/journal.pcbi.1006978.g003
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spatial scales, indicating that there is some spatially localized coherence in the networks due

to the general trend of decreasing connection strength with distance between the connected

regions.

At a finer scale, we also observe a small amount of initial increase in the order parameter

for the shortest-range connections (110-346 μm) followed by a slow decrease in the order

parameter as a function of distance in the data-driven brain connectome. Such an initial

increase in the order parameter is not seen in the power-law estimated network. However, this

initial rise at the very small length-scale should not be over-interpreted, because the experi-

mental data are based on the mesoscopic measurements which are not accurate for distances

less than 300-500 μm. In the viral tracing experimental data, the average distance to the closest

injection is typically 500 μm at source level, which limits resolution [10, 22].

In the data-driven brain network, increasing the coupling coefficient k results in a transi-

tion from partial coherence to near-global synchrony, manifested by increased order parame-

ters across a range of spatial scales (Fig 3B, left column, Data). However, in the artificially

generated, strictly distance-dependent network, the same amount of change in global coupling

coefficient does not induce such a leap in the network coherence state as in the real brain net-

work (Fig 3B, right column, Power law).

Such trends can be also visualized in the order parameter for the whole network. The over-

all universal order parameter increases with global coupling coefficient in both the data-driven

and the power-law networks (Fig 3C). However, the change in order parameter is significantly

larger in the data-driven brain network. This trend appears in both the single hemisphere net-

work with only ipsilateral connections (Supporting Information S1 Fig) and the whole brain

network with both ipsilateral and contralateral connections (Fig 3C). For comparison, Kura-

moto’s original order parameter (Fig 3C, dotted) is also plotted. Because the original Kuramo-

to’s order parameter does not account for different connection strengths among different pairs

of nodes nor measure coherence scaled to the overall degree of the network, we see that the

Kuramoto order parameter is lower than the universal order parameter for the power-law net-

work. Nevertheless, for either type of the order parameter, we observe that the data-driven

brain network spans a larger range of coherence states than the power-law governed network.

These trends are more clearly portrayed by plotting the sensitivity of the order parameter

(Δr/Δk) as the coupling coefficient k is varied (Fig 3D). We observe that the sensitivity remains

relatively constant throughout the range of the coupling coefficient in the power-law approxi-

mated network. However, the sensitivity of synchronizability is considerably more variable in

the data-driven network, peaking around k = 2.5. As the coupling coefficient increases, the

sensitivity in synchronizability thus increases and then drops after reaching the maximum in

the data-driven network, while the power-law approximated network is marked by relatively

invariant, low sensitivity of the order parameter.

This result on order parameter can be manifested by a couple of simple measures we use

here. To compare the maximum sensitivity of the order parameter to changes in the global

coupling coefficient k (or any other parameters that modulate synchronizability, such as σn
and σd), we introduce a measure of the maximum sensitivity of synchronizability:

Gk ¼ max
k;kþDk

Dr
Dk

� �

: ð3Þ

For the power-law network, the averaged maximum sensitivity of the order parameter is

Γk = 0.1144 ± 0.0214. The maximum sensitivity of the order parameter is higher in the data-

driven mouse brain network, at Γk = 0.3172 ± 0.0829. The higher value of the sensitivity mea-

sure Γk for the data-driven brain network indicates that a small amount of change in the
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coupling coefficient can induce a significant change in the network’s coherence state, in partic-

ular, within the range of k where Δr/Δk is maximum.

To evaluate spatial dependence of the order parameter, we use another measure that quanti-

fies the difference between the order parameter for short-range subnetworks and the order

parameter for the whole network. This measure is defined as:

Gd ¼ rðd ¼ dshortestÞ � rðd ¼ dlongestÞ
D E

k
; ð4Þ

where dshortest is the distance less than 570 (μm) that generates the highest order parameter

value r(d), and dlongest is 11955 (μm) which is the longest connection length in the mouse

whole-brain network. h�ik denotes averaging across varied coupling coefficient k, and r(d) is

computed as defined in Eq 8. For the data-driven brain network and the power-law-driven

network, Γd = 0.1851 ± 0.0706 and Γd = 0.5383 ± 0.0234, respectively. The larger Γd of the

power-law network depicts a larger drop in coherence as the region of interest expands

from the spatial vicinity to the whole network in the power-law network. In other words, the

power-law network exhibits more localized coherence throughout a range of varied coupling

coefficients.

We also confirmed that such difference between the data-driven brain network and the

strictly distance-dependent, power-law network remains unchanged when the natural fre-

quencies of the nodes are moved to 8 Hz and 20 Hz, which are in the ranges of theta (6-12 Hz)

and beta (10-30 Hz) oscillations, respectively. Like gamma oscillations, theta and beta oscilla-

tions are frequently observed in the large-scale brain dynamics. While gamma oscillations

are thought to be linked to cognitive processing and sensing, theta rhythms are observed in

hippocampal LFP and thus believed to underlie memory formation. On the other hand, beta

rhythms have been associated with movement preparation and motor coordination [23, 49,

50]. As with the natural frequencies at 40 Hz, simulations with intrinsic frequencies at 20 Hz

and 8 Hz also predict that the synchronizability is more sensitive to changes in global coupling

coefficient in the data-driven brain network than in the power-law approximated network

(Supporting Information S3 Fig). With the realistic propagation speed 3.5 (m/s) and the lon-

gest connection at 11955 (μm) in the mouse whole-brain, the time delays in our model are

quite small, and thus different intrinsic frequencies within the biologically realistic range

induce qualitatively the same trend in synchronizability. It has been shown in previous

studies that when the time delays multiplied by the intrinsic frequencies are sufficiently small

compared to the coupling strengths in phase oscillators, the delay enters as a simple phase-lag

[51, 52].

Our results indicate that in the real brain network, a small change in the global coupling

coefficient induces a rapid transition between partial network synchrony and a more globally

synchronized state, while in the network with connections strictly following a power-law

dependence on distance, such a rapid transition to synchronization is not observed. We get

qualitatively the same results when we vary parameters other than the coupling coefficient k,

namely, σd and σn, to modulate the network synchronizability. The order parameter is more

sensitive to changes in the dispersion of intrinsic frequencies (σd) and the standard deviation

in the additive white noise (σn) in the data-driven brain network than in the power-law gov-

erned network as well (Supporting Information S2 Fig). Therefore, the residual connection

strengths that are not explained by the simple spatial rule may have some computational signif-

icance, enabling even small perturbations in cognitive or behavioral states to induce a transi-

tion to synchronization.

Synchronization of a mesoscopic whole-brain network
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Effects of strong long-range connections

We next examined what aspects of the residual connection strengths confer the network’s abil-

ity to span a wide range of coherence states. In previous studies on coupled oscillators, it has

been found that even a small fraction of shortcuts in a small-world network significantly

improves synchronization of the network [43, 53]. Motivated by this, we hypothesized that

positive residual connections, namely, strong connections between distal brain regions,

underlie the rapid transition in network synchronies. We tested this hypothesis by re-intro-

ducing small fractions of the positive residuals to the power-law distance-dependent network.

As manifested in Fig 4A, adding just a small fraction (top 20 percentile) of the strongest posi-

tive residuals to the power-law generated network recovers the steep increase in order parame-

ter with growing coupling coefficient (Fig 4, purple). As the fraction of positive residuals

included in addition to the power-law network increases, the sensitivity of the order parameter

as a function of the coupling coefficient resembles more of that of the real brain network

(Fig 4B). This trend is also depicted by the maximum sensitivity measure which is at Γk =

0.1423 ± 0.0036, Γk = 0.1617 ± 0.1266, and Γk = 0.2785 ± 0.0506, respectively for top 5, 20, 40%

of the positive residuals added to the power-law network, on the same edges as in the original

data-driven whole-brain network.

Does the location of these strong connections have any significance in emergence of the

rapid phase transition? To test whether the sensitivity of the network coherence to coupling

coefficient can be recovered by simply adding the positive residuals anywhere to increase the

overall connection strength of the power-law network, we studied the dynamics of the network

constructed by relocating the positive residuals. We generated three networks with positive

residuals relocated. In one of them, the positive residuals above the power-law relationship

were positioned at random locations on the network (shuffled). In the other two, the positive

residuals were preferentially relocated to the shortest 0.2% or to the longest 0.2% connections

of the total edges. For the proximal-relocated network, the positive residual connections were

added to connections between spatially close regions, by distributing the total positive residual

connection strength among the connections between nodes within 570μm. For the distal-relo-

cated network, the positive residuals were added to the connections between spatially distal

Fig 4. Order parameter r and its sensitivity for the power-law distance-dependent network with a fraction of the residual connections added. (A)

Whole network order parameter r and (B) the sensitivity of the order parameter Δr/Δk, as a function of global coupling coefficient k for networks

constructed by adding different percentiles of positive residual connections to the power-law approximated network.

https://doi.org/10.1371/journal.pcbi.1006978.g004
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regions, by distributing the total positive residual connection strength among the edges longer

than 10500μm. The resulting networks thus maintain the total connection strengths of the real

brain network, but have altered network structures.

When the locations of the positive residuals are randomized and thus there are strong con-

nection weights across multiple spatial scales, the dependence of network synchronization on

k remains similar to that of the data-driven network, as portrayed by the order parameter in

Fig 5A, in gray and Fig 5B, left. In other words, although the precise network structure is dif-

ferent from that of the data-driven network, the network with shuffled residuals maintains its

sensitivity to the global coupling coefficient, rapidly changing network coherence states. How-

ever, the spatial structure of the order parameter is dependent on the precise locations of these

positive residuals. In the network with positive residuals randomly relocated, there is a steeper

decrease in order parameter with distance (Fig 5B, left), compared to the data-driven brain

network (Fig 3B, left). This trend is depicted by the higher spatial coherence measure, Γd =

0.4091 ± 0.00017 for the network with randomized positive residuals, compared to the data-

driven brain network (Γd = 0.1851 ± 0.0706).

When the positive residuals are relocated to proximal connections, the network coherence

is no longer as sensitive to small changes in the global coupling coefficient as in the whole-

Fig 5. Synchronization measured when the network structure is altered but the total connection strength remains the same as the data-driven

network. (A) Whole network order parameter r as a function of the global coupling coefficient k, for the networks generated by adding the residual

connection weights to random locations (gray), by relocating positive residuals (averaged) to connections between spatially close regions (< 570μm)

(black dotted), and by placing positive residuals on connections between distal regions (> 10500μm) (black solid). The order parameter for the data-

driven brain network (red) is shown for comparison. (B) Order parameter as a function of the spatial scale of subnetworks, for the networks

constructed by shuffling locations of residual connections (left, correspond to gray in panel A), by relocating positive residuals to nearby connections

(middle, correspond to dotted black in panel A), and by relocating positive residuals to long-distance connections (right, correspond to black solid in

panel A). (C) Order parameter r as a function of coupling coefficient k for networks constructed by adding the positive residual strengths to the longest

1-90% of edges (> 9404, 8830, 8470, 8175, 7946, 7168, 6265, 5626, 5063, 4521, 3992, 3455, 2867, 2147μm).

https://doi.org/10.1371/journal.pcbi.1006978.g005
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brain network (Fig 5A, dotted black; B, middle), in spite of the unaltered total connection

strengths. This trend is robustly maintained when the standard deviation in the natural fre-

quency distribution is varied instead of the global coupling coefficient (Supporting Informa-

tion S4 Fig). Similarly, when the positive residuals are moved to distal connections, the

network coherence loses sensitivity as well (Fig 5A, solid black; B, right). Unlike the network

with randomly relocated residuals, the networks with positive residuals relocated only to prox-

imal or distal connections lack strong connections distributed across a range of spatial scales.

Thus, connections that are stronger than predicted by the distance-dependence should be

spread over varied lengths of edges, for the network to switch between localized and global

coherence states with a small change in the global coupling coefficient.

In addition, we observe that when positive residuals are relocated to proximal connections,

the overall order parameters across the spatial scales are higher (Fig 5B, middle), compared

to the network constructed by placing positive residuals to distal connections (Fig 5B, right).

This effect arises from the definition of the universal order parameter (Eqs 7 and 8), where

each of the time-averaged phase difference hcos(θi − θj)it is weighted by the connection

strength between the pair of oscillators Aij. When positive residuals are placed on proximal

connections, the influence of the phase differences between nearby nodes, which increases the

overall network order parameter, is emphasized more by larger connection strengths Aij. On

the other hand, when the positive residuals are relocated to distal connections, although distal

nodes are now more strongly coupled than before, the phase differences between distal nodes

are still quite large. Therefore, in this case, the large phase differences between distal nodes

which lower the overall order parameter, are strongly weighted by Aij, and thus, the overall

network order parameters are maintained at low values. We also note that the order parameter

rapidly increases at large distances in the power-law network with the residuals preferentially

added to the longest edges (Fig 5B, right). This rapid increase stems from the relatively high

values of the connections strengths of these longest edges (Aij) which induce large values of

hcos(θi − θj)it between distal regions i and j. Therefore, the order parameters at the large spatial

scales are increased by large values of Aijhcos(θi − θj)it terms.

To further examine the relationship between the spatial spread of the strong connections

and the sensitivity of synchronizability, we measured the order parameter in networks gener-

ated from the power-law approximation by placing the positive residual strengths to different

fractions of the longest edges. In Fig 5C, we show the order parameter as a function of the cou-

pling coefficient k when positive residuals are preferentially added back on edges that have

lengths greater than various cutoff values. As the spatial scale over which the residuals are

added widens, the sensitivity of the order parameter gradually increases. Notably, the sensitiv-

ity and the growth of the order parameter become comparable to those of the data-driven

brain network when the percentile of the longest edges with added positive residuals reaches

5 − 10% of the total connections. This indicates that while it is important to have a spread of

strong connections above the power-law prediction over multiple spatial scales, the spread

does not have to extend all the way to the shortest edges of the network in order to generate

high sensitivity of the order parameter observed in the data-driven brain network.

Our results show that the location of strong connections above the power-law dependence

on distance is critical for generating a steep change in the order parameter. While the precise

positions of the strong connections do not have to match those of the data-driven network to

produce highly sensitive order parameter to the coupling coefficient, there should be a suffi-

cient amount of strong connections across a range of spatial scales. Precise locations of the

strong residuals, however, determine the order parameter’s dependence on the spatial scale,

modulating spatial coherence patterns. In sum, the spatial structure of the network connectiv-

ity plays a key role in maintaining the brain’s ability to change its computational states with
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small perturbations, and such sensitivity cannot be achieved by simply matching the total net-

work connection strengths. The structure does not have to precisely match that of the real

brain network to maintain the high sensitivity. What is critical to maintain, rather, is some

connections stronger than the simple distance-dependence distributed over the network.

However, the precise connectivity structure is important for generating specific spatial coher-

ence patterns in the network dynamics.

Discussion

In this paper, we studied synchronization of a spatially constrained model of a weighted

whole-brain network at the mesoscale, constructed from viral tracing experiments. The impor-

tance of linking connectivity structure and large-scale brain dynamics have been noted in pre-

vious studies [54–56]. In particular, the heterogeneity in structural connectivity has been

proposed as a key underlying mechanism for certain brain network dynamic features such

as functional hubs in resting state dynamics [56]. However, additional complexities in the

anatomically precise, weighted and directed whole-brain network that are not captured by

spatially-defined connectivity have been often overlooked. In this work, we propose possible

computational roles of these additional complexities by studying their effects on network syn-

chronizability. We found that the connectivity has a significant spatial dependence, with the

connection strength decreasing with distance between the regions following a power law.

However, by studying the network dynamics of phase oscillators, we found that a network

generated by the simple spatial constraints alone cannot reproduce the full computational

versatility of the mesoscopic whole-brain network. Rather, we need to consider additional

complexities of the network structure to capture their possibly significant roles in neural com-

putation. Specifically, we found that residual connections not explained by the power-law

dependence on distance have a long positive tail, corresponding to strong connections

between distal brain regions. By computing the recently proposed universal order parameter,

we showed that these strong distal connections underlie sensitive dependence of network syn-

chrony on perturbations in coupling coefficient (or intrinsic frequency distribution/noise),

potentially responsible for the brain’s exceptional ability to change its computational states

depending on stimulus and behavioral context. Furthermore, our analyses on networks con-

structed by adding a small fraction of strong positive residuals to the spatially-constrained con-

nectivity, as well as networks with the positive residuals relocated to random, proximal, or

distal connections, reveal the key element underlying the rapid switch between global and par-

tial synchronies—strong connections distributed over varied spatial distances. In other words,

the network’s sensitivity to perturbation cannot be reproduced by simply manipulating the

overall connection strengths, as locations of positive residual connections should be taken into

consideration. A spatially-constrained model plus an idiosyncratic sparse matrix which fea-

tures strong connections between distal regions provides a parsimonious representation of the

measured connectivity.

We hypothesize that the sharp transition in synchronization in the data-driven network,

which is absent in the spatially-constrained power-law model, may underlie the brain’s ability

to rapidly switch computational states [57]. Such a feature is known to be impaired in the

brain under pathological conditions such as Alzheimer’s disease, suggested by studies showing

more modular structures and decreased global efficiency in brain connectivity constructed

from EEG, MEG, fMRI, and diffusion tensor tractography [58–61]. Moreover, there is an

experimental evidence for disruption of long-range connections in Alzheimer brain network

[60], in agreement with our model results. Therefore, the strictly distance-dependent power-

law network which maintains localized synchronization across a range of coupling coefficients

Synchronization of a mesoscopic whole-brain network
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may explain aberrant network dynamics and computational impairments in Alzheimer brains.

A more detailed future study on genetically-controlled mouse models of Alzheimer’s disease

will shed light on the possible link between changes in structural connectivity and impairment

in rapid phase transitions of the whole-brain network.

The increased sensitivity of the network synchronizability induced by strong long-range

connections further implicates a tradeoff between cost-efficiency and high functional capacity

in the brain network. Such tradeoff between wiring cost and computational capacity has been

suggested as a network-generating principle in a number of previous studies [18, 62–67]. The

power-law dependence of connection strengths on inter-regional distance reflects spatial and

energetic constraints in the brain network. Indeed, if the brain connectivity is designed to

exclusively optimize the wiring cost, we will observe strong connections only between proxi-

mal regions. Yet, we observe some idiosyncratic, strong long-range connections which are

expensive in the mouse brain connectome. By showing that these strong distal connections

may serve to promote rapid transitions between network synchronization states and possibly,

computational states, our work points to a possible functional role afforded by the presence of

the long-range connections despite their high metabolic costs.

In this paper, we infer the dynamics of the mesoscopic brain network by constructing a net-

work of phase oscillators with the coupling strengths determined by the structural connectivity

obtained by viral tracing experiments. Thus, while the structural connectivity is based on

actual data, the dynamics we conferred on the network are arbitrary. Building a more realistic,

data-driven dynamic network based on imaging experiments such as calcium-imaging, ECoG,

LFP, and MEG will be a crucial future extension of our study of connecting the network struc-

tures to the network dynamics. Furthermore, for future studies, more biophysically-motivated

neural mass models [68] would be necessary to capture realistic dynamics of the brain network

that are not predicted by simple phase oscillator models. However, our simulations with phase

oscillators, despite their generality, still make valuable predictions on computational roles of

spatial structures of the mesoscopic whole-brain network, underlining the importance of spa-

tially distributed, strong distal connections on the network dynamics.

Methods

Mouse whole-brain connectivity data

The mesoscopic mouse whole-brain connectivity was obtained from the Allen Mouse Brain

Connectivity Atlas (http://connectivity.brain-map.org/), constructed based on anterograde

viral tracing experiments in wild type C7BL/6 mice [10]. Based on the experimental data, a

recently developed interpolative mapping algorithm was used to construct a model of whole

brain connectivity at the 100 μm-voxel scale [22]. The voxel-based connection strengths were

averaged over each brain region to produce a connectivity matrix with 244 brain regions

per hemisphere as nodes, larger than the adjacency matrix of 213 pairs of nodes previously

obtained from the linear model in [10]. For elements of the connectivity matrix, we use the

normalized projection density, defined as the connection strength between two regions divided

by the volume of the source and target regions. In order to account for the size of the source

region, we also studied the relationship between the connection strength divided only by the

size of the target region and the distance between two regions. In this case, however, the fit to

either a power law or an exponential function was not very good which is not surprising given

that the connection strengths that are not fully normalized with respect to the size of the source

and the target is not an intrinsic quantity. For more details on the viral tracing experiments

and the interpolative algorithm used to construct the connectivity matrix, see [10] and [22].

The connectivity matrix was first normalized to have values between 0 and 1. For the ipsilateral
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connection matrix, the diagonal entries were set to zeros removing self-connectivity, as done

in [4, 20].

Dependence of connection strengths on interregional distance

We fitted connection strengths as a function of interregional distance, where the distance

between each pair of nodes was determined by computing the Euclidean distance in 3-dimen-

sional coordinates between the centroids of the brain regions. Specifically, power-law func-

tions for relationships between connection strength and interregional distance were fitted by

using least squares on the log scale. For each of the ipsilateral and contralateral connectivity

matrices, we found α and β by fitting the data to ~Aij ¼ a � d
� b
ij þ �ij, where ~Aij denotes the con-

nection strength from node j to node i, dij indicates the distance between nodes i and j, and �ij

is the residual error. We obtained α = 6.92 × 106 and β = 2.886 for ipsilateral connectivity, and

α = 6.71 × 105 and β = 2.685 for contralateral connectivity (Fig 1B). In agreement with previous

studies on Allen Mouse Brain Connectivity data [18, 22], we found that the power law explains

the relationship slightly better than the exponential dependence (ipsilateral r-square: 0.264 vs

0.257, rmse: 1.089 vs 1.095; contralateral r-square: 0.167 vs 0.135, rmse: 1.124 vs 1.146).

We also investigated the power-law constrained network where the relationship between

connection strength and interregional distance was found on the real scale, using nonlinear

least squares (Levenberg-Marquardt algorithm), which has a poorer explanatory power than

linear least squares on the log-scale (r-square: 0.264 vs 0.157 (ipsilateral) / 0.167 vs 0.131 (con-

tralateral)). While this method generated a different power-law function from the one found

by least squares on the log-log scale, the dynamics on the power-law network obtained by

using nonlinear least squares maintained the same core characteristics, distinct from the data-

driven brain network– the order parameter is less sensitive to changes in the global coupling

coefficient.

Order parameter

In this section, we describe order parameters that were proposed previously [41, 42, 45, 46],

demonstrating advantages of the recently developed universal order parameter [40] in our

analysis.

In order to quantify network coherence in the original model of phase oscillators with all-

to-all connectivity, Kuramoto introduced the complex order parameter [41, 42],

rðtÞeicðtÞ �
1

N

XN

i¼1

eiyi ; ð5Þ

where ψ(t) gives the average phase of all oscillators and r(t) describes the degree of phase

coherence at time t. The overall phase coherence is measured by the absolute value of the com-

plex order parameter averaged over time. We denote this value rKuramoto, as the measure of the

averaged phase differences of all pairs of oscillators:

r2
Kuramoto �

D
jrðtÞeicðtÞj2

E

t

¼
D 1

N2

XN

i;j¼1

eiðyi� yjÞ
E

t

¼
1

N2

XN

i;j¼1

h cos ðyi � yjÞit:

ð6Þ
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< . . .>t denotes the average over time. However, this unweighted order parameter is not a

good measure when comparing collective synchronizations in two networks described by dif-

ferent connectivity matrices, as it does not capture the topology of the networks.

To extend the use of order parameter to more general, weighted networks of oscillators,

Restrepo et al [45, 46] proposed an order parameter which is defined as the average of local

order parameters which measure the coherence of the inputs to each node. This parameter,

however, does not capture partially phase-locked states well. Recently, Schroeder et al [40] pro-

posed a new, “universal order parameter” to accurately measure phase coherence in weighted

and directed networks of arbitrary topology, which overcomes the shortcomings of the previ-

ous order parameters. This newly proposed universal order parameter is defined as:

r �
1

PN
i¼1

ki

XN

i;j¼1

AijhRe eiðyi � yjÞ
� �

it

¼
1

PN
i¼1

ki

XN

i;j¼1

Aijh cos ðyi � yjÞit

ð7Þ

where ki ¼
PN

j¼1
Aij is the input strength of node i. Note that in unweighted binary networks,

this measure represents in-degree [4]. This order parameter accounts for the network topology

and its influence on the phase coherence, enabling a fair comparison between two topologically

different weighted networks even when their total connection strengths are not matched. As

this universal order parameter accurately captures partial synchrony within the network, dif-

ferent degrees of synchronization can be measured by order parameter of the whole network.

Furthermore, degree of coherence as a function of spatial extent can be obtained by com-

puting the order parameter for subnetworks of different spatial scales. The order parameter r
can be described as a function of distance d:

rðdÞ �
1

PN
i¼1

ki

XN

i¼1

X

j2gði;dÞ

AijhRe eiðyi � yjÞ
� �

it

¼
1

PN
i¼1

ki

XN

i¼1

X

j2gði;dÞ

Aijh cos ðyi � yjÞit

ð8Þ

where γ(i, d) indicates the set of nodes within spatial distance d from node i. ki = ∑j2γ(i,d) Aij is

the total connection strength of node i when the subnetwork composed of nodes within dis-

tance d from node i is considered. The order parameter of the whole network is obtained when

d = size of the network (11752μm for ipsilateral and 11955μm for contralateral connectivity).

All of the MATLAB code used to numerically compute time-series data of coupled oscil-

lators and the order parameters on the mouse whole-brain network from [10, 22] and the

power-law approximated network are available at https://github.com/AllenInstitute/

Choi2019_ConnectomeSynchrony.

Supporting information

S1 Fig. Network synchronizability in the single hemisphere network with ipsilateral con-

nections only. Universal order parameter over a range of global coupling coefficient k, for the

data-driven mouse brain network (red) and the power-law estimated network (blue) of a single

hemisphere with ipsilateral connectivity.

(TIF)
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S2 Fig. Network synchronizability with varied σn and σd. The order parameters for the data-

driven mouse brain network (red) and the power-law constrained network (blue) are plotted

as a function of either (A) the dispersion in the intrinsic frequency distribution (σd) or (B) the

standard deviation of the additive white noise (σn). The white noise is fixed at 0 (σn = 0) while

the frequency dispersion (σd) is varied. Homogeneous frequencies across the network are

assumed (σd = 0) while the amount of the white noise (σn) is varied. (C) The order parameters

for the data-driven network (red) and the power-law constrained network (blue) as a function

of the coupling coefficient k as in Fig 3(C) in the main text, with heterogeneous intrinsic fre-

quencies across the network (σd = 0.2) and an additive white noise (σn = 2). The order parame-

ters are averaged over 100 repeats of simulations.

(TIF)

S3 Fig. Network synchronizability with intrinsic frequency values in theta- and beta-fre-

quency ranges. The order parameters for the data-driven mouse brain network (red) and the

power-law constrained network (blue) are plotted for varied coupling coefficient k, when the

intrinsic frequencies of the networks are in the frequency range of either theta-oscillations

(ωi = 8(Hz) for all i; left) or beta-oscillations (ωi = 20(Hz) for all i; right).

(TIF)

S4 Fig. Synchronization when the network structure is altered, with the dispersion in natu-

ral frequncies varied. The same simulations as with Fig 5 in the main text, but σd is varied

while σn = 0 and k = 2, with no time delays. (A) The order parameters are shown for the net-

work with the residual connections randomly relocated (gray), the network with the positive

residuals placed on shortest-edges (< 500μm, green), and the data-driven brain network (red)

(B) Order parameter as a function of distance, for the network with randomly placed residuals

(left) and the network with positive residuals on poximal connection (right).

(TIF)
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