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Abstract: Due to non-linear interactions, the effects of contaminant mixtures on aquatic ecosystems
are difficult to assess, especially under temperature rise that will likely exacerbate the complexity
of the responses. Yet, under the current climatic crisis, assessing the effects of water contaminants
and temperature is paramount to understanding the biological impacts of mixtures of stressors on
aquatic ecosystems. Here, we use an ecosystem model followed by global sensitivity analysis (GSA)
to prioritize the effects of four single emerging contaminants (ECs) and their mixture, combined with
two temperature rise scenarios, on the biomass production of a NE Atlantic estuary. Scenarios ran
for 10 years with a time-step of 0.1 days. The results indicate that macroinvertebrate biomass was
significantly explained by the effect of each single EC and by their mixture but not by temperature.
Globally, the most adverse effects were induced by two ECs and by the mixture of the four ECs,
although the sensitivity of macroinvertebrates to the tested scenarios differed. Overall, the present
approach is useful to prioritize the effects of stressors and assess the sensitivity of the different
trophic groups within food webs, which may be of relevance to support decision making linked to
the sustainable management of estuaries and other aquatic systems.

Keywords: AQUATOX; ecosystem model; standard regression coefficients; general linear model;
endocrine disrupting chemicals; BPA; Scrobicularia plana; Carcinus maenas

1. Introduction

Aquatic ecosystems are under the influence of complex mixtures of contaminants
resulting mostly from human activities [1]. River basins and estuaries in particular are
largely affected by contaminant mixtures, as they receive numerous discharges from sewage
treatment plants, agriculture, industry and urbanization along their catchment areas on
their seaward transport [2–4]. Although baseline studies reporting that concentrations of
metals, dioxins, furans [5] and emerging contaminants such as pharmaceuticals, personal
care products and industrial compounds are abundant [6–9], works referring to the impacts
of mixtures of contaminants in natural populations are scarce (but see [10,11]). This is due
to the difficulties linked to disentangling the effects of environmental factors and those
from contaminants, performing rigorous long-term experiments and the costs associated
with time and money [12–15]. Nonetheless, categorizing interactions among factors and
prioritizing stressors is important to guide decision making and to undertake cost-effective
solutions regarding the mitigation and management of coastal systems [16]. Additionally,
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climate change-related oscillations will sum up this complexity as suggested by both
experimental and numerical works [17–19].

Ecosystem models are tools that incorporate physical, biogeochemical and physi-
ological processes acting on ecosystems, accounting for oscillations of different factors
and projecting future variations [20]. Models of estuarine food webs have been used to
understand the effects of different events occurring within the same estuary at different
timing, disturbance events (eutrophication and an extreme flood) and the undertaking of
mitigation measures on benthic food web properties [21]. The results indicate that dis-
tinct disturbances have different impacts on the food web structure and that due to direct
and indirect interactions between the all-interacting processes, whole system approaches
are required.

Furthermore, due to their integrative properties and dynamic nature, models can
also provide evidence for which stressor is dominant in a system and unveil the type of
interactions among different stressors [18,22].

However, there is still a substantial lack of multiple stressor and multi-pollutant mod-
els [1] capable of accounting for various pressures interactions and projecting the system
variations in the long-term [15]. Nonetheless, these tools are paramount to improve knowl-
edge on environmental risk assessment (ERA) associated with emerging contaminants,
even when set at concentrations ≤ Environmental Quality Standards (EQS), and thus to
sustainably manage natural systems under a climate change context [23].

The aim of this work was to use an ecosystem model, followed by a global sen-
sitivity analysis (GSA), to simulate and disentangle the single and combined effects
of four ECs (Bisphenol A—BPA; 4-Nonylphenol—4-NP; 17α-etinylestradiol—EE2; and
Diclofenac—DCF) and temperature rise on the biomass production of four key-species
from the benthic macroinvertebrate communities of an Atlantic temperate estuary (Minho
estuary, NW coast of Portugal).

EC concentrations used in the simulated scenarios were the annual average Envi-
ronmental Quality Standards (AA-EQS) according to the EU Directive 2013/39/EU [24].
Temperature rise scenarios were set accordingly to the moderate RCP4.5 scenario and
the business-as-usual RCP8.5 scenario [25]. Subsequently, GSA [26,27] was performed to
disentangle stressors’ interactions, prioritize stressor effects on biota and detect species
sensitivity to the studied stressors.

We hypothesized that single ECs and their mixture at AA-EQS concentrations would
not have a negative effect on macroinvertebrates, whereas the combination of ECs with
temperature rise would negatively affect macroinvertebrates due to temperature-induced
alterations in macroinvertebrate physiological rates and contaminant toxicity parameters.

2. Materials and Methods
2.1. Model Development

Due to the ability of combining environmental fate and the effects of conventional
pollutants (e.g., nutrients) with those of toxic chemicals in aquatic systems, while describing
food web dynamics, the ecological risk assessment model AQUATOX (Release 3.2) [28,29]
was used to implement the Minho estuary model in a set of iterative steps [22].

Briefly, the model accounts for a southern Europe estuary (Minho estuary, NW coast
of Portugal: 41◦53′84′′ N, 08◦50′44′′ W) with a focus on the benthic macroinvertebrate
food web, which is dominated by the clam Scrobicularia plana, followed by the polychaete
Hediste diversicolor, the gastropod Hydrobia ulvae and the crab Carcinus maenas. The isopod
Cyathura carinata and the amphipod Corophium sp. are also present on the sediments from
the Minho estuary but in lower densities compared to the former species [30]. Primary
producers (phytoplankton, periphyton and macroalgae), copepods and fish are also compo-
nents of the Minho estuarine food web. According to AQUATOX, detritus were accounted
by refractory and labile detritus in sediment bed, and refractory and labile suspended and
dissolved detritus (Figure 1).
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Figure 1. Simplified conceptual diagram of the Minho estuary model (NW coast of Portu-
gal) used to check the effects of temperature rise, Bisphenol-A, 4-Nonlyphenol, Diclofenac
and 17α-etynilestradiol on macroinvertebrates communities’ composition and production.
N-NH4—Ammonia; N-NO3—Nitrate; P-PO4—Phosphate; DO—Dissolved Oxygen; CO2—Carbon
Dioxide; and TSS—Total Suspended Solids. Black frames and arrows refer to primary producers. Yel-
low frames and arrows refer to consumers. White frames and arrows refer to sediment compartments.
Upper larger white arrows refer to the effects of forcing functions in the system. The contributions of
trophic groups to sediment compartments are not shown.

Information regarding other trophic groups can be found in [22,30]. Monthly values
of dissolved oxygen, salinity, temperature and pH were available for the study site at the
same sampling dates as biotic data [30]. Dissolved nutrients assumed constant loading
values based on samples collected at the downstream area of the Minho estuary [31].
Average values of light (625 Ly d−1) and wind (2.2 ms−1) were according to data obtained
at the study site (see [22]). The upstream inflow of water (185.75 m3s−1) was set to the
average value measured at the Minho River during the sampling period (obtained from
Confederacion Hidrográfica del Miño-Sil—HMS).

Model calibration was conducted until a satisfying fitting level between the set of
observed data and simulated values was obtained, which was evaluated by the root
mean square error (RMSE) estimation. After testing the model for long-term stability and
sensitivity analysis, the Minho ecosystem model was considered valid to perform scenario
simulations (see [22] for details).

In the present work, we will focus on the predicted biomass variations of S. plana,
H. diversicolor, H. ulvae and C. maenas. In addition to being key-species from the macrofaunal
communities of the Minho estuary [30], these species are also widely distributed on the
mudflats of other NE Atlantic estuaries, where they can attain high densities [32–35] and
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play important roles in the energy transfer from lower trophic levels (microphytobenthos,
detritus) to top predators (birds and fishes) [33,36–38].

2.2. ECs Brief Description and Selection

Due to its persistent and increasing use, the emerging and priority endocrine disrupt-
ing chemicals BPA, 4-NP, EE2 [39–41] and the pharmaceutical DCF [24] were included in
the model.

BPA is a synthetic phenol extensively used in food packaging materials, dental sealants,
medical devices and other human-consumption products [42]. Consequently, exposure to
BPA can be ubiquitous via ingestion, inhalation and dermal contact. In the last decades,
numerous studies have linked BPA to diseases such as cancer, diabetes, obesity and various
disorders in the reproductive, neuronal, immune and cardiovascular systems [43–45].
Nowadays, manufacturers are abandoning BPA-based consumer plastics to use several
“BPA-free” alternatives, such as Bisphenol S and Bisphenol P. However, BPA is still found in
relatively high concentrations in rivers, lakes and estuaries worldwide [46]. Experimental
evidence suggests that BPA properties (e.g., leaching) can change with temperature [42].
4-NP, the degradation product of nonionic surfactants alkylphenol polyethoxylates, largely
used as plasticizers in the manufacture of textiles, paper and agricultural chemical products,
tends to accumulate in compartments with high organic content, such as sewage sludge and
river sediments [47–49]. Reported adverse effects in aquatic organisms include impairments
in the nervous system, reproduction and development processes [50–52]. In fact, due to their
confirmed capacity to disrupt the endocrine system, NP and its ethoxylates were designated
as priority hazardous substances in the Water Framework Directive and are currently under
regulation [39,40]. EE2 is included in the surface water Watch List (WL) under the Water
Framework Directive (WFD) for Union-wide monitoring [41]. EE2 is ranked 14th among
the top 200 prescribed pharmaceuticals used as a constituent of oral contraceptives, in
hormonal replacement therapy to treat menopausal and post-menopausal disorders, in
the treatment of female hypogonadism, as a palliative treatment in malignant neoplasm of
breast and prostate and in Turner’s syndrome [53,54]. In addition to its continuous release,
EE2 is resistant to biodegradation processes due to its physical-chemical properties [55],
thus posing several threats to aquatic environments. Actually, EE2 has been found to cause
several disorders and modulate or disrupt developmental and reproductive processes of
aquatic organisms, from algae to invertebrates, amphibians and fish [56–61]. DCF is a
widely used human and veterinary pharmaceutical prescribed to reduce inflammation and
control pain and is reported to be very persistent in aquatic environments [62,63]. There is a
consensus that exposure to DCF can impair renal functions in vertebrates [62,63]. Although
toxicity studies of DCF in invertebrates are scarce, the limited data suggest that some taxa
are sensitive to DCF at low concentrations (µgL−1) [64,65].

2.3. Including ECs, LC50 and EC50 in the Minho Ecosystem Model

Given the specific parameters of a considered chemical (e.g., dissociation constant,
Henry’s law constant, octanol-water partition coefficient), AQUATOX simulates the par-
titioning of a chemical between water, sediment and biota, accounting for the chemical’s
microbial degradation, biotransformation, photolysis, hydrolysis and volatilization [29].
The ecotoxicology submodel embedded in AQUATOX simulates both lethal and sublethal
acute toxic effects of chemicals in food-web organisms, as long as the user supplies the
specific LC50 and EC50 values for the studied toxic chemicals. Then, a sequence of compu-
tations estimates the biomass of a given organism being lost through lethal toxicity, as well
as factors that relate sublethal toxicities to the lethal toxicity [29].

In the present study, exhaustive literature reviews regarding the chemical properties of
the considered ECs, the LC50 and EC50 values for the trophic groups included in the Minho
food web were conducted, followed by professional scrutiny prior to incorporation in the
Minho ecosystem model (Tables S1–S4). Some assumption had to be made based on the
following criteria: for missing LC50 values, AQUATOX regressions were used; for missing
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EC50 values, it was assumed that EC10/NOEC ≈ 1 based on [66], thus, EC50 = EC10 × 4
or EC50 = NOEC × 4 and LOEC = NOEC × 2. NOEC stands for No Observed Effect
Concentration and LOEC for Lowest Observed Effect Concentration.

2.4. Single- and Multiple-Stressors Simulated Scenarios

A total of 17 scenarios were run for ≈10 years (4020 days) with a time step of 0.1 day.
EC concentrations were set as the annual average Environmental Quality Standards
(AA-EQS) according to EU Directives (Table 1), and EC inflow loadings were constant
throughout the simulation period. Based on IPCC predictions, average increases of 1.8 ◦C
and 3.7 ◦C are expected in the RCP4.5 and the RCP8.5 scenarios, respectively [25], which
were added to the observed temperature values of the control run and designated as RCP4.5
and RCP8.5 scenarios. This information is resumed in Table 1.

Table 1. Details of the simulated scenarios: Scenario name, contaminant added to simulation, contam-
inant concentration during simulation, temperature increase added to simulation, notes and literature
references. RCP—Relative Concentration Pathway (temperature increase); AA-EQS—annual average
Environmental Quality Standards concentration. - Not Applicable.

Scenario
Name Contaminant Concentration

(µgL−1)
Temperature
Increase (◦C) Note Reference

RCP4.5 Without any EC - +1.8 - [25]

RCP8.5 Without any EC - +3.7 - [25]

4-NP 4-Nonylphenol 0.3 - AA-EQS [39,40]

4-NP-RCP4.5 4-Nonylphenol 0.3 +1.8 AA-EQS [39,40]

4-NP-RCP8.5 4-Nonylphenol 0.3 +3.7 AA-EQS [39,40]

BPA Bisphenol A 0.2 - AA-EQS [24]

BPA-RCP4.5 Bisphenol A 0.2 +1.8 AA-EQS [24]

BPA-RCP8.5 Bisphenol A 0.2 +3.7 AA-EQS [24]

DCF Diclofenac 0.1 - AA-EQS [67,68]

DCF-RCP4.5 Diclofenac 0.1 +1.8 AA-EQS [67,68]

DCF-RCP8.5 Diclofenac 0.1 +3.7 AA-EQS [67,68]

EE2 17α-ethinylestradiol 3.5 × 10−5 - AA-EQS [24,68]

EE2-RCP4.5 17α-ethinylestradiol 3.5 × 10−5 +1.8 AA-EQS [24,68]

EE2-RCP8.5 17α-ethinylestradiol 3.5 × 10−5 +3.7 AA-EQS [24,68]

Multi-EC 4-NP, BPA, DCF, EE2
The same as

above - AA-EQS The same
as above

Multi-EC-
RCP4.5 4-NP, BPA, DCF, EE2

The same as
above +1.8 AA-EQS The same

as above

Multi-EC-
RCP8.5 4-NP, BPA, DCF, EE2

The same as
above +3.7 AA-EQS The same

as above

2.5. Global Sensitivity Analysis

A Global Sensitivity Analysis (GSA) was performed to check for the combined effects
of ECs and temperature rise. Contrarily to one-at-a-time (OAT) methods, where single
factors are perturbed with all other factors held fixed, in GSA all factors being analyzed are
changed together across the full multidimensional input space [69]. This type of approach
is essential when models feature nonlinearities and interactions [70].

GSA was performed by estimating standardized regression coefficients (SRC) [25,26]
associated to a design matrix of combinations of the variables ‘Contaminants’ (BPA, 4-NP,
EE2, DCF, mixed ECs), ‘Species’ (S. plana, H. diversicolor, H. ulvae and C. maenas), ‘Tempera-
ture’ (RCP4.5, RCP8.5) and ‘Time’ in a fully crossed design, with biomass as the dependent
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variable. There were 135 time-steps for each combination of factors, from 0 to 4020 days.
SRC expresses the magnitude and significance of the effect of combined parameters mea-
sured using different units, as well as the explained variance, gauging the main effects of
the input parameters [27].

A general linear model was fit to these data, and a stepwise procedure (both directions)
was applied in order to select which independent variables should stay in the model,
according to Akaike Information Criterion (AIC). Statistical analyses were carried out using
the lm and step functions in the stats R package [71]. This allowed discriminating both the
magnitude and significance of the effect that each variable caused in variations of biomass
of the four macroinvertebrate species.

3. Results

Compared to the control run, the 10-year scenarios simulations predicted that with
the exception of S. plana, the other three macroinvertebrates exhibit decreased biomass in
the BPA, 4-NP and Mixed ECs scenarios (Figure 2). H. diversicolor was the most affected
species, followed by H. ulvae, while S. plana increased biomass in the 4-NP, BPA and Mixed
ECs scenarios. C. maenas was clearly enhanced in the single RCP8.5 scenario compared to
the single RCP4.5 scenario. None of the four benthic macroinvertebrates was expressively
affected by DCF or EE2 scenarios (Figure 2).

Figure 2. Biomass of H. diversicolor, S. plana, H. ulvae and C. maenas (gDWm−2) in the control run and
in the simulated scenarios. Each boxplot representation is comprised by the quartiles (25 and 75%)
displayed as a box, the median displayed as a horizontal black bar, standard deviation displayed as
the vertical whiskers and the black dots that represent the outlier values. Mix refers to the four mixed
ECs scenarios. Single EC combined with temperature scenarios are only shown in the Supplementary
Materials (Figure S1).
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Despite the different responses of the four macroinvertebrate species to the tested
scenarios, there was a global decreasing tendency on benthic invertebrate biomass in the
mixed stressors’ scenarios (Table 2).

Table 2. Benthic invertebrate biomass production in the Minho estuary during the control run, single
scenarios and four of the simulated mixed stressor scenarios (scenarios of single EC combined with
temperature increases are not shown).

Biomass
Production Control BPA 4NP EE2 DCF RCP4.5 RCP8.5 Mixed ECs Mixed

ECs-RCP4.5
Mixed

ECs-RCP8.5

Benthic
Invertebrates
(gDWm−2)

15.39 14.99 17.62 16.20 16.15 14.84 15.34 14.92 14.46 14.45

According to SRC analysis, ‘Species’ was the most important variable, followed by
‘Contaminant’ and ‘Time’. All levels of these variables had highly significant coefficients,
except for S. plana, which was not significantly different from C. maenas, the reference level
for ‘Species’ (Table 3). H. diversicolor was the most affected species, followed by H. ulvae.
As to the contaminants, compared to 4-NP (the reference level for ‘Contaminant’), BPA and
the four mixed ECs caused the highest decreases on the biomass of macroinvertebrates.

Table 3. General linear model coefficients and their significance for the variables employed in
the SRC.

Variable Estimate Std. Error t Value Pr (>|t|)

BPA −2.72 0.15 −18.35 <0.001
Control 1.51 0.15 10.15 <0.001

DCF 1.50 0.15 10.02 <0.001
EE2 1.51 0.15 10.12 <0.001

Mixed EC −2.67 0.15 −17.97 <0.001
H. diversicolor −7.08 0.12 −58.40 <0.001

H. ulvae −1.93 0.12 −15.90 <0.001
S. plana 0.62 0.12 5.08 0.335

Time −3 × 10−4 4 × 10−5 −8.70 <0.001

Despite the differences in the importance of the variables, all of them were necessary
for attaining the significant lower AIC value in the model (Table 4).

Table 4. AIC values of the models fit in the stepwise method.

Variable Removed df Sum of Squares Residual Sum of Squares AIC

None 173,404 28,027.59
Temperature 2 58 173,346 28,028.34

Time 1 1347 174,751 28,101
Contaminant 5 34,324 207,728 29,773

Species 3 88,959 262,363 32,047

4. Discussion

Our initial hypotheses were not confirmed since BPA and the mixed ECs scenarios
had the most adverse effects on the biomass production of the macroinvertebrates from
the Minho estuary, which exhibited a general decreasing tendency over time. However,
different species presented different sensitivity to the simulated scenarios, which in turn
induced disturbances, namely, trophic cascade effects across the food web. H. diversicolor
was the most sensitive species to 4-NP, BPA and mixed ECs, and C. maenas was quite
sensitive to 4-NP and BPA. On the other hand, the polychaete and the crab have omnivorous
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feeding habits that include predation on S. plana [72,73], which is accounted for in the model.
Thus, the decreased predation by both the polychaete and the crab on S. plana led to an
increase in the biomass of the clam in the 4-NP, BPA and mixed ECs scenarios. In line with
this, it has been shown that disturbances in trophic levels may lead to trophic cascades,
which can affect and control entire marine ecosystems [74].

Moreover, coupling numerical models with experimental approaches that assess the
effects of mixtures of contaminants at multiple levels of biological organization [11] may
be extremely useful to understand and simulate the potential impacts of contaminants,
including ECs, at the sub-organism, organism, community and ecosystem levels. In turn,
such multi-level approaches followed by numerical projections of impacts over time will
potentially meet the criteria of newer concepts of biodiversity conservation that encompass
assessing toxicant effects on molecules, cells, organisms and communities [11].

GSA was paramount to highlight the differences regarding ECs impacts and species’
sensitivity. Thus, we recommend that complex end-to-end models of marine ecosystems
account for global sensitivity analysis as a way to filter the complexity of results linked to
ecosystem models and, therefore, prioritize stressors, highlight stressor–trophic groups’
interactions and detect cumulative effects. This type of approach is of significant importance
to strengthen communication and understanding between modelers and environmental
managers and thus guide decision-making. Indeed, sensitivity analysis is prescribed in
national and international guidelines in the context of impact assessment [70].

In addition to accounting for the physical and biogeochemical characteristics of the
study site, the Minho ecosystem model also simulates the transformations of ECs in the
water and sediment and the acute lethal and non-lethal toxic effects on biota [29,75].
Additionally, because the model also describes trophic relationships among biotic groups,
it can simulate the indirect effects of contaminants and other stressors throughout the
food web [76,77]. Models such as the present one are important research tools due to the
strong evidence for nonlinear interactions among stressors acting on aquatic and coastal
systems [17,18,78,79].

Despite acknowledging that the Minho ecosystem model can be improved by adding
up more data and further calibration effort, single-scenario predictions are globally in
agreement with extensive literature data, which report no significant ecotoxicological effects
of DCF at environmentally relevant concentration to aquatic organisms [65]. EE2 can be
accumulated by aquatic animals from different exposure routes, which may lead to higher
internal levels of EE2 than the ones usually quantified by experimental approaches focusing
on a single exposure route [54]. This may be relevant and would require further research
due to the extensive use of EE2 as an oral contraceptive and in hormone replacement
therapy applied to post-menopausal disorders [54]. BPA and 4-NP are recognized as
ubiquitous and environmentally persistent [80], with reports of adverse effects of BPA
on aquatic organisms [81] and of high environmental risk quotients of 4-NP in coastal
waters [82].

In practice, the present methodology can be used to prioritize down-the-drain con-
taminants, setting EQS ranges for worldwide abundant ECs mixtures and assessing the
most sensitive trophic groups that could then be used as bioindicators in a specific system.
Based on the present results, we recommend a revision of the EQS values of BPA and 4-NP,
and the use of H. diversicolor and S. plana as bioindicator species in the Minho estuary.

Furthermore, complementing the present approach with the use of ecotoxicological
biomarkers in key-species [2] may provide important information that allows the classifica-
tion of low-impacted estuaries, such as the Minho river–estuary system, within the Water
Framework Directive 2000/60/EC (WFD) context [2].

Globally, the tested temperature rise scenarios had no significant effect on the biomass
of the benthic macroinvertebrates from the Minho estuary, although the business-as-usual
scenario (RCP8.5 av. increase = 3.7 ◦C) was close to having a significant effect on the
biomass variation of the studied species (p = 0.07). This is in agreement with projections
indicating that climate-related risks depend on the rate, peak and duration of the warming,
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which will be larger if global warming exceeds 1.5 ◦C [83]. Interestingly, according to
simulations, C. maenas was able to cope with the temperature increase induced by the
RCP8.5 scenario, corroborating the high physiological plasticity of the crab [84], which can
increase predation and feeding rates at warmer temperatures [85].

The AQUATOX model of the Minho estuary accounts for site-specific characteristics,
such as the system volume, surface area and mean depth; however, a higher spatial
resolution of the system site can be achieved by, e.g., adding a multi-layer sediment model,
creating a multi-segment model or setting up complex linkages [28]. Nevertheless, this
would require more data and a significant increase in the number of hours devoted to
model calibration and verification, which was not the goal of the present study, although it
can be undertaken in the future.

Previous works have presented coupled process-based modeling and empirical mod-
els [86], random forest models [87], probabilistic ERA frameworks with prevalence plots [88]
and others [89] to tackle the impact of multiple stressors in aquatic systems. The present
work adds up to this by introducing an approach that, in addition to prioritizing stres-
sors, also highlights the most sensitive trophic groups to the tested stressors and provides
clues on how direct and indirect effects transfer across the food web. Although site- and
species-specific calibrations are required, the present methodology has the potential to be
applicable to other ecosystems and effectively support the management of estuaries and
coastal areas.

5. Conclusions

Our results support the idea that a methodology combining AQUATOX ecosystem
models with GSA based on SRC estimation is useful to quantify the effects of stressors
on biotic responses, prioritize stressors, identify the most sensitive trophic groups and
recognize cascade effects across food webs. This type of approach is important to support
researchers, resource managers and policy makers on developing strategies to reduce
or reverse the ecological, economic and social impacts of environmental stressors [16].
Notwithstanding, the application of the present methodology within a coastal manage-
ment perspective requires thorough site- and species-specific model calibration, sensitivity
analysis and uncertainty estimation.

Ecological models of coastal systems, such as the present one, may also reveal useful
to support theoretical modelling approaches related to the responses of trophic groups to
temperature, salinity and other climate-related variables, and thus provide guidance for
field-scale research linked to climate change effects and interactions on aquatic food webs.

Furthermore, we recommend that food web models of rivers and estuaries be used
as tools to support implementation of legislation regarding the Environmental Quality
Standards (EQS) of down-the-drain contaminants, particularly the ones widely used by
human populations.

Supplementary Materials: The following supporting information can be downloaded at: https:
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