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ABSTRACT: Some frequently encountered deficiencies in all-atom molec-
ular simulations, such as nonspecific protein−protein interactions being too
strong, and unfolded or disordered states being too collapsed, suggest that
proteins are insufficiently well solvated in simulations using current state-of-
the-art force fields. To address these issues, we make the simplest possible
change, by modifying the short-range protein−water pair interactions, and
leaving all the water−water and protein−protein parameters unchanged. We
find that a modest strengthening of protein−water interactions is sufficient to
recover the correct dimensions of intrinsically disordered or unfolded
proteins, as determined by direct comparison with small-angle X-ray scattering
(SAXS) and Förster resonance energy transfer (FRET) data. The modification also results in more realistic protein-protein
affinities, and average solvation free energies of model compounds which are more consistent with experiment. Most importantly,
we show that this scaling is small enough not to affect adversely the stability of the folded state, with only a modest effect on the
stability of model peptides forming α-helix and β-sheet structures. The proposed adjustment opens the way to more accurate
atomistic simulations of proteins, particularly for intrinsically disordered proteins, protein−protein association, and crowded
cellular environments.

■ INTRODUCTION

Atomistic models with explicit solvent ought to provide the
ultimate accuracy for simulations of biomolecular folding,
association, and function.1−3 Current energy functions have
now been refined over many years to the point where they may
often be used in a predictive manner. Nonetheless, pro-
gressively increasing computational power is exposing their
remaining deficiencies. For example, recent work has shown
that small errors in backbone4−9 and side-chain9,10 torsion
parameters may accumulate to have a detrimental effect on
protein folding.
Clearly, one of the major shortcomings of current additive

force fields is the quality of the water model used, since current
force fields are generally developed in conjunction with an
earlier generation of water models, most commonly TIP3P.11

However, more accurate additive water models have sub-
sequently been developed, carefully parametrized against
available experimental and quantum chemical data, the best
examples being the four-site TIP4P-Ew12 and TIP4P/200513

models, and more recently the TIP3P-FB and TIP4P-FB
models.14 For example, the TIP4P/2005 water model can
capture many features of liquid water, including the temper-
ature of maximum density. Having a water model which is
accurate for pure water may not appear to offer a direct
improvement in the properties of biomolecules. However, the
hydrophobic effect is strongly determined by the properties of
the solvent.15−17 Since this effect is widely recognized to be of

central importance in describing biomolecular association and
folding, an improved water model should, in principle, enhance
overall force field accuracy. In addition, water-mediated
interactions are believed to be critical for protein−protein
recognition.18,19 At the very least, biomolecular force fields
based on these improved water models, should allow
exploration of protein behavior over a larger range of
thermodynamic parameters, such as temperature and pressure.
Several groups have taken a step in this direction, by making
minimal changes to protein force fields in order to combine
them with optimized water models.20,21 For example, the
Amber ff03w protein model, used with TIP4P/2005 water,13

improves the cooperativity of helix formation, and results in
more expanded unfolded states,20 when compared with its
parent Amber ff03* protein model,6 used with TIP3P. This can
be beneficial when seeking to model the properties of
intrinsically disordered proteins.22−24

Nonetheless, there remain a number of outstanding
discrepancies with current force fields (including Amber
ff03w), which consistently suggest that proteins are too poorly
solvated. The best examples are (i) the dimensions of unfolded
proteins in explicit solvent simulations are still too small,
relative to experiment,25 (ii) solvation free energies of amino
acid side-chain analogs are generally slightly too unfavorable,26
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and (iii) protein association is in general too favorable.27 The
poor solvation could arise from either indirect effects due to an
inadequate representation of solvent structure (affecting the
free energy cost of cavity formation in the solvent) or direct
effects due to protein−solvent interactions. Since we know that
recent water models accurately reproduce the structure of
liquid water,12,13 the indirect mechanism is unlikely to play a
role; indeed, both the TIP4P-Ew and TIP4P/2005 water
models capture quite well the temperature-dependence of the
solubility of hydrophobic solutes.28,29 However, Ashbaugh et al.
showed that although TIP4P/2005 best captures the temper-
ature-dependence of the solvation free energy for methane out
of a range of water models, there was still a systematic shift of
the solvation free energies from the experimental values.29 This
shift could be corrected by changing the Lennard-Jones
parameters of the methane, effectively modifying the
contribution of direct solute-water interactions to the solvation
free energy. Inspired by this result, we have sought a similar
adjustment of the protein−water interaction parameters in
protein force fields.
In this Article, we show that a specific modification of

protein−water Lennard-Jones parameters in Amber ff03w can
address the shortcomings described above, while not having
detrimental effects on folded proteins, or the stability of small,
autonomously folding peptides. The resulting parameters result
in dimensions of unfolded proteins consistent with FRET and
SAXS measurements, realistic nonspecific protein-protein
association, solvation free energies in better agreement with
experiment, and stabilities of folded peptides consistent with
experiment at room temperature. The resulting protein force
field, Amber ff03ws, should facilitate accurate simulations of
unfolded and disordered proteins, protein association, and
protein folding.

■ METHODS
Molecular Simulation Methods. Molecular dynamics was

propagated via the Langevin dynamics integrator in GRO-
MACS (version 4.5.5 or 4.6.5),30 using a time step of 2 fs, and a
friction coefficient of 1 ps−1. Langevin dynamics was used
because it is a very effective thermostat and correctly samples
the canonical ensemble. The friction used here will have only a
small effect on the dynamics,31 and no effect on most of the
observables we are concerned with, because these are almost all
equilibrium configurational averages. Lennard-Jones pair
interactions were cut off at 1.4 nm, electrostatic energies
were computed via particle-mesh Ewald32 with a grid spacing of
∼0.1 nm and a real-space cutoff of 0.9 nm. The force field in all
cases was a derivative of Amber ff03:33 either Amber ff03*6 in
conjunction with the TIP3P water model11 or Amber ff03w20 in
conjunction with the TIP4P/2005 water model.13 The force
field for the chromophores Alexa 488 and Alexa 594 will be
described in a future publication, and has been extensively
validated against experimental data.
In certain cases, temperature replica exchange simulations

were performed (for Csp M34, ACTR, Ac-(AAQAA)3-NH2,
GB1 hairpin, chignolin, and Trp cage). The protocol for these
is the same as above, with exchanges attempted every 1 ps.
Further details on the temperature ranges and simulation
lengths for each case are included in the Results section. We
eliminate from the analysis any configurations in which the
proteins make van der Waals contact with their periodic image,
defined by a closest approach of any atom with an image atom
of less than 0.3 nm.22

Nativeness of proteins and peptides was assessed by
computing the dRMS over native contacts, defined as the
mean-square difference between the distances dij

0 between
residue pairs (i,j) in contact in the reference (native) state, and
the corresponding distance dij(x) in a given configuration x
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The list of the Nij native contacts, {native}, is defined as all pairs
of heavy atoms (i,j) within 4.5 Å in the native structure,
excluding pairs for which |Res(i) − Res(j)| ≤ 2, where the
function Res(k) gives the residue number of atom k.

Protein Association. For the villin headpiece HP36
fragment,34 we calculate association rates and dissociation
rates from the mean residence times in bound and unbound
states. The proteins are considered to bind when the minimum
distance between a pair of heavy atoms from each protein falls
below 0.2 nm, and to have dissociated when this minimum
distance exceeds 1.0 nm. The unbinding rate is koff = 1/toff
where toff is the average residence time before unbinding, while
the average binding rate is given as kon = 1/(tonc0), where ton is
the average residence time before binding and c0 is the total
protein concentration. The residence times in unbound/bound
are the maximum likelihood times assuming an exponential
distribution, that is, the total time in unbound/bound divided
by the number of binding/unbinding events. Then, the
dissociation constant is obtained as Kd = koff/kon.

Solvation Free Energies. We compute solvation free
energies for amino acid side-chain analogues using the standard
alchemical perturbation, in which the interactions between the
solute and the solvent are turned off via a coupling parameter
approach35 (see below). Since these analogues are not part of
the standard force field, we have manually constructed them,
keeping all parameters as close as possible to those of the
original force field for the full residue. Specifically, we cut the
bond between Cα and Cβ, and add an extra hydrogen atom to
the Cβ with exactly the same parameters as the other Hβ atoms.
The charge on the Cβ is then adjusted to obtain an overall
neutral charge, keeping all other charges the same. A similar
procedure has been used in previous studies.26,36

The solvation free energy is obtained by switching between a
system in which the solute and solvent are fully interacting to
one in which all solute−solvent interactions are turned off. That
is, the potential energy V(x) is parametrized, for configuration
x, as
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where Vww(x) are all pairwise energy terms involving solvent
(water) only, Vpp(x) are energy terms involving solute
(protein) only, and VLJ

pw(x) and Velec
pw (x) are respectively the

Lennard-Jones and Coulomb pair interactions between protein
and water atoms. Separate coupling parameters μ and λ are
used to switch off the Lennard-Jones and Coulomb
interactions. A soft-core potential was used to smoothly switch
off the Lennard-Jones term. For all cases, a simple 9-window
protocol was used with respective values of μ = 0.0, 0.2, 0.5, 1.0,
1.0, 1.0, 1.0, 1.0, 1.0 and λ = 0.0, 0.0, 0.0, 0.0, 0.2, 0.4, 0.6, 0.8,
1.0. Note that the charges are switched off fully before the LJ
parameters are scaled to avoid charge singularities. We have
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verified that this approach gives the same results, within
statistical error, as an alternative protocol using 38 windows,
and to published simulation data.36 The results from all
windows were combined using the M-BAR estimator37 to
obtain final solvation free energies.

■ RESULTS

Parametrization Strategy. Our aim is to obtain a physics-
based transferable protein force field which can be used to
study unfolded and disordered proteins in solution, while still
suitable for studying folded proteins and ab initio protein
folding. Therefore, as a starting point, we use the Amber ff03w
force field, which already comes close to meeting these
requirements,20,22−24,38−40 although with some deficiencies as
noted in the introduction.
Clearly, the nonbonded parameters will have the most effect

on the properties of interest, that is, the atom-centered partial
charges and the parameters of the Lennard-Jones potential.
Given the number of atoms and atom-types involved, there is
potentially a large number of degrees of freedom in the
parametrization. Moreover, these parameters, particularly those
for the Lennard-Jones potential, are coupled to the bonded
parameters, such as those for the torsion terms. Therefore, a
reparametrization of the nonbonded parameters really amounts
to fitting a completely new force field, while our goal is to
address a specific deficiency. Recently, a full parametrization of
protein Lennard-Jones parameters to reproduce solvation free
energies showed some promising results, but unfortunately
resulted in very unstable folded proteins.41 In this work, we
seek only the minimal change to an existing force field to obtain
also reasonable properties for unfolded proteins and protein-
protein interactions, while maintaining the integrity of folded
proteins, and the folding stability of fast-folding peptides.
Although there is some degeneracy in the optimal choice of

charges in an additive force field,42 a thorough study of
solvation free energies of model compounds found relatively
little dependence of the accuracy of the solvation free energies
on the method used for deriving the charges,43 and studies of
amino acid side-chain analogs have also found little dependence
on the details of charge derivation.26,36

Therefore, we focus on the Lennard-Jones (LJ) parameters.
We do not want to alter the properties of the water model,
which are already in excellent agreement with experiment for
the pure solvent. Furthermore, it has been shown theoretically
that changing solvent−solvent interactions should not alter
solvation free energies,44 while ideally we would like to do so.
We also would prefer to avoid modifying the protein
parameters, due to the aforementioned coupling with the
torsion parameters, and possible detrimental effects on protein
structure. We have therefore focused on making a specific
change to protein−water LJ interactions only, rather than
relying on the standard Lorentz−Berthelot (LB) mixing rules
employed by Amber force fields. Since there is not a strong
theoretical basis for these rules, and they have previously been
independently adjusted during force field development,45 we
chose to scale the Lennard-Jones εOi, between the water oxygen
and all protein atoms, that is

ε γε γ ε ε= = ( )i i iO O
LB

O
1/2

(3)

where εO and εi are the Lennard-Jones ε on the water oxygen
and atom i, εOi

LB is result generated by the LB combination rule,
and γ is the adjustable scaling parameter. Note that the

interactions between the water and ions are not adjusted, and
take their default values from the Lorentz−Berthelot rules.
Interactions between water and prosthetic groups such as
chromophores are rescaled as for the protein. We are thus left
with only a single tuning parameter γ to optimize the protein
behavior. Our choice of tuning an Amber force field is partly
driven by the fact that the original parametrization did not
explicitly consider protein−water interactions,33 unlike, for
example, the CHARMM force fields,9,46 and therefore, we have
more freedom to change these interactions.

Parameter Optimization: Csp M34. Since we have only a
single parameter to optimize, there is no risk of overfitting. We,
therefore, use a single system to optimize the parameter, and
then validate this choice by testing against a variety of other
systems.
For computational convenience, we have chosen a relatively

short 34-residue fragment of Cold-shock protein (Csp M34)
for our initial parametrization. Single molecule Förster
resonance energy transfer experiments on this peptide by
Sorranno et al.47 and Wuttke et al.48 provide an accurate source
of distance information as a function of temperature. Csp M34
is labeled at one terminus with the extrinsic chromophore
AlexaFluor 488 and at the other terminus with AlexaFluor 594,
via coupling of cysteine thiol groups to maleimide groups on
the chromophores; the version of the dyes with a 5-carbon
linker is used. In the simulations, we have placed AlexaFlour
488 at the N-terminus and AlexaFlour 594 at the C-terminus
(in experiment, the order of attachment is not controlled, but
has been found not to affect the results when tested49,50). A
complicating factor in such simulations is clearly the accuracy of
the force field for the dye molecules, which we have recently
optimized to reproduce the correct time-scales for chromo-
phore dynamics and interaction energies between the dye and
protein.
We have determined the temperature dependence of the Csp

M34 properties via replica-exchange molecular dynamics
(REMD) at constant temperature and pressure, using 42
replicas spanning a temperature of 275−423 K and a 6.5 nm
truncated octahedron periodic cell. Each run was for 100 ns,
discarding the first 50 ns as “equilibration”. In Figure 1 we show
a comparison with the temperature-dependent experimental
data, both the average FRET efficiency measured (Figure 1C),
as well as the radius of gyration (Rg) inferred from these FRET
efficiency measurements (Figure 1A). From the simulation
data, we have computed the mean FRET efficiency via a simple
average over the distance between the chromophores, assuming
that the distribution of chromophore orientations is isotropic at
all separations R (i.e., the orientational factor κ2 in the FRET
transfer rate is ∼2/351,52), and that chromophore dynamics is
fast relative to chain dynamics:

= ⟨ + ⟩−E R R(1 ( / ) )0
6 1

(4)

The Rg is determined from the simulations, using only the
protein atoms (even though the simulation includes the dye
molecules and linkers).
Using the Amber ff03w force field, the Rg values are

underestimated with respect to experiment at all temperatures,
even though the TIP4P/2005 water model is known to yield
unfolded states which are more expanded relative to the TIP3P
water model20): the radius of gyration at 300 K is ∼1.3 nm,
around 20% smaller than the experimental estimate. More
importantly, the FRET efficiency is >0.9, and thus clearly
inconsistent with experiment. The average distance between the
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center of the chromophores is systematically shorter than
between the cysteine Sγ atoms, which may be a consequence of
the chromophores being too buried within the unfolded chain.
We, therefore, experimented with a range of possible

protein−water scaling parameter values, and eventually settled
on γ = 1.10 as a near-optimal value. Using this scaling, the
agreement with experiment is much improved, both for Rg and
FRET efficiency; the temperature-induced collapse noted in
previous studies25,48,53 is also qualitatively captured. Interest-
ingly, we obtain almost identical results, regardless of whether
we use the distance between a central atom (C1) of each
chromophore, or between the Sγ of the cysteine residue to
which they are attached.
To confirm that the choice γ = 1.10 is close to optimal, we

have performed a simple reweighting, using values of γ ranging
from 1.05 to 1.15, with weights for each snapshot i given by wi
∝ exp[−β(Vγ − V1.10)], where Vγ, V1.10, and β are respectively
the energy with the γ of interest, the energy with γ = 1.10, and
the inverse temperature. In all cases, we determine the effective
fraction of snapshots contributing to the reweighted average as

f RW = exp[Sshannon]/N, where N is the total number of
snapshots and the Shannon entropy is defined as Sshannon =
−∑iwi ln wi, where the sum runs over the normalized weights
wi of the N snapshots. We find that f RW is generally in the range
of 10−40%, so we are not overemphasizing individual trajectory
frames in the reweighting. The reweighted radius of gyration at
300 K, shown in Figure 1A, inset, reveals the expected collapse
transtion in the Rg with decreasing γ.54 As a consequence, the
Rg are very sensitive to the scaling, and only a rather narrow
range of γ close to γ = 1.10 could be considered acceptable. We
therefore proceed with this choice for the remainder of this
work.

Parameter Validation. Having chosen γ = 1.10, we then
confirmed that this choice is reasonable, by applying it to a
variety of test cases probing different aspects of the force field.
We first present the results where this scaling leads to a
substantial improvement in relation to experiment: the
dimensions of disordered proteins (ACTR), the solvation free
energies of amino acid analogues, and protein self-association
(villin HP36). We then demonstrate that the modification does
not detrimentally affect a range of other systems: intrinsic
structure propensity in short peptides, the helix−coil transition,
the folding of mini-proteins and the structure of folded
proteins. The force field with γ = 1.10 is referred to as Amber
ff03ws to distinguish it from the Amber ff03w, parametrized
with unscaled protein−water interactions (γ = 1).20

Small-Angle X-ray Scattering (SAXS) of ACTR. While the
agreement for Csp M34 is good, it is a relatively short chain,
and a specific case. A possible concern could be that we
optimized our force field for a particular chain length or
sequence composition, while it may fail for others. This
concern arises because of the fundamental differences in the
hydrophobic effect on different length scales,17 and the known
effects of sequence composition and patterning on the
dimensions of unfolded proteins.55−58 Kjaergaard et al.53 have
measured the dimensions of the intrinsically disordered protein
ACTR by SAXS at two temperatures. They found that the
protein collapses slightly with increasing temperature, with the
average Rg decreasing from 2.63 nm at 278 K to 2.39 nm at 318
K. We have performed replica-exchange molecular dynamics
simulations on the same ACTR sequence, using the same
system size and replica spacing as for the labeled Csp M34. The
average radii of gyration from the replicas at 278 and 318 K are
2.13 (0.8) and 2.03 (0.4) nm, respectively using Amber ff03ws
and 1.56 (0.1) and 1.51 (0.2) nm at 278 and 318 K using
Amber ff03w. Since the experimental Rg is inferred from a
model, we have also directly calculated the scattering intensity
using CRYSOL,59 and averaged over the trajectory. In Figure 2,
we show a comparison of the experimental and calculated
scattering intensity profiles at the two temperatures studied in
experiment, 278 and 318 K. The match to the experimental
data (black curve) is much improved with the new force field
using scaled protein−water interactions (green curve) relative
to the Amber ff03w force field (red curve), although the curves
from the simulation data still indicate that the structural
ensemble is slightly more compact relative to the experimental
data. A likely reason for the this remaining discrepancy may be
the excluded volume effects due to the limited system size
utilized to make the replica exchange simulations computa-
tionally feasible. A simple calculation using a Gaussian chain
model suggests that the magnitude of this effect is comparable
to the amount by which the simulation Rg is reduced, relative to
the experimental estimate.

Figure 1. Temperature-dependent collapse of the M34 fragment of
CspTm. (A) Radius of gyration (excluding chromophores) for ff03w
(black symbols) and ff03ws (red symbols). Blue line indicates values
estimated from FRET measurements.48 Red dot-dashed and dashed
lines indicate the results obtained by reweighting at γ = 1.05 and 1.15,
respectively. (inset) Dependence of radius of gyration on the water−
protein scaling factor γ at 300 K; horizontal blue line indicates the
value from FRET and vertical red line the “optimal” choice of γ ≡ 1.10.
(B) Separation of chromophores as given by the distance between the
gamma sulfur atom of the cysteines to which they are linked (empty
symbols) or by the distance between center of mass of the
chromophores themselves (solid symbols). Color code as in panel
A. (C) FRET efficiency as computed from the distances in panel B,
meaning of symbols is the same. Blue line indicates experimental
FRET measurements or derived quantities.48
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To check the backbone sampling for ACTR, we have also
performed chemical shift calculations using SPARTA+60 to
compare with the experimental shifts for this protein
determined by Ebert et al.61 Within the error of the shift
prediction, the shifts calculated from either the Amber ff03w or
ff03ws simulations, using the replicas closest to the
experimental temperature (Figure 3), are in agreement with

the experimental data. One can conclude that the peptide is
rather disordered, with little persistent secondary structure. In
this case, it appears that the shifts are not particularly sensitive
to degree of collapse of the chain.
Solvation Free Energies. Solvation free energies have long

been used as a force field benchmark, although only recently
have the calculations been sufficiently accurate to be
discriminating. For example, Shirts et al. carried out solvation
free energy calculations for all uncharged side-chain analogs,
using a number of protein force fields26 and water models.62

They found that all force fields underestimated the solubility of

most side-chain analogs. We have therefore determined
solvation free energies using a standard alchemical method,
with 9 windows bridging the uninserted and inserted states for
a simulation time of 6 ns per window. The results are shown in
Table 1.
To gauge the overall impact of the solvation free energies on

force field properties, we would ideally perform a global
comparison of the solvation free energies of all side-chain
analogues with their experimental counterparts to determine
the net difference. There are a few complications to such a
comparison; first, we have not determined the solvation free
energies of all side-chain analogues. Specifically, we have
neglected the charged analogues, whose solvation free energies
are an order of magnitude larger48,64 and slightly more
complicated to determine by simulation.65 Second, we do not
consider the backbone contribution, due to the ambiguity of
how to parametrize model compounds for the backbone with
the Amber ff03 force field (all residues have different backbone
charges). Third, the values obtained should, in principle, be
corrected for the energetic cost of polarization, which is absent
in a prepolarized additive model.66 As we discuss below, there
are many approximate ways to do this, and as in previous
studies, we will merely present the uncorrected results and
discuss the qualitative impact of corrections.36

Nonetheless, we can derive some insights by comparing the
average properties of the side-chain analogues which we have
studied. In Table 2, we present various measures of the
difference from experiment for different combinations of force
fields and water models. In addition to the standard global root-
mean-square error from experiment, we also consider the mean
signed error, which measures the net deviation from experi-
ment, as well as weighted variants MSEX defined via

∑ μ μ= −w i i iMSE ( )( ( ) ( ))
i

X X sim
ex

exp t
ex

(5)

where wX(i) is the weight of residue i for the set of weights X,
and μsim

ex (i) and μexpt
ex (i) are respectively the excess chemical

potential of residue i in simulation and experiment. We
consider two sets of weights, first the normalized frequency of
each residue in the protein data bank (PDB), and second the
corresponding frequency of each residue in loop regions of the
PDB, as a proxy for intrinsically disordered segments (residue
frequncies taken from ref 67).
Note that we have used Amber9x to refer to Amber94,

Amber99, Amber99SB, etc., which are identical from the
perspective of side-chain analogues, although different parent
force fields may be used to describe them in the literature.26,36

Of particular interest for this study is the average signed
error, which is a measure of whether the simulation solvation
free energies are overall more or less favorable than the
experimental data. This is because the modification we make is
not likely to have highly residue-specific effects but should have
a qualitatively similar effect on all residues. The important
deductions which can be made from Table 2 are that the RMS
error of most force field/water combinations is 1−2 kBT, with a
mean signed error of around +1 kBT. Thus, over the set of
residues studied here, the solvation free energies of these force
fields are less favorable than in experiment. Of course, we have
not explicitly considered a polarization correction, but this
should make the simulation solvation free energies more
unfavorable (as it is an energy cost incurred upon
dissolution).42 Scaling the water interactions helps to improve
the overall RMSE of the Amber ff03ws model relative to Amber

Figure 2. Properties of the intrinsically disordered protein ACTR.
SAXS intensity profiles from experiment (black)53 and from
simulations using Amber ff03w (red) and Amber ff03ws (green) are
shown for (A) temperatures of 278 and (B) 318 K at an ionic strength
of ∼250 mM (close to the experimental conditions.53 In panels C and
D, we show the distributions of radius of gyration at 278 and 318 K,
respectively. REMD simulations were performed for 100 ns per replica
using a 6.5 nm truncated octahedron box. Prior to this, equilibration
runs of 10 and 30 ns were performed for Amber ff03w and ff03ws,
respectively.

Figure 3. ACTR secondary chemical shifts. Black line: experimental
Cα secondary shifts computed by subtracting the SPARTA+ reference
shift60 for a random-coil structure (δrc)from the experimental data.61

Blue symbols: simulated shifts computed using SPARTA+ from
Amber ff03w REMD simulations. Red symbols: corresponding results
from Amber ff03ws simulations. Shaded region lies outside of one σ of
the shift prediction from experiment. All data are at ∼304 K.
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ff03w, but, more importantly, it reduces the mean signed error
(with or without weighting). Thus, the average solvation free
energy per side-chain is approximately 1−2 kBT more favorable
than the other force field models in Table 2. While this may be
qualitatively expected, it helps to quantify the effect of the
chosen scaling of protein−water interactions. When the
differences are weighted by the observed frequency of residues
in the PDB (in either folded or disordered regions), the
agreement improves still further, indicating that the most
abundant residues also have the most accurate solvation free
energies, so that the average solvation of natural sequences will
generally exceed expectations based on a comparison of
unweighted solvation free energies.
Protein Association: Villin HP36. Association of villin HP36

is an appealing test for nonspecific protein-protein affinities,
because of its modest size (36 residues) relative to other
systems often used for studying weak protein association, such
as Lysozyme. Villin HP36 has been shown to associate in a
diffusion-limited manner in a recent computational study,27

while it is known to remain soluble up to ∼1.5 mM,68 based on
the invariance of NMR-determined diffusion coefficients up to
that concentration. Therefore, we expect a dissociation constant
Kd > 1.5 mM. On the other hand, there is evidence for weak
protein association from a small change in chemical shifts at a
concentration of ∼32 mM.69 To test the self-interactions of

villin, we ran simulations of two villin HP36 molecules at a total
protein concentration of ∼8.5 mM, starting from the same
initial configuration with the molecules spaced ∼1 nm apart.
The simulations were run for 200 ns at 300 K. We observed
binding and unbinding events from long equilbrium simu-
lations, where we define a binding event as when the minimum
distance between the molecules falls below 0.2 nm, and
unbinding when it exceeds 1.0 nm. These distances were
chosen based on the trajectory of minimum distances, shown in
Figure 4. Using these cut-offs, we can compute association and
dissociation rates, and dissociation constants Kd for each force
field, shown in Table 3.
It is clear from inspection of the simulation with the Amber

ff03* force field (TIP3P water) that the association of the two
proteins is extremely rapid, and, in spite of an early short
dissociation event, the proteins essentially remain bound for the
entire duration of the trajectory. Although the estimated Kd of
0.1 mM has a large associated error, it is also clearly much too
small to be consistent with the NMR diffusion coefficient
measurements. On the other hand, with the Amber ff03w
(TIP4P/2005 water) or Amber ff03ws (TIP4P/2005 water
with scaled protein−water interactions), we find dissociation
constants of ∼15 and ∼22 mM respectively. These values are
consistent with the lack of association at ∼1.5 mM in the
diffusion experiments and may also be consistent with some
weak association at the 32 mM concentration at which localized
chemical shift changes were observed.

Structure of Disordered Peptides: Ala5
3J Couplings. The

determination of a comprehensive set of through-bond scalar
couplings in short oligo-alanine peptides by Schwalbe and co-
workers70 has provided a reference data set for the intrinsic
sampling of backbone conformations in disordered peptides,
which has been used to assess71−73 and optimize6,21 force fields.
Here, our objective is to confirm that altering the protein−
water interactions does not have detrimental effects on this
sampling of backbone conformations. The approach we use
here is similar to that adopted earlier,71 i.e., we measure the
agreement with experiment using

∑χ
σ

=
−

N

J i J i1 ( ( ) ( ))

i i

2 expt calc
2

2
(6)

Table 1. Solvation Free Energies of Uncharged Amino Acid Side-Chain Anologs, with the Amber ff03 Force Field and Different
Water Models at 298 Ka

parent residue PDB frequency IDP frequency μex expt (kJ mol−1) μex ff03* (kJ mol−1) μex ff03w (kJ mol−1) μex ff03ws (kJ mol−1)

Ala 0.13 0.18 8.12 (0.08) 10.14 0.06 10.62 (0.07) 9.25 (0.07)
Asn 0.07 0.06 −40.5 −29.39 0.09 −29.96 (0.11) −32.45 (0.11)
Cys 0.02 0.02 −5.19 (0.21) −0.09 0.07 0.85 (0.09) −1.49 (0.09)
Gln 0.06 0.08 −39.2 −44.86 0.11 −47.57 (0.14) −50.46 (0.14)
Hid 0.04 0.03 −43.0 −49.99 0.11 −52.72 (0.15) −56.25 (0.15)
Ile 0.09 0.05 9.00 (0.19) 10.54 0.12 11.30 (0.16) 6.96 (0.16)
Leu 0.14 0.12 9.54 (0.11) 9.88 0.10 10.99 (0.15) 6.52 (0.15)
Met 0.03 0.03 −6.19 0.69 0.10 1.87 (0.14) −2.40 (0.14)
Phe 0.06 0.04 −3.18 (0.18) 2.17 0.12 3.69 (0.18) −1.61 (0.18)
Ser 0.09 0.15 −21.2 (0.1) −19.16 0.07 −19.56 (0.08) −20.66 (0.08)
Thr 0.09 0.10 −20.4 (0.2) −14.38 0.08 −14.91 (0.10) −17.04 (0.10)
Tyr 0.02 0.01 −25.6 (0.1) −14.90 0.15 −6.20 (0.16) −10.81 (0.17)
Trp 0.05 0.03 −24.6 −7.87 0.12 −13.32 (0.20) −20.33 (0.21)
Val 0.11 0.09 8.33 (0.10) 9.84 0.09 10.34 (0.12) 6.96 (0.12)

aAll values in kJ mol−1. Experimental data were taken from Wolfenden.63 Numbers in brackets are, for the simulation data, the statistical error, and
for the experimental data, the standard deviation over the experimental data sets collated by Shirts and Pande,26 where available.

Table 2. Global Measures of Deviation from Experimental
Solvation Free Energies (kJ mol−1)a

protein//water force fields RMSE MSE MSEPDB MSEIDP

OPLS//TIP3Pb 3.11 2.5 2.11 2.21
Amber9x//TIP3Pb 3.63 2.42 1.86 1.69
Amber9x//TIP4Pewb 4.08 2.87 2.43 2.05
CHARMM//TIP3Pc 5.63 4.78 3.73 3.59
Amber03*//TIP3P 7.41 4.90 3.81 2.99
Amber03w//TIP4P/2005 8.25 5.32 4.16 3.11
Amber03ws//TIP4P/2005 6.12 1.81 0.95 0.33

aNote that these comparisons exclude histidine in all cases as it was
not present in the data set of Hess.36 MSE: Mean signed error.
MSEPDB: Mean signed error with PDB residue weighting. MSEIDP:
Mean signed error with residue weighting based on unstructured
regions of the PDB. bData from Hess.36 cData from Shirts and
Pande.26
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where Jexpt(i) is the ith experimental J-coupling and Jcalc(i) is the
corresponding ith coupling computed using a Karplus equation;
σi is the estimated error in the predictions made by the Karplus
equation. However, we have made some important revisions.
First, we now use a more recent Karplus equation, fitted to
RDC-refined NMR structures74 for the 3JHNHα,

3JHNC, and
3JHNCβ scalar couplings, which results in a smaller σi for the
predictions; despite this, we still obtain a lower χ2 than with the
previous Karplus equation for those same couplings. Second,
we have now omitted the 3JCC measurements from the test data
set. In all previous studies, these have resulted in a large
contribution to the total χ2, and the experimental values are
inconsistent with data for other alanine-rich, disordered
sequences (Ad Bax, personal communication). Furthermore,
since the 3JCC couplings report on the ϕ torsion angle, they are
somewhat redundant as several other J-couplings are available
that report on the same angle.
The results, summarized in Table 4 show that overall, similar

results are obtained with the original Amber ff03w and with
ff03ws, with χ2 smaller than 1.0. If the force field were perfect,
an average χ2 of 1.0 is expected, since the deviation from
experiment is then equal to the error in the Karplus prediction.
Our χ2 < 1.0 most likely results from a slight overestimate of

the experimental σi which is obtained from diverse sequences,
not just oligo-alanine. This χ2 is also comparable to that for
other state of the art protein force fields such as CHARMM
36.9

Helix Formation in Ac-(AAQAA)3-NH2. Good sampling of
intrinsic backbone propensity in unstructured peptides is clearly
desirable, but it is also critical that a modification of the water−
protein interaction does not destabilize folded motifs such as
helices, which may be weakly populated in unfolded states. As a
model system, we use the 15-residue helix-forming peptide Ac-
(AAQAA)3-NH2, which forms ∼30% helix at 300 K, and for
which the temperature-dependent helix propensity has been
determined by NMR.75 We have previously used this as a probe
for helix propensity in force fields.6,9,20 In Figure 5A, we show
the temperature-dependent helix propensity for this peptide
using Amber03ws, compared with the closely related force-
fields Amber03* and Amber03w. It is clear that even with the
modified water interactions, stable helical structures are still
formed. The overall helix stability is reduced in Amber ff03ws,
but since it was originally slightly too high in Amber ff03w at
low temperatures, the agreement with experiment is somewhat
improved at 300 K (see per-residue helix populations in Figure
5A, inset).

Folding of Mini-Proteins: Trp Cage, GB1 Hairpin, and
Chignolin. In addition to the simple helix-forming peptide
above, we have also investigated the stability of small
cooperatively folding motifs, or “mini-proteins”. These present
the advantage that their folding equilibria can be sampled
relatively easily and, due to their low stability, they are very
sensitive to changes in force field parameters.
The mini-proteins we consider are the 20-residue Trp-cage,76

representative of α-helical and 310-helical structure, the 16-
residue β-hairpin GB1,78,79 and 10-residue β-hairpin chigno-
lin,77 each representative of turn and β structure. In Figure 5B,
we have determined melting curves for each of these systems
from replica-exchange molecular dynamics simulations. Because
obtaining fully converged equilibrium curves is challenging for
such systems, in each case, we run two independent
calculations, one starting from the native state, and another
starting from an unfolded state.
The melting curves for Trp cage (Figure 5B) show that it is

stably folded using Amber ff03ws, with the results of the two

Figure 4. Association of villin. The minimum distance between two
villin HP36 molecules at 8.5 mM total protein concentration is shown
for (A) Amber ff03*, (B) Amber ff03w, and (C) Amber ff03ws.
Broken red lines indicate the boundaries used to define association and
dissociation events. The dRMS from the native state is shown for (D)
Amber ff03*, (E) Amber ff03w, and (F) Amber ff03ws (black, blue
curves correspond to the two chains in the system).

Table 3. Kinetic and Equilibrium Parameters of Villin HP36
Association

force field kon (M
−1 ns−1) koff (ns

−1) Kd (mM)

Amber ff03* 49.4 (34.9) 0.005 (0.005) 0.10 (0.07)
Amber ff03w 8.3 (2.7) 0.128 (0.043) 15.4 (1.7)
Amber ff03ws 3.5 (1.7) 0.077 (0.034) 21.9 (4.9)

Table 4. Summary of 3J Couplings (with New Karplus
Equation) for Residue 4a

Residue,
Coupling Expt σ ff03* CHARMM36 ff03w ff03ws

A4 1JNCα
(ψ4)

11.25 0.59 11.18 11.20 11.35 11.34

A4 2JNCα
(ψ4)

8.40 0.50 8.17 8.06 8.26 8.22

A4 3JHαC
(ϕ4)

1.89 0.38 1.83 1.94 1.85 1.85

A4 3JHNC
(ϕ4)

1.15 0.31 1.10 1.25 1.13 1.20

A4 3JHNCβ
(ϕ4)

2.14 0.25 2.13 2.11 2.03 1.98

A4 3JHNHα
(ϕ4)

5.98 0.42 6.16 5.97 6.29 6.26

A4 3JHNCα
(ϕ4, ψ3)

0.69 0.10 0.62 0.61 0.64 0.64

χ2 0.36 0.60 0.31 0.38
aNote that the reported χ2 is for all residues; however, a full listing is
given in the Supporting Information.
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REMD simulations (from folded, unfolded) in near agreement
except at the lowest temperatures. The stability is slightly lower
than with the earlier Amber ff03* force field and TIP3P water,
but has similar stability to experiment at temperatures ∼300 K.
It is more challenging to obtain converged melting curves for

the GB1 hairpin because of its slower folding rate,80 but
nonetheless the simulations starting from unfolded and folded
conformations provide bounds on the true equilibrium curve.
Different estimates for the fraction folded at 300 K have been
obtained in different experiments, ranging from ∼30%81 to
∼50%.79 Our estimate of ∼10% is somewhat lower than these,
however this still corresponds to a folded state destabilization
of only ∼1.3 kBT.
As a second example of a β-hairpin, we consider the designed

β-hairpin chignolin, derived by taking a consensus sequence out
of a large number of sequences which fold to a structure similar
to GB1.77 In this case, because of the smaller size of the
peptide, we can obtain converged results starting from folded or
unfolded states (Figure 5D). The folded population near 300 K
is remarkably close to the experimental estimate, but with a
temperature dependence which is still too weak. This lack of
cooperativity is also evident for the other model systems
studied here, suggesting that the scaled water interactions do
not help to address this known deficiency of current additive
force fields.3

Stability of Folded Proteins. Lastly, we consider the stability
of native proteins: it might be anticipated that increasing the
protein-water interaction strength may destabilize folded states.
However, this is a difficult issue to address computationally as
computing the stability of native proteins is rather challenging.
Instead, we show that a more limited condition is satisfied, i.e.
that folded proteins stay close to the native state in simulations
starting from the experimental structures. We have chosen a set
of four proteins representative of different structural classes so
as to obtain a good coverage of protein structure space. These
are the extensively characterized ubiquitin (α/β), spectrin R15
(all-α), the cold shock protein from Thermotoga maritima,
CspTm (all-β), and human lysozyme (α/β) − the last being an
example of a slightly larger protein with two distinct α and β
domains. For each protein, we have run 200 ns simulations
starting from the experimentally determined, folded structure.
In all cases, using the Amber03ws model results in all-atom
dRMS deviations of ∼0.2 nm from the X-ray structures. These
deviations are comparable to, or in some cases (CspTm)
slightly better than those obtained with the original Amber03w.
(Figure 6 A-D). To further quantify the fluctuations on a per-
residue basis, we have computed root-mean-square fluctuations
(RMSF) averaged over each residue, after aligning the
backbone to the experimental structure. The RMSF (Figure
6E−H) obtained with Amber03w and Amber03ws is also
comparable. Lastly, we have calculated all-atom contact maps
with a 0.6 nm cutoff (i.e., for each pair of residues, we calculate
the fraction of the time for which at least one pair of heavy
atoms from the two residues is within 0.6 nm). These contact
maps, shown in Figure 7, show that almost identical contacts
are formed with the original and modified force field; that is
very few native contacts are broken and few non-native contacts
are formed. We have also plotted the residue−residue contacts
on the α-carbon trace of each protein, highlighting the contacts
formed in the Amber ff03w simulations and not in the Amber
ff03ws simulations, and vice versa. As can be seen there are
generally very few differences. The largest changes are for
CspTm, as already suggested by the differences in the dRMS

Figure 5. Peptide folding equilibria. (A) Temperature-dependent helix
formation in Ac-(AAQAA)3-NH2, (inset) per-residue fraction helix at
300 K. (B) Folded population of Trp Cage. (C) Folded population of
GB1 hairpin. (D) Folded population of chignolin. Folded populations
are defined as those with dRMS from the experimental structure of less
than 0.2 nm. Green symbols indicate Amber ff03ws, and where
applicable, red symbols indicate Amber ff03w and blue symbols Amber
ff03* with TIP3P water. Experimental data are indicated by black lines
(taken from Shalongo et al.75 for Ac-(AAQAA)3-NH2, from Muñoz et
al. for GB1, from Neidigh et al. for Trp cage76 and from from Honda
et al. for chignolin77). Up triangles and down triangles refer,
respectively, to REMD simulations initiated from unfolded or folded
structures. Simulation lengths were 150 ns (50 ns equilibration) for
Ac-(AAQAA)3-NH2, 150 ns (75 ns equilibration) for Trp cage
initiated from folded structures, 300 ns (150 ns equilibration) for Trp
cage initiated from unfolded structures, 500 ns (200 ns equilibration)
for GB1 initiated from folded structures, 400 ns (200 ns equilibration)
for GB1 initiated from unfolded structures, and 100 ns (50 ns
equilibration) for chignolin.
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plots; in this case, the ff03ws is in fact closer to the
experimental structure. Finally, we have directly calculated
backbone amide order parameters for comparison with those
measured by NMR, for the proteins where data is available
(ubiquitin, human lysozyme).82 The results, shown in Figure 8
indicate that the Amber ff03w and ff03ws force fields yield
similar values for the order parameters in regions of secondary
structure, and are in both cases in good agreement with
experiment. For ubiquitin, the loops are clearly more flexible in
Amber ff03ws than in either Amber ff03w or in experiment; in
lysozyme, both ff03w and ff03ws exhibit some excess flexibility
in the loops over experiment. One caveat to this interpretation
is that the method we have used to compute order parameters
averages the internal dynamics over the entire simulation,82

whereas the fit to experiment is sensitive only to dynamics
shorter than the reorientational correlation time of the
molecule. The calculated order parameters may therefore be
an underestimate, but much longer simulations would be
needed to calculate them in the analogous way to experiment.83

Taken together, these results all suggest that folded proteins
are indeed reasonably stable when using the ff03ws force field.
Discussion. Current force fields have achieved remarkable

successes in recent years, most notably the ab initio folding of a
number of small proteins starting from fully unfolded
conformations.86−91 Despite this success, however, these
simulations did reveal some unexpected features, for example,
that the unfolded state was too compact relative to experiment,3

and often contained highly structured states.92−95 The collapse
was clearly inconsistent with SAXS and FRET measurements
probing unfolded state dimensions,3 while structure-forming

propensity appears inconsistent with the general finding of little
persistent residual structure in unfolded proteins, beyond the
intrinsic structure of each residue.96 It has also been suggested
that such non-native traps may be responsible for another
artifact of all-atom folding simulations; namely, the extreme
sensitivity of the folding rate to temperature93 (most successful

Figure 6. Stability of folded proteins. We show native distance matrix
RMS (dRMS) calculated for all heavy atom pairs in contact in the native
crystal structure, for (A) ubiquitin, (B) CspTm, (C) human lysozyme,
and (D) spectrin R15 and residue-averaged root-mean-square
fluctuations (RMSF) for each of the proteins (E) ubiquitin, (F)
CspTm, (G) human lysozyme, and (H) spectrin R15. Black and red
curves correspond respectively to results obtained with the Amber
ff03w and Amber ff03ws force fields in 200 ns simulations at 300 K.
The experimental structures are presented as insets in E−H.

Figure 7. Contact differences in folded proteins. For each of the
proteins shown in Figure 6, we present contact maps (left panels)
computed with Amber ff03w (above diagonal) and Amber ff03ws
(below diagonal): (A) ubiquitin, (B) CspTm, (C) human lysozyme,
and (D) spectrin R15. In the right panels, we show the contacts
overlaid on the structures: cyan contacts are common to both
simulations, orange contacts are those for which Pij(ff03ws) −
Pij(ff03w) < −0.5, that is, the contact is formed with ff03w, but not
ff03ws; similarly dark blue contacts are those formed with ff03ws, but
not ff03w Pij(ff03ws) − Pij(ff03w) > 0.5.

Journal of Chemical Theory and Computation Article

dx.doi.org/10.1021/ct500569b | J. Chem. Theory Comput. 2014, 10, 5113−51245121



folding simulations have been done at high temperatures ∼350
K). In experiment, the folding rate is usually only weakly
temperature-dependent. The slow rates at low temperature may
result from an energy landscape which is too rugged as the
result of non-native traps.
Our work suggests that, with current force fields, peptides are

insufficiently well solvated in water. This effect, while it may
help to stabilize the folded state, also clearly results in unfolded
states which are too collapsed, and may result in additional
ruggedness via stabilization of structured non-native states. In
this paper, we have clearly shown that the dimensions of
unfolded and intrinsically disordered proteins can be corrected
by appropriately balancing protein−solvent interactions, and
that such a correction also appears to improve the overall
agreement of solvation free energies and nonspecific protein−
protein interactions with experiment. Notably, even though the
optimal correction was obtained from a specific set of data for
one system (FRET data from Csp M34), the same parameter
results in similar improvements for the other systems, that is, it
is “transferable”.
An obvious question, then, is to what extent the correction

factor obtained, γ = 1.10, would be transferable to different
force fields (given that other force fields also result in unfolded
states which are too collapsed3,25). Most likely, for completely
different protein force fields, such as CHARMM 369 or OPLS/
AA,97 a slightly different factor may be needed since the
Lennard-Jones parameters are independently determined.
However, there is a variety of Amber force fields sharing the
same Lennard-Jones parameters, notably Amber ff99SB5 and its
derivatives,10 for which the correction may be similar. In fact,
our preliminary tests suggest that a scaling of factor of γ = 1.10
also appears to be near optimal for a force field, Amber
ff99SBws, based on Amber ff99SB*-ILDN-Q (details in
Supporting Information Text): that is the Amber ff99SB force
field,5 with a global backbone correction for helix propensity,6

modified torsion parameters for certain side-chains,10 and a
uniform backbone charge model, found to more accurately
reproduce helix propensities for different residue types.40 In
Supporting Information Figures S1−S3, we show data for the
dimensions of Csp M34, villin association, and the helix fraction
of AAQAA for the ff99SBws analogue of ff99SB.

We have focused on a narrowly defined tuning of the force
field aimed at achieving the desired improvements; since
current force fields are very good for many purposes and
represent many years of careful tuning, it makes sense to keep
as much as possible of the original. Of course, the solvation free
energy results suggest that more fine-grained changes to the
parameters may help to improve also the individual solvation
free energies of different side-chains, rather than just the global
signed error; ultimately, such an approach would be desirable,
but would represent a completely new force field para-
metrization. Future more comprehensive global optimization
efforts98−100 may be able to include the type of data used here
as part of the optimization target, or for validation. The poor
solvation of proteins in current force fields may tend to have an
stabilizing effect on folded structures. We find that by
improving the solvation, folded structures are still generally
stable, although with larger amplitude dynamics in loop regions.
Most likely, the properties of force fields with a good average
balance of protein water interactions will depend more
sensitively on the choice of other parameters in the protein
energy function.
One aspect we have not really addressed is the effect of these

changes on protein folding dynamics. As alluded to above, a
poorly solvated protein force field may result in deeper non-
native “trap” states, stabilized merely due to being collapsed.
When protein−water interactions are more finely balanced, this
could significantly change the local features of the folding
energy landscape. In future work, it will be interesting to test
what effect these changes might have on temperature-
dependent protein folding dynamics.
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D.; Rüegger, S.; Reymond, L.; Hoffmann, A.; Kubelka, J.; Heinz, B.;
Gast, K.; Best, R. B.; Schuler, B. Proc. Natl. Acad. Sci. U.S.A. 2009, 106,
20740−20745.
(26) Shirts, M. R.; Pitera, J. W.; Swope, W. C.; Pande, V. S. J. Chem.
Phys. 2003, 119, 5740−5761.
(27) Petrov, D.; Zagrovic, B. PLoS Comput. Biol. 2014, 10,
No. e1003638.
(28) Krouskop, P. E.; Madura, J. D.; Paschek, D.; Krukau, A. J. Chem.
Phys. 2006, 124, No. 016102.
(29) Ashbaugh, H. S.; Collett, N. J.; Hatch, H. W.; Staton, J. A. J.
Chem. Phys. 2010, 132, No. 124504.
(30) Hess, B.; Kutzner, C.; van der Spoel, D.; Lindahl, E. J. Chem.
Theory Comput. 2008, 4, 435−447.
(31) Basconi, J. E.; Shirts, M. R. J. Chem. Theory Comput. 2013, 9,
2887−2899.
(32) Darden, T.; York, D.; Pedersen, L. J. Chem. Phys. 1993, 98,
10089−10092.
(33) Duan, Y.; Wu, C.; Chowdhury, S.; Lee, M. C.; Xiong, G.; Zhang,
W.; Yang, R.; Cieplak, P.; Luo, R.; Lee, T.; Caldwell, J.; Wang, J.;
Kollman, P. A. J. Comput. Chem. 2003, 24, 1999−2012.

(34) Wang, M.; Tang, Y.; Sato, S.; Vugmeyster, L.; McKnight, C. J.;
Raleigh, D. P. J. Am. Chem. Soc. 2003, 125, 6032−6033.
(35) Chodera, J. D.; Mobley, D. L.; Shirts, M. R.; Dixon, R. W.;
Branson, K.; Pande, V. S. Curr. Opin. Struct. Biol. 2011, 21, 150−160.
(36) Hess, B.; van der Vegt, N. F. A. J. Phys. Chem. B 2006, 110,
17616−17626.
(37) Shirts, M. R.; Chodera, J. D. J. Chem. Phys. 2008, 129,
No. 124105.
(38) De Sancho, D.; Best, R. B. J. Am. Chem. Soc. 2011, 133, 6809−
6816.
(39) De Sancho, D.; Best, R. B. Mol. Biosyst. 2011, 8, 256−267.
(40) Best, R. B.; De Sancho, D.; Mittal, J. Biophys. J. 2012, 102,
1897−1906.
(41) Nerenberg, P. S.; Jo, B.; So, C.; Tripathy, A.; Head-Gordon, T. J.
Phys. Chem. B 2012, 116, 4524−4534.
(42) Baker, C. M.; Best, R. B. J. Chem. Theory. Comput. 2013, 9,
2826−2837.
(43) Mobley, D. L.; Dumont, E.; Chodera, J. D.; Dill, K. A. J. Phys.
Chem. B 2007, 111, 2242−2254.
(44) Yu, H.-A.; Karplus, M. J. Chem. Phys. 1988, 89, 2366−2379.
(45) Baker, C. M.; Best, R. B. J. Chem. Theory. Comput. 2010, 6,
1181−1198.
(46) Mackerell, A. D., Jr.; et al. J. Phys. Chem. B 2000, 102, 3586−
3616.
(47) Soranno, A.; Buchli, B.; Nettels, D.; Cheng, R. R.; Müller-Spaẗh,
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