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Abstract

6-min walk tests (6MWT) are routinely performed in patients with chronic obstructive pulmo-

nary disease (COPD). Oxygen uptake ( _VO2) kinetics during 6MWT can be modeled and

derived parameters provide indicators of patients’ exercise capacity. Post-exercise _VO2

recovery also provides important parameters of patients’ fitness which has not been exten-

sively investigated in COPD. Several nonlinear regression models with different underlying

biological assumptions may be suitable for describing recovery kinetics. Multimodel infer-

ence (model averaging) can then be used to capture the uncertainty in considering several

models. Our aim was to apply multimodel inference in order to better understand the physio-

logical underpinnings of _VO2 recovery after 6MWT in patients with COPD. 61 patients with

COPD (stages 2 to 4) were included in this study. Oxygen kinetics during 6MWT were mod-

eled using nonlinear regression. Three statistical approaches (mixed-effects, meta-analysis

and weighted regression) were compared in order to summarize estimates obtained from

multiple kinetics. The recovery phase was modeled using 3 distinct equations (log-logistic,

Weibull 1 and Weibull 2). Three models were fitted to the set of 61 kinetics. A significant

model-averaged difference of 40.39 sec (SE = 17.1) in the time to half decrease of _VO2 level

(T1=2
_VO2) was found between stage 2 and 4 (p = 0.0178). In addition, the Weibull 1 model

characterized by a steeper decrease at the beginning of the recovery phase showed some

improvement of goodness of fit when fitted to the kinetics of patients with stage 2 COPD in

comparison with the 2 other models. Multimodel inference was successfully used to model

_VO2 recovery after 6MWT in patients with COPD. Significant model-averaged differences in

T1=2
_VO2 were found between moderate and very severe COPD patients. Furthermore, spe-

cific patterns of _VO2 recovery could be identified across COPD stages.

PLOS ONE | https://doi.org/10.1371/journal.pone.0187548 November 8, 2017 1 / 12

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPENACCESS

Citation: Baty F, Ritz C, Jensen SM, Kern L, Tamm

M, Brutsche MH (2017) Multimodel inference

applied to oxygen recovery kinetics after 6-min

walk tests in patients with chronic obstructive

pulmonary disease. PLoS ONE 12(11): e0187548.

https://doi.org/10.1371/journal.pone.0187548

Editor: Stelios Loukides, National and Kapodistrian

University of Athens, GREECE

Received: August 24, 2017

Accepted: October 20, 2017

Published: November 8, 2017

Copyright: © 2017 Baty et al. This is an open

access article distributed under the terms of the

Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: All relevant data are

within the paper and its Supporting Information

files.

Funding: The study was supported by an

unconditional research grant by the Lungenliga

St. Gallen and an institutional grant by the Cantonal

Hospital St. Gallen. The funders had no role in

study design, data collection and analysis, decision

to publish, or preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0187548
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187548&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187548&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187548&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187548&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187548&domain=pdf&date_stamp=2017-11-08
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pone.0187548&domain=pdf&date_stamp=2017-11-08
https://doi.org/10.1371/journal.pone.0187548
http://creativecommons.org/licenses/by/4.0/


Introduction

In patients with chronic obstructive pulmonary disease (COPD), dyspnea is a frequent respira-

tory symptom which progressively leads to exercise intolerance. In order to assess the exercise

capacity of patients with COPD, 6-min walk tests (6MWT) are commonly performed. This

submaximal test is of particular interest as it reflects patients daily life activities.

Oxygen uptake ( _VO2) kinetics during 6MWT can be modeled using nonlinear regression

and derived parameters provide indicators of patients’ exercise capacity [1]. Established

parameters include the oxygen uptake at steady state ( _VO2ss) and the mean response time

(MRT) corresponding to the time needed for _VO2 to reach 63% of _VO2ss.
The post-exercise _VO2 recovery phase also provides important indicators of physical fitness

as shown by Cohen-Solal et al. [2] in patients with chronic heart failure. However, it has not

been extensively investigated in patients with COPD. In a recent publication, Bellefleur and

colleagues showed that patients with COPD undergoing cardiopulmonary exercise tests have a

slower kinetics in the early recovery period compared with healthy individuals and that the

quarter-time recovery of oxygen uptake (T1=4
_VO2) increased with the severity of COPD [3].

Modeling approaches have also been used to characterize the recovery phase of patients with

COPD and significant differences in the steepness of the _VO2 recovery and the half-time

recovery of oxygen uptake (T1=2
_VO2) have been found across all disease severity stages [4].

In practice, a series of curves from multiple patients are often collected and various model-

ing strategies can be used to summarize estimates obtained from multiple experiments. Non-

linear mixed-effects models can be fitted to the entire data set [1]. Mixed-effects models are

designed to provide parameter estimates by taking into account within- and between-experi-

ments variability. However fitting nonlinear mixed models is not always straightforward and

problems of convergence may occur, especially when considering small data sets and complex

models. A second strategy consists in combining estimates obtained by separate univariate

model fits. In this situation either a meta-analysis strategy or a simpler weighted regression

can be chosen to summarize the estimates [5].

Furthermore, the choice of the model taken to describe the recovery phase plays a critical

role. A number of nonlinear regression models with partly different underlying biological

assumptions and implied mechanisms may be suitable to describe recovery kinetics. There-

fore, there is not always an obvious choice in selecting one model over another. In order to

capture the uncertainty in considering several models, multimodel inference (a.k.a. model

averaging) can be used [6, 7]. Model averaging combines parameter estimates from several

candidate models into one single model-averaged estimate corresponding to the weighted

mean of the individual estimates. The weight applied to each individual estimate is related to

the goodness of fit of the particular model relative to the other models. Model averaging can be

applied to mixed-effects, meta-analysis and weighted regression approaches. On the other

hand, when analyzing multiple curves originated from a heterogeneous population (e.g.,

COPD patients with pathophysiological heterogeneity), one model may better fit data acquired

in a particular subgroup of patients. In this situation, model selection tools can be used to com-

pare the goodness of fit of several models in various subgroups of the population.

Our aim was to apply and compare results from multimodel inference for three statistical

approaches—mixed-effects, meta-analysis and weighted regression—in order to possibly

achieve improved characterizations of the physiological underpinnings of the _VO2 recovery

after 6MWT in patients with COPD. Mixed-effects models are based on individual measure-

ments from all patients whereas meta analysis and weighted analysis of variance (ANOVA) are

fitted using summary data, i.e., parameter estimates obtained from models fitted separately to
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data from each patient. We hypothesized that the pattern of _VO2 recovery may differ among

the different groups of disease severity, with potential clinical implications on the indidualized

handling of patients with COPD before, during and after exercise testing.

Materials and methods

COPD data set

We performed a cross-sectional observational study in patients with COPD [8]. Patients

referred for a 6MWT at the Department of Pulmonary Medicine of the University Hospital

Basel, Switzerland between August 2003 and June 2007 were considered for participation in

the study. Exclusion criteria were as follows: need for oxygen supply or resting transcutaneous

oxygen saturation (SpO2) of< 85% while breathing room air, inability to walk, any acute coro-

nary event during the previous month and conditions precluding the use of a face mask (e.g.,

anatomic anomaly, claustrophobia or panic disorder).

Patients gave their written informed consent to participate in the study. The study was

approved by the local institutional review board (Ethikkommission beider Basel). The data

analyzed in the present study were fully anonymized and no individual clinical data are pre-

sented. A minimal anonymized supporting data set is provided in S1 Dataset. Further study

details can be found in previous publications [8–10].

Oxygen monitoring during 6MWT

The Oxycon Mobile1 (Viasys Healthcare, USA) portable, wireless cardiopulmonary exercise

testing device was used to measure breath-by-breath _VO2 consumption. Pulse rate was deter-

mined by using an ECG-triggered belt (Polar1 Electro OY T-61). Blood oxygen saturation

level (SpO2) was measured by using a finger clip. _VO2 and carbon dioxide output ( _VCO2),

tidal volumes and breathing frequency were assessed by using a facemask (dead space < 70

mL) with a flow sensor and a gas analyzer. The patient carried data storage and transfer units

by using a dedicated harness. Wireless transfer of breath-by-breath data to a laptop computer

allowed real-time monitoring. The additional weight (950 g) of the equipment had no effect on

walking distance [8]. The exact 6MWT procedure with mobile telemetry has been previously

described [8]. Original breath-by-breath data were imported from the mobile telemetry

device. Raw data were pre-processed by averaging the breath-by-breath measurements over

consecutive periods of 20 seconds in agreement with the recommendations from the American

Thoracic Society on cardiopulmonary exercise testing [11]. Since the optimal averaging period

in breath-by-breath data is still debated [12–14], we carried out a sensitivity analysis in order

to evaluate the influence of the choice of the averaging period (5-, 10-, and 15-sec) on our

findings.

A set of nonlinear regression models

The recovery phase was modelled using three different equations. One equation describes a

symmetrical sigmoid pattern (log-logistic, Eq 1) while the two others depict asymmetrical sig-

moid patterns with an inflection point located either at the beginning or at the end of the

recovery kinetics (Weibull models 1 and 2, Eqs 2 and 3, respectively).

_VO2ðtÞ ¼ _VO2rest þ ð _VO2ss � _VO2restÞð1 � exp ð� ðt � lÞ=t1ÞÞþ

ð _VO2rec � _VO2ssÞ=ð1þ exp ðt2 � log ððt � ðlmax þ 360ÞÞ=T1=2
_VO2ÞÞÞ

ð1Þ
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_VO2ðtÞ ¼ _VO2rest þ ð _VO2ss � _VO2restÞð1 � exp ð� ðt � lÞ=t1ÞÞþ

ð _VO2rec � _VO2ssÞð exp ð� exp ðt2 � log ððt � ðlmax þ 360ÞÞ=T1=2
_VO2ÞÞÞÞ

ð2Þ

_VO2ðtÞ ¼ _VO2rest þ ð _VO2ss � _VO2restÞð1 � exp ð� ðt � lÞ=t1ÞÞþ

ð _VO2rec � _VO2ssÞð1 � exp ð� exp ðt2 � log ððt � ðlmax þ 360ÞÞ=T1=2
_VO2ÞÞÞÞ

ð3Þ

with _VO2rest, _VO2ss and _VO2rec the oxygen level at rest, steady state during exercise and

recovery, respectively; τ1 the growth rate of the mono-exponential _VO2 function during

6MWT; τ2 the steepness of the exponential decay during the recovery phase and T1=2
_VO2 the

time for half decrease of the _VO2 level in the recovery phase. λ is the length of the resting

period, which is controlled by the experimenter and therefore not estimated during the fitting

procedure. The maximum length of the resting period among the experiments (λmax) is deter-

mined a priori hence it need not be estimated during the fitting procedure; it is used to “align”

multiple kinetics by removing differences in the duration of individual resting phases.

Mixed effects modeling

In mixed-effects models, individual experiments are treated as samples taken from a popula-

tion by means of random effects [15].

For i = 1, . . ., m patients, the following models were assumed:

yij ¼
_VO2ðtij; biÞ þ �ij

where yij are the response vectors of length j = 1, . . ., ni with the corresponding vectors of indi-

vidual times tij. The nonlinear function such as the above six-parameter models (Eqs 1, 2 and

3) evaluated at time tij is denoted by _VO2ðtij; biÞ with a p-dimensional patient-specific parame-

ter βi. The residual vectors �ij � N ð0; s2LiÞ are assumed to be normally distributed with a cor-

relation structure defined by the elements of the matrices Λi; for the current COPD data set we

assumed that Λi is the identity matrix. The curve is described by the functions _VO2ðtij; biÞ with

a patient-specific (p × 1) vector of parameters βi.

Between-patient effects are described by modeling the βi. These effects are separated into

fixed and random effects:

bi ¼ Aibþ Bibi

where β is the vector of fixed-effects parameters and Ai the design matrix of patient character-

istics. Differences between patients not captured by the recorded patient characteristics, are

described by the patient-specific random effects vector bi; these random effects may possibly

be modified through explanatory variables encoded in the corresponding design matrix Bi.

Random effects are assumed to follow a mean-zero, possibly multivariate normal distribution:

bi � N ð0;GÞ where G denotes the between-patient variance-covariance matrix.

In our example, the nonlinear mixed-effects regression models were parametrized as fol-

lows: each individual _VO2 kinetics defines one cluster for which different mean trends for the

different disease stages (2 to 4) is assumed (all 6 parameters defined as fixed effects); random

effects were specified for the four parameters that characterize the recovery phase _VO2ss,
T1=2

_VO2, τ2, _VO2rec. In this particular case, Ai is defined as the dummy coded design matrix

Oxygen recovery kinetics after 6-min walk tests in patients with COPD
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specifying disease stage specific fixed-effect parameters, and Bi is defined as the random effect

design matrix using dummy coded patient identifiers for four of the nonlinear model

parameters.

Meta-analytic approach

The meta-analytic approach is a two-step procedure [5, 16]. In the first step a nonlinear regres-

sion model is fitted to data from each patient separately. In the second step the estimate for the

parameter of interest is extracted from each of the model fits obtained in the first step. The cor-

responding standard error is also extracted. A meta analysis may be conducted based on the

parameter estimates and standard errors [17]. Specifically, we define �̂ i to be the parameter

estimate derived for the ith patient. Then the meta-analytic random-effects model may be

defined as follows:

�̂ i ¼ yi þ Ai þ �i ð4Þ

where θi is the unknown true parameter estimate for the ith patient (there are only few different

θ’s corresponding to the categories that the patients are divided into) and �i � N ð0; s2
i Þ where

σi denote the estimated standard error for the ith patient (from the first step). Note that this

means that no residual standard error is estimated from the data. The Ai’s are random effects,

which are assumed to be normally distributed N ð0; t2Þ with τ2 being the heterogeneity vari-

ance between patients. The model is commonly fitted using maximum likelihood or restricted

maximum likelihood [17].

Weighted regression approach

A modification of the meta-analytic two-step approach is to assume that the �i’s are distributed

as follows: �i � N ð0; s2s2
i Þ where the residual standard error σ has to be estimated from the

data. This analysis is referred to as the weighted regression approach. As a consequence of

introducing the residual standard error, estimation has to be carried out using different proce-

dures in statistical softwares; it is strictly speaking no longer a meta analysis but just a weighted

regression.

Model averaging

Model averaging is commonly used to capture uncertainty due to model selection [7]. If one

considers P candidate models to be fitted to a data set, and θ the derived parameter of interest,

the model averaged estimate from the P models is given by:

ŷMA ¼
XP

p¼1

wpŷp

where wps are model-specific weights ð
PP

p¼1 wp ¼ 1Þ defined as

wp ¼ exp ð� Dp=2Þ=ð
PP

r¼1 exp ð� Dr=2Þ), with Δp = ICp − ICmin and ICp being the informa-

tion criterion evaluated for the model p (IC min ¼ min P
p¼1ICp). An conservative approxima-

tion of the unconditional variance of the estimate [18] is given by:

varðŷMAÞ ¼

XP

p¼1

wp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cvarðŷpÞ þ ðŷp � ŷMAÞ
2

q
0

@

1

A

2
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Model selection

The Akaike’s information criterion (AIC) was used for model selection. AIC is defined as:

AIC ¼ � 2ðlog‐likelihoodÞ þ 2K

where K is the number of estimated parameters included in the model.

AIC provides for a given data set (or subset) a measure of the strength of evidence for plau-

sible biological assumptions / mechanisms associated with a given model relative to a set of

other models considered [19]. The model with the lowest AIC is the best model among all

models for a given data set.

Software

All analyses were done using the R statistical software (version 3.3.2) [20]. Nonlinear mixed

effects modeling was performed using the package medrc [1, 21] which combines functionali-

ties of the packages drc [22] (nonlinear regression) and nlme [23] (mixed effects modeling).

The package metaforwas used for meta-analysis [17] and multcomp for statistical infer-

ence [24]. Packages AICcmodavg [19] and MuMIn [6] were used for multimodel inference

(model averaging) and model selection.

Results

Modeling V
:
O2 recovery kinetics using three summarization strategies

Oxygen kinetics were measured in 61 patients with COPD (Global Initiative for Chronic

Obstructive Lung Disease (GOLD) stages 2, 3 and 4). Patients characteristics and anthropo-

metrics are presented in Table 1.

Three approaches were used to summarize the fit of three distinct models on a data set

including 61 _VO2 kinetics. Fig 1 shows the recovery kinetics estimated by the mixed effects,

meta-analysis and weighted regression strategies (left, central and right panels, respectively).

Within each strategy, recovery curves are summarized for each of the three models and for all

of the three COPD disease severity stages (GOLD stages 2, 3 and 4). The T1=2
_VO2 estimates

obtained for each model within each of the 3 statistical approaches are summarized in Table 2.

Table 1. Anthropometrics, pulmonary functions, cardio-pulmonary exercise capacity. Values are presented as median [IQR].

COPD GOLD stage

2 3 4

Anthropometrics

Subjects, n 21 30 10

Female/male 10/11 10/20 5/5

Age, yr 72.0 [59.0-77.0] 67.5 [61.0-71.0] 60.5 [52-62]

BMI (kg/m2) 28.1 [25.5-32.0] 24.3 [21.8-28.0] 20.0 [18.8-20.6]

Pulmonary functions

FEV1, L 1.6 [1.3-1.8] 1.0 [0.8-1.1] 0.7 [0.7-0.8]

FEV1, % predicted 59.0 [58.0-66.0] 36.5 [34.0-42.0] 26.5 [26.0-28.0]

FEV1/FVC, ratio 0.6 [0.5-0.6] 0.4 [0.3-0.5] 0.4 [0.3-0.4]

Exercise capacity

6MWD, m 370.0 [300.0-438.0] 352.5 [290.0-392.0] 345.0 [265.0-374.0]

BMI: body mass index; FEV1: forced expiratory volume in 1 sec; FEV1 / FVC ratio: forced expiratory volume in 1 sec (FEV1) expressed as percent of the

forced vital capacity (FVC); 6MWD: 6-minute walking distance.

https://doi.org/10.1371/journal.pone.0187548.t001
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Due to their asymmetrical shapes, Weibull models provide either lower (Weibull 1) or higher

(Weibull 2) T1=2
_VO2 estimates than the symmetrical log-logistic model. Independent of choice

of statistical approach and model, a significant increase of about 40 seconds in T1=2
_VO2 was

observed between patients with moderate and severe COPD (stages 2 vs. 4). Both the mixed

effects and meta-analysis strategies resulted in very similar T1=2
_VO2 estimates, whereas

weighted regression provided estimates which tended to shrink towards the overall mean.

Moreover, the choice of the breath-by-breath averaging period did not impact significantly on

the T1=2
_VO2 estimates (S1 Table).

Multimodel inference / Model averaging

The goodness of fit of the three models for each summarization strategy is reported in Table 3.

The model-averaged estimates of the difference of T1=2
_VO2 (DT1=2

_VO2) between patients with

moderate and severe COPD was calculated within each statistical approach. The mixed-effects

strategy provided the largest model-averaged estimates (DT1=2
_VO2 ¼ 40:4, SE = 17.1). Both

the meta-analysis and weighted regression strategy provided smaller model-averaged estimates

of DT1=2
_VO2: 34.9 (SE = 21.2) and 34.2 (SE = 14.2), respectively.

No statistically significant difference in DT1=2
_VO2 was found between COPD GOLD 3 and 2,

whereas a statistically significant difference was found between COPD GOLD 4 and 3 (S2 Table).

Model selection in subgroups of patients

The AIC obtained for the fit of each of the three models within each statistical approach and

all subgroups defined by the disease severity (COPD stages) were compared. The mixed mod-

els approach applied to subsets of data resulted in problems of convergence due to small sam-

ple size.

Results obtained from both meta-analysis and weighted regression approaches show that

the Weibull 1 model characterized by a steeper decrease at the beginning of the recovery phase

showed some improvement of goodness of fit when fitted to the kinetics of the stage 2 patients

in comparison with the 2 other models (meta-analysis: AIC = 221.9 in Weibull 1 vs. 223.4 and

Fig 1. Fitted curves of three models on oxygen kinetics recovery summarized within each COPD disease stage (2-4) for the mixed-effects,

meta-analysis and weighted regression approach (left, central and right panels, respectively). The log-logistic, Weibull 1 and Weibull 2 models are

displayed by plain, dashed and dotted lines, respectively.

https://doi.org/10.1371/journal.pone.0187548.g001
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222.6 for the log-logistic and Weibull 2 models; weighted regression: AIC = 219.3 in Weibull 1

vs. 220.9 and 219.6 for the log-logistic and Weibull 2).

Discussion

As shown in the current example from pulmonary medicine, the simultaneous analysis of mul-

tiple experiments using a set of plausible models is associated with two important challenges: i)

Table 2. Time for half-decrease of the _VO2 level during recovery (T1=2
_VO2) parameter estimates obtained using 3 models and 3 statistical

approaches. The estimates are provided together with their associated standard error (SE) and p-values. The difference in T1=2
_VO2 between patients with

moderate and severe COPD (GOLD stages 4 vs. 2) is also reported.Three summarization methods are investigated (mixed effects, meta-analysis and

weighted regression), and three nonlinear regression models (log-logistic, Weibull 1, and Weibull 2) are compared.

T1=2
_VO2

Method Model Disease stage Estimate SE p-value

Mixed effects Log-logistic COPD 2 127.79 9.22 < 0.001

COPD 3 133.12 8.05 < 0.001

COPD 4 168.20 14.40 < 0.001

COPD (4-2) 40.40 17.05 0.018

Weibull 1 COPD 2 112.76 9.42 < 0.001

COPD 3 113.90 8.15 < 0.001

COPD 4 150.94 14.62 < 0.001

COPD (4-2) 38.17 17.34 0.028

Weibull 2 COPD 2 144.51 8.87 < 0.001

COPD 3 154.06 7.79 < 0.001

COPD 4 187.37 13.89 < 0.001

COPD (4-2) 42.86 16.43 0.009

Meta-analysis Log-logistic COPD 2 128.03 8.53 < 0.001

COPD 3 130.88 7.51 < 0.001

COPD 4 164.31 12.47 < 0.001

COPD (4-2) 36.28 15.11 0.016

Weibull 1 COPD 2 114.06 8.61 < 0.001

COPD 3 112.18 7.50 < 0.001

COPD 4 146.41 12.83 < 0.001

COPD (4-2) 32.35 15.45 0.036

Weibull 2 COPD 2 145.24 8.66 < 0.001

COPD 3 149.39 7.54 < 0.001

COPD 4 183.55 12.89 < 0.001

COPD (4-2) 38.31 15.53 0.014

Weighted regression Log-logistic COPD 2 121.70 6.18 < 0.001

COPD 3 121.96 6.23 < 0.001

COPD 4 159.92 12.75 < 0.001

COPD (4-2) 38.23 14.17 0.009

Weibull 1 COPD 2 107.66 6.17 < 0.001

COPD 3 103.29 6.19 < 0.001

COPD 4 138.65 13.03 < 0.001

COPD (4-2) 30.98 14.42 0.036

Weibull 2 COPD 2 137.33 6.60 < 0.001

COPD 3 141.49 6.21 < 0.001

COPD 4 180.95 12.87 < 0.001

COPD (4-2) 43.62 14.46 0.004

https://doi.org/10.1371/journal.pone.0187548.t002
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the choice of the statistical approach needed to combine the information from multiple experi-

ments, and ii) the multimodel inference.

We found some differences among statistical approaches. Estimates provided by the mixed-

effects and meta-analysis approaches were similar whereas the weighted regression strategy

differed more importantly from the 2 other strategies. The mixed effects strategy resulted in

estimates showing larger between group differences whereas estimates obtained from the

meta-analysis and more importantly the weighted regression tended to shrink towards the

overall mean in the data set. In another context (economical science), Stanley and colleagues

[25] provided a comparison of weighted regression with random-effects meta-analysis, dem-

onstrating the superiority of the former in comparison to the latter in settings with high het-

erogeneity and in particular for small sample sizes. Their findings support the results

presented here, where we found estimates from the meta-analysis and the weighted regression

to differ the most for the stratified analyses containing less observations. On the contrary, het-

erogeneity between patients may be expected, but to a smaller extend within subgroups of

patients with the same disease severity rather than across all patients. It should also be noted

that an extra layer of complexity was added here in terms of the multimodel inference and that

coverage of the model-averaged estimates is expected to be higher than the nominal level due

to the choice of a conservative variance estimates [18].

We successfully applied multimodel inference in our data in order to take into account the

uncertainty due to the model selection, resulting in more precise and robust estimates.

Although inference was based on model-averaging we used model selection in order to test the

plausibility of biological hypotheses underlying different models and get a better idea of the

nature of the patterns of oxygen recovery in subgroups of the population of patients with

COPD. Independently from the choice of the statistical approach, the goodness of fit of the 3

models within each subgroup of patients was comparable. However, small but consistent

improvements of goodness-of-fit were found when fitting the Weibull 1 model to the subgroup

of patients with stage 2 COPD in comparison with the 2 other models (log-logistic and Weibull

2). Differences occuring in the early part of the oxygen recovery and possibly originated from

distinct physiological processes seem to play a critical role among patients with COPD

Table 3. Multimodel inference / Model averaging. Akaike information criterion (AIC) and Akaike weights are reported for the 3 models (log-logistic, Weibull

1 and Weibull 2) analyzed through the 3 summarization strategies (mixed effects, meta-analysis and weighted regression). The estimates and model aver-

aged estimates of the difference of the time for half-decrease of the _VO2 level during recovery T1=2
_VO2 between patients with moderate and severe COPD

(GOLD 4 vs. 2) are provided together with their associated standard error (SE).

ΔT1=2
_VO2 (COPD 4—2)

Method Model AIC Weight Estimate SE

Mixed effects Log-logistic 36556 0.996 40.40 17.05

Weibull 1 36578 0 38.17 17.34

Weibull 2 36567 0.004 42.86 16.43

Model-averaged - - 40.41 17.07

Meta-analysis Log-logistic 634 0.341 36.28 15.11

Weibull 1 633 0.449 32.35 15.45

Weibull 2 634 0.211 38.31 15.53

Model-averaged - - 34.94 21.20

Weighted regression Log-logistic 644 0.024 38.23 14.17

Weibull 1 637 0.737 30.98 14.42

Weibull 2 639 0.239 43.62 14.46

Model-averaged - - 34.17 14.25

https://doi.org/10.1371/journal.pone.0187548.t003
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resulting into pattern variations among the 3 investigated severity stages. This is in line with

the findings from Bellefleur and colleagues [3] who showed some significant between-severity

stages differences in the early period of the recovery phase.

Physiological mechanisms explaining variations in the speed and pattern of post-exercise

recovery phases associated with COPD severity can tentatively be explained. After aerobic

exercise, recovery phases are needed to normalize the excess post-exercise oxygen consump-

tion (EPOC) [26]. Excess oxygen is required to rebuild adenosine triphosphatase and phos-

phocreatine [27, 28], and is also involved in the removal of accumulated lactic acid. Prolonged

recovery kinetics observed in more severe patients with COPD might be attributed to slow

respiratory gas exchanges [29], or slow recovery of energy stores in peripheral skeletal muscles

[30]. The present study shows that some of the physiological recovery mechanisms occurring

immediately after exercise are more efficiently initiated in patients with moderate COPD (in

comparison with very severe COPD). This may explain the more abrupt oxygen decline

observed in the early recovery phase of patients with moderate COPD.

Conclusion

Multimodel inference is a powerful tool to summarize information from multiple recovery

kinetics when modelled by a set of plausible models. Significant model-averaged differences in

T1=2
_VO2 were found between moderate and very severe COPD patients. Furthermore, the pat-

tern of _VO2 recovery differed among COPD stages, patients with moderate COPD showing a

steeper decline of their consumption at the beginning of recovery. Finally, our study indicates

that recovery kinetics include clinically relevant information about the exercise capacity of

patients with COPD which can be apprehended using advanced methodology. In clinical prac-

tice, exercise testing protocols should further emphasize the importance of recovery phases,

whereas individualized handling of patients based on their disease severity should be advised.
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