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CPI motif interaction is necessary for capping
protein function in cells
Marc Edwards1, Patrick McConnell1, Dorothy A. Schafer2 & John A. Cooper1

Capping protein (CP) has critical roles in actin assembly in vivo and in vitro. CP binds with high

affinity to the barbed end of actin filaments, blocking the addition and loss of actin subunits.

Heretofore, models for actin assembly in cells generally assumed that CP is constitutively

active, diffusing freely to find and cap barbed ends. However, CP can be regulated by binding

of the ‘capping protein interaction’ (CPI) motif, found in a diverse and otherwise unrelated set

of proteins that decreases, but does not abolish, the actin-capping activity of CP and

promotes uncapping in biochemical experiments. Here, we report that CP localization and the

ability of CP to function in cells requires interaction with a CPI-motif-containing protein. Our

discovery shows that cells target and/or modulate the capping activity of CP via CPI motif

interactions in order for CP to localize and function in cells.
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A
ctin filament assembly is the basis for the formation of
many subcellular structures and for performance of
various cell functions1. Actin filaments grow and shrink

via addition and loss of actin subunits at their ends. In cells, free
barbed ends are critical determinants of the spatial and temporal
regulation of actin assembly. Heterodimeric actin-capping protein
(CP) binds to and functionally caps free barbed ends, blocking
their growth and shrinkage2, with subnanomolar binding affinity
and a half-time for dissociation of B30 min3–5. CP is found in
essentially all eukaryotic cells; its importance in regulating actin
assembly and actin-based motility is likewise universal.

A diverse set of otherwise unrelated proteins contain a
B30-residue motif, called CPI (capping protein interaction),
that binds directly to CP and modulates its actin-capping
activity6. CPI motifs are found in CARMILs, CKIP-1, CapZIP,
CD2AP, the CD2AP homologue CIN85 and the WASH
(Wiskott–Aldrich syndrome protein and SCAR homologue)
subunit Fam21. For CARMIL1, CD2AP and CKIP-1, the CPI
motif is necessary for actin-based cellular functions, based on the
failure of mutations in the CPI motif to rescue knockdown or
overexpression actin phenotypes7–9.

The traditional view of CP function in cells has been that CP is
active and freely diffusible in the cytoplasm10; CP stochastically
encounters and caps free barbed ends to terminate filament
elongation2,11,12. This view is supported by synthetic studies
with purified proteins in which capping barbed ends by diffusion
is sufficient to promote actin-based motility13. In addition,
mathematical models of actin-based motility in cells generally use
the simplifying assumption that CP is a diffusible active capper,
sufficient for activity on its own14,15.

On the other hand, models involving the regulation of CP in
cells have been proposed. For example, uncapping of barbed ends
capped by CP was proposed to generate free barbed ends
during platelet activation, based on the observation that
phosphatidylinositol 4,5-bisphosphate (PIP2) releases gelsolin
and CP from barbed ends16. In addition, free barbed ends
induced by Cdc42 in neutrophils are protected from CP17, and
formins and enabled/vasodilator-stimulated phosphoprotein
(Ena-VASP) proteins protect barbed ends from CP6.

More recently, discoveries of CPI-motif proteins have raised
the possibility that CP might be targeted to specific cellular
locations18, and have its capping activity decreased or even
reversed (uncapping)19, to achieve proper actin filament
dynamics. In support of this view, depletion of CARMIL1 and
CD2AP was found to decrease localization of CP to the plasma

membrane (PM)7,8. In addition, the protein V-1/myotrophin is
known to inhibit CP in vitro2,20,21, and the CPI-motif protein
CARMIL1 has been proposed to be part of a regulatory cycle
promoting the release of CP from sequestration by V-1 (ref. 22).

Fundamental questions exist regarding the physiological
function of the interaction of CPI-motif proteins with CP in
cells. Do CPI-motif proteins decrease the actin-capping activity of
CP at a given location or time, in order to limit or even reverse
the capping of barbed ends? Alternatively, do CPI-motif proteins
target active CP to sites where barbed ends need to be capped?
Here, we tested the hypothesis that an interaction with a CPI-
motif protein is required for CP localization and function by
examining the cellular activities of CP mutants that are unable to
bind to the CPI motif, but that retain full ability to bind and cap
barbed ends. We found that these CP mutants do not function in
cells, producing actin phenotypes identical to loss of CP. The
mutants failed to rescue RNA interference-induced knockdown of
CP, and the mutants had a dominant-negative effect in cells
expressing endogenous CP.

Results
CP mutants defective in binding to CPI-motif proteins. To
understand the role of CP regulation by CPI-motif proteins in
cells, we created mutant forms of CP defective in binding the CPI
motif, originally defined as LxHxTxxRPK(6X)P by Bruck et al.23.
The CPI motif makes extensive and important close contacts with
the CPb subunit of the CP heterodimer21,24,25. For CPb, the
residues Arg15 and Tyr79 make close contact with critical
residues of the CPI motif in co-crystal structures24. Accordingly,
we changed these residues to Ala. The single mutants are R15A
and Y79A, and the double mutant is R15A/Y79A (plasmids in
Table 1). We predicted that these CP mutants would be deficient
in binding to all CPI-motif proteins.

We measured binding constants for the interaction of CP
mutants with the capping protein-binding region (CBR) fragment
of CARMIL1, which includes a CPI motif, using purified proteins
and surface plasmon resonance (SPR). Representative SPR traces
are shown in Fig. 1, and rate and binding constants based on
complete data sets are listed in Table 2. SPR traces reveal that the
binding affinity for each single mutant is less than that of wild-
type CP by a factor of 410 and that the binding affinity for the
double mutant is less by a factor of 4100 (Fig. 1a,b). To calculate
binding and rate constants, we fit complete time-course data for
all the curves to a single-site model with 1:1 stoichiometry

Table 1 | Plasmids used in this study.

pBJ # Name Description

1678 Control shRNA Control shRNA
2377 CP shRNA shRNA for targeting CP
2086 pHR’8.2 DR Lentiviral packaging plasmid
2087 pCMV-VSV-G Lentiviral packaging plasmid
1841 GST-CARMIL1 CBR115aa Bacterial expression of GST-CBR
2041 His-CPa1b2 Bacterial expression of wild-type CP
2302 His-CPa1b2 R15A Bacterial expression of R15A CP
2303 His-CPa1b2 Y79A Bacterial expression of Y79A CP
2304 His-CPa1b2 R15A/Y7A Bacterial expression of R15A/Y79A CP
2438 GST-V-1 Bacterial expression of GST-V-1
2358 YFP-CPa1 Expression of YFP-CPa1 in mammalian cells
2359 GFP-CPb2 Expression of GFP-CPb2 in mammalian cells
2361 GFP-CPb2 R15A Expression of GFP-CPb2 R15A in mammalian cells
2362 GFP-CPb2 Y79A Expression of GFP-CPb2 Y79A in mammalian cells
2363 GFP-CPb2 R15A/Y79A Expression of GFP-CPb2 R15A/Y79A in mammalian cells

CBR, capping protein-binding region; CP, capping protein; GFP, green fluorescent protein; GST, glutathione S-transferase; shRNA, short hairpin RNA.
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(Table 2). The kinetic modelling yielded independent values for
association and dissociation rate constants, kþ and k� , which
were used to calculate the binding constant, Kd. The results for
wild-type CP were similar to those from previous studies, with a
Kdo1 nM5. The Kd for each of the single mutants was B140 nM,
with B10-fold decreases in kþ and B20-fold increases in k� .
For the double mutant, the k� was increased further, by a factor
of 5, and kþ could not be determined because the extent of
binding was too low. Thus, we estimate a lower limit for the Kd of
4100mM for the double mutant.

We tested the ability of four different CPI-motif proteins—
CARMIL1, CARMIL2, CD2AP and FAM21C—to bind to the
CP mutants in cells by immunoprecipitation (Fig. 1c). Interac-
tions of all four proteins with the R15A/Y79A mutant were

severely decreased, to near zero, based on the amounts
of co-precipitated protein. For the single mutants, levels of co-
precipitated proteins were also decreased, to very low or
undetectable levels (Fig. 1c).

Biochemical properties of CP mutants. The rationale for our
approach required that the CP mutants bind and cap actin
filaments normally, which we expected based on the location of
the mutated residues in the structure24. Indeed, we tested the
actin-capping activity of the CP mutants over a range of
concentrations and found them to be essentially identical to
that of wild-type CP (Fig. 2a; Supplementary Fig. 1A–D).

We expected that decreased physical binding of the CP
mutants to CPI motifs, as detected by SPR and
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Figure 1 | CPI-motif binding-site mutations impair CPI–CP interaction. (a) Interaction of purified CP and CARMIL-CBR, assayed by SPR (surface plasmon

resonance). The SPR chip contains GST fused to CBR of human CARMIL1. CP at 20 nM was flowed over the chip. Black: wild-type CP, green: Y79A, red:

R15A, blue: R15A/Y79A. One representative experiment, among four, is shown. (b) SPR traces as in a, with concentrations of CP as follows: wild-type

20 nM, R15A 200 nM, Y79A 200 nM, R15A/Y79A 2,000 nM. One representative experiment, among four, is shown. (c) Impaired association of CP

mutants with CPI-motif proteins in cells. HT1080 cells expressed CP mutants tested in a and b. Cells were co-transfected with YFP-CPa1 and either

GFP-CPb2, GFP-CPb2 R15A, GFP-CPb2 Y79A or GFP-CPb2 R15A/Y79A. CP was immunoprecipitated from whole-cell lysates with anti-GFP, and

precipitates were probed with antibodies to endogenous CD2AP and Fam21C. For CARMIL1 and CARMIL2, endogenous levels were low, so cells were

co-transfected with FLAG-tagged expression constructs, and IPs were probed with anti-FLAG.

Table 2 | Rate and binding constants for CP mutants.

CP species [Analyte] (nM) kþ (M� 1 s� 1) (� 105) k� (s� 1) (� 10� 3) Kd (nM)

Wild type 20 10.4±1.5 0.60±0.01 0.60±0.11
R15A 200 1.26±0.10 20.6±1.7 165±25
Y79A 200 1.6±0.2 19.8±0.3 125±16
R15A/Y79A 2,000 ND (o0.01) 113±26 ND (4100 mM)

CP, capping protein; ND, not determined; SPR, surface plasmon resonance.
Determined by SPR, based on fitting to curves as described in Methods. A term for mass transport did not improve the fit by a statistically significance amount. The dissociation rate constant k� was
determined first, from the dissociation phase. With k� fixed, the association rate constant kþ was then determined from the association phase. Kd is the quotient of k�/kþ . ND—not determined because
of weak signal and high error due to low binding.
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co-immunoprecipitation, would be accompanied by decreased
functional ability of CPI-motif proteins to inhibit the
actin-capping activity of the CP mutants. We measured inhibition
of capping activity for each CP mutant using CBR, a CPI-
motif-containing fragment of CARMIL1 (Fig. 2b,c). As expected,
the effect of CBR on CP mutants was much less than its effect on
wild-type CP. The single-CP mutants were only partially
inhibited by CBR, and the double-CP mutant showed only
minimal inhibition, consistent with the physical binding assays.
In one experimental design, CP and CBR concentrations were
kept constant (Fig. 2b); in another design, CBR concentration was
varied (Fig. 2c). Overall and most important, the double-CP
mutant exhibited nearly undetectable interaction with CPI-motif
proteins, in physical and functional assays.

We characterized the R15A/Y79A mutant further by testing
interaction with the other known inhibitors of CP — PIP2 and
V-1. V-1 competitively inhibits actin capping by binding to CP at
a site that overlaps with the actin-binding site26. PIP2 also binds
to and inhibits CP27,28. In actin-capping assays with purified
proteins, addition of V-1 and PIP2 had similar inhibitory
effects on wild-type CP and the R15A/Y79A mutant (Supple-
mentary Fig. 2; Supplementary Fig. 3).

Localization of CP mutants in cells. We tested the hypothesis
that interaction with a CPI-motif protein is required for the
localization of CP, as opposed to the simple alternative that
CP freely diffuses to encounter and bind free barbed ends.
The CPI-motif proteins CD2AP and CARMIL1 have been found
to co-localize with CP in the actin-rich cell cortex7,8,29. In those
studies, mutation of the CPI motif led to loss of CP localization at
the cortex, but the mutations also led to loss of F-actin
accumulation, leaving open the possibility that CP binding and
accumulation depended on F-actin. In other studies, CP localized
to macropinosomes and vesicular compartments in association

with the CPI-motif protein Fam21, a component of the WASH
complex30. Loss of Fam21 led to loss of CP and WASH
co-localization at vesicle membranes; instead, CP was associated
with abnormal F-actin streams emanating from vesicles, while
WASH remained at the membrane31. These findings support the
hypothesis that interaction with a CPI motif is required to localize
CP at cellular membranes, rather than its passive diffusion and
binding to actin filament barbed ends.

To test this hypothesis, we localized green fluorescent protein
(GFP)-tagged versions of wild-type CPb2 (ref. 30) and
double-mutant CP (R15A/Y79A b2) (Fig. 3). GFP–CP fusions
were expressed in HT1080 cells at very low levels, so that neither
wild-type nor mutant produced any observable effect on the
morphology or actin cytoskeleton of the cells. Wild-type CP was
enriched at the leading edge of cells and concentrated in puncta
associated with macropinosomes and vesicular structures (Fig. 3,
arrows). In contrast, the R15A/Y79A mutant remained diffuse
and failed to localize to the leading edge of cells and to
macropinosomes, in all of the 37 cells analysed (Fig. 3;
Supplementary Fig. 4)

We quantified PM localization by calculating the PM index32,
which accounts for volume effects by normalizing the membrane-
associated signal to that of a cytoplasmic marker. The PM index
of GFP was near zero (0.06), as expected for a freely diffusing
protein. The value for wild-type CP was 1.28, and the value for
the R15A/Y79A mutant was 0.12 (Supplementary Fig. 4). Because
the R15A/Y79A mutant binds barbed ends normally, we conclude
that localization of CP in cells requires binding interaction with a
CPI-motif protein, not to barbed ends of actin filaments.

Function of CP mutants in cells. To assess the physiological
importance of the CP–CPI interaction, we asked whether and
how CP mutants function in cells, focusing on actin assembly and
dynamics. We reasoned that if CPI motifs target or recruit CP to
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Figure 2 | CP mutants cap actin normally but resist inhibition by the CPI motif. (a) Actin-capping activity is not affected by the CP mutations. Actin

polymerization from barbed ends, revealed by pyrene–actin fluorescence versus time. CP (10 nM), wild-type and mutants, were added. Curve colours

as follows: control without CP (black), wild-type CP (orange), CP R15A mutant (green), CP Y79A mutant (red) and CP R15A/Y79A mutant (blue).

(b) Inhibition of CP by the CBR fragment of CARMIL1. Experiment as in a, with addition of 100 nM CBR at t¼0. Colours as in a, with the addition of control

with wild-type CP and no CBR (purple). (c) Similar to b, with higher concentration (2,000 nM) of CBR for CP R15A, Y79A and R15A/Y79A. The black,

orange and purple curves are the same in b and c. For all panels, one experiment is shown, representative of three.
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certain locations and if recruitment is necessary for function, then
the phenotype of cells expressing CP mutants should phenocopy
the loss of CP. Alternatively, if the role of CPI motifs is to inhibit
CP and prevent capping or promote uncapping, then CP mutants
unable to bind CPI motifs should cap constitutively, and their
cellular phenotype should resemble the effects of increased levels
of CP and actin capping.

To test these hypotheses, we expressed the CP b-subunit
mutants in HT1080 cells depleted of endogenous CP by targeting
the b-subunit with short hairpin RNA (shRNA) (Fig. 4). CP
depletion led to a loss of lamellipodia and an increase in filopodia,
consistent with previous results in mouse B16 cells33 and
Dictyostelium34. Expression of shRNA-resistant wild-type CP
restored the actin phenotype to that of control cells; lamellipodia
appeared and filopodia were lost. In contrast, expression of
shRNA-resistant R15A/Y79A mutant did not provide rescue; cells
lost lamellipodia and gained filopodia, similar to CP-depleted
cells. Representative images are shown in Fig. 4a, and quantitative
analysis of filopodia number, scored by a blinded observer, is
plotted in Fig. 4b. In addition, CP depletion caused an increase in
the total level of F-actin per cell, based on fluorescent phalloidin
(Fig. 4c), consistent with previous reports34,35. This phenotype
was also rescued by expression of wild-type CP, but not the
R15A/Y79A mutant (Fig. 4c). The single mutants, R15A or Y79A,
produced results similar to wild type (not shown). The levels of
expressed double- and single-mutant forms of CP were the same
as or slightly greater than the level of endogenous wild-type CP
by immunoblot (Supplementary Fig. 5).

To test the function of the CP mutants further, we expressed
them in cells where endogenous CP was not depleted (Fig. 5a,b).
Mutant or wild-type forms of CPb were transiently expressed,
along with the wild-type CPa subunit. Expression of wild-type CP
or the two CP mutants with single amino-acid changes, R15A or
Y79A, had small effects on cell morphology (Fig. 5a) and on the
quantitative scores of lamellipodia and filopodia (Fig. 5b). In
contrast, expression of the R15A/Y79A mutant caused large effects,
with decreased lamellipodia and increased filopodia, closely
resembling the effects of depleting CP (Fig. 5b). Together the
results show that a mutant form of CP defective in binding to CPI-
motif proteins has a dominant-negative effect on cells, which argues
that the mutant b-subunits fold and interact with the a-subunit in a
normal manner. On the basis of these results, we conclude that CP
is required to bind to a CPI-motif protein to function in cells.

Increasing cellular (CP) decreases cellular F-actin levels. To test
the model in which CPI-motif proteins only inhibit CP, without
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Figure 4 | CP mutants fail to rescue CP-depletion phenotypes. (a) Images

of CP-depleted cells expressing wild-type CP or R15A/Y79A mutant,

stained with fluorescent phalloidin. Arrows indicate filopodia. Red boxes in

left panels are magnified on the right. (b) Quantification of filopodia density.

The y axis is the number of filopodia per 10mm of cell perimeter; n¼ 100

cells. (c) Quantification of whole-cell phalloidin staining density from (a).

The difference between control shRNA and CP knockdown is significant

(*Po0.01); the difference between mutant and wild-type rescue is also

significant (**Po0.02).
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Figure 3 | CP localization depends on the ability to bind CPI-motif proteins. GFP-tagged fusions of wild-type CPb2 or the R15A/Y79A mutant were

expressed in cells at low levels. Cells were fixed and immunostained with anti-GFP. Representative images are shown; n¼ 27 cells. Red rectangles indicate

the region of the cell magnified in the adjacent inset. Arrows indicate puncta of CP. The expression levels in this experiment were far lower than the levels

used to induce changes in cell shape and actin distribution, described later.
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spatial targeting of capping activity, we sought additional evi-
dence that the expressed CP mutant proteins did not provide a
gain of CP function in cells, and thereby alter cellular actin
structures. In previous studies with Dictyostelium, the effects
of overexpressing CP on F-actin structures was clearly
distinct from that of depleting CP34. To increase the level
of CP in HT1080 cells, we microinjected purified wild-type
CP, at the highest concentration possible, into the cytoplasm of
cells with a microneedle (Fig. 5c). Cells, which typically have
1–2 mM cytoplasmic CP17,36, were injected with purified
CP, producing a four- to eightfold increase in cellular CP
concentration.

CP-injected cells displayed a distinct lack of ruffling at
the periphery when compared with uninjected or mock-injected

cells (Fig. 5c). The number of filopodia was not increased, in
striking contrast to the loss of CP. In addition, CP-injected cells
exhibited decreased F-actin density, both in the lamellipodial
region at the cell edge, and globally, as quantified from the
intensity of fluorescent phalloidin staining (Fig. 5d). Thus,
the effects of overexpressing and depleting CP in HT1080
cells differed, as observed in Dictyostelium34. These results
demonstrate that the effects of the CP mutant proteins
on cellular actin structures do not result solely from
elevated actin-capping activity. We conclude that the CPI motif
acts to selectively target CP to specific actin networks, where it
promotes uncapping of capped actin filaments or provides a
decreased level of capping activity tuned to the dynamics of actin
assembly.
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Loss of CP function resembles loss of Arp2/3 function. In the
dendritic nucleation model for actin assembly induced by Arp2/3
complex, CP has an essential role, capping barbed ends after they
have grown for a short period of time. This view is supported by
the observation that CP depletion leads to loss of the branching
actin filament networks in lamellipodia33, as well as the finding
that a barbed-end capper, such as CP, is a necessary component
for synthetic reconstitution of Arp2/3-mediated actin-based
motility37,38. Thus, we asked whether loss of function of CP in
HT1080 cells resembles loss of function of the Arp2/3 complex by
treating cells with the Arp2/3 inhibitor CK-666 (ref. 39). The
effects on lamellipodial F-actin were similar to those observed
when CP was depleted (Fig. 6). Furthermore, as a test for
functional overlap between CP and the Arp2/3 complex, we
treated CP-depleted cells with CK-666. No additional effects on
F-actin organization were observed, indicating that CP and the
Arp2/3 complex are both necessary for lamellipodia formation, as
predicted by the dendritic nucleation model12.

Discussion
We discovered that CP requires an interaction with a CPI-motif
protein for its function in cells. This conclusion contradicts the
idea that CP randomly diffuses about the cytosol, stochastically
colliding with free barbed ends and capping them2. This view of
CP function has been widely held and applied since its discovery
and initial characterization 35 years ago10; the dendritic
nucleation model for Arp2/3-based actin assembly incorporates
this view implicitly12. Moreover, this view is an explicit
assumption of many physical and mathematical models for
actin assembly and actin-based motility14,15,40.

Our conclusion is based on the observation that point
mutations of CP, which prevent its binding to a CPI-motif
protein, but which retain normal filament capping activity, mimic
the loss of CP function in cells. The CP mutations caused loss of
binding to CPI-motif proteins in biochemical assays with purified
proteins, and they abrogated interactions of CPI-motif proteins
with CP in cells, based on pulldowns from whole-cell lysates.

Finally, we found that the CPI-binding mutant CPs localized
diffusely in the cytoplasm and did not accumulate at sites of
dynamic actin assembly as wild-type CP did.

Together our findings suggest new models for regulation of
actin assembly in cells by CP. We envision two important
functions, not exclusive of one another, that result from the
essential interaction of CP with a CPI-motif protein. First, a CPI-
motif protein may target CP, and therefore actin-capping activity,
to specific locations in the cell, such as membranes (Fig. 7).
Second, the CPI motif/CP interaction may tune the barbed-end
capping activity of CP to an optimal range, appropriate for the
temporal regulation of actin dynamics in cells, by increasing the
rate at which CP dissociates from capped barbed ends. For actin
filaments capped by CP, CPI-motif proteins may uncap the
barbed ends.

CPI motifs are found in a diverse set of otherwise unrelated
proteins6. Most CPI-motif proteins bind to PMs and intracellular
membranes via distinct domains, suggesting that they serve as
platforms for spatiotemporal regulation of actin assembly
dynamics. Previous studies of two CPI-motif proteins, CD2AP
and CARMIL1, demonstrate their ability to both target CP and
tune its actin-capping activity7,8. CPI-motif proteins vary in their
affinity for CP and in the extent to which they modulate capping
activity. One set of CPI-motif proteins, the CARMIL family, have
a second motif that also interacts with CP, termed the CARMIL-
specific interaction motif24. This second motif appears to enhance
the binding affinity and regulatory effects of CP. The range of
capping activities exhibited by various CPI–CP complexes,
together with independent regulation of these interactions by
signalling proteins, suggests an underappreciated mechanism for
local regulation of actin polymerization induced by the Arp2/3
complex and formins at membranes.

Previous studies provided evidence for the existence of CP
inhibitors in cells. The apparent affinity of CP for barbed ends in
cells is B100-fold weaker than the calculated subnanomolar
affinity for actin filaments observed in vitro34. The time for
dissociation of CP from barbed ends of actin filaments in vitro is
B500-fold longer than the dissociation rates in cells observed by
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Figure 6 | Effects of inhibition of Arp2/3 complex resemble loss of CP function. a) Cells were treated with the Arp2/3 complex inhibitor CK-666 in

dimethyl sulfoxide (DMSO) for 3 h, then stained with fluorescent phalloidin. Negative controls included no treatment and vehicle (DMSO). In the washout

sample, CK-666 was removed by washing with growth media, five times over 30 min. As a control, the inactive compound CK-689 produced no effect.

Upper row: control cells. Lower row: cells treated with lentivirus-expressing CP shRNA targeting the CP b-subunit. Arrows indicate filopodia. Representative

images from 20 cells are shown. (b) Quantification of normal lamellipodia (black) and increased filopodia (grey). The y axis is the number of cells; n¼ 50.

NATURE COMMUNICATIONS | DOI: 10.1038/ncomms9415 ARTICLE

NATURE COMMUNICATIONS | 6:8415 | DOI: 10.1038/ncomms9415 | www.nature.com/naturecommunications 7

& 2015 Macmillan Publishers Limited. All rights reserved.

http://www.nature.com/naturecommunications


single-molecule analysis4,41. The B50-fold decreased affinity of the
CP–CPI capping complex for the barbed end in vitro suggested
one possible explanation for this discrepancy18, and the existence
of a ternary CP–CPI–actin complex, implied by this model, was
demonstrated clearly in vitro22,42. Indeed, our results here argue
that such a complex is physiologically relevant in cells (Fig. 7).

The protein V-1, also known as myotrophin, binds to CP at its
actin-binding site, serving as a competitive inhibitor of capping
in vitro. If V-1 also functions in this manner in cells, then CPI-
motif proteins may form part of a regulatory cycle for CP that
counteracts and relieves inhibition by V-1 (ref. 22). In such a
model, proposed by Hammer et al., the allosteric effects of a CPI-
motif protein, such as CARMIL1, would release CP from
inhibition by V-1, creating a CP–CPI complex with physiological
capping activity. Our results here are consistent in principle with
such a model. The role of V-1 in cells with respect to actin
remains relatively uncertain, especially in light of the known
interaction of V-1 with NF-kB signalling pathways43.

Our results, combined with previous studies on regulation of
CP by a variety of proteins and lipids, indicate that we have much
to learn about the dynamics of actin assembly in cells. The
physiological significance of individual regulatory interactions
and mechanisms for combining the actions of individual
regulators are important open questions.

Methods
Antibodies and reagents. Reagents and materials were from Fisher Scientific
(Pittsburgh, PA) or Sigma-Aldrich (St Louis, MO), unless stated otherwise.
Antibody to CP was mouse monoclonal antibody clone 2A3 for immunoblots4.
Other antibodies and sources were as follows: Fam21C (rabbit pAb) from Millipore
(Billerica, MA), anti-CD2AP (rabbit pAb) was a kind gift from Dr Andrey Shaw of
Washington University, goat anti-Dap12 from Santa Cruz (Dallas, TX), anti-GFP
(rabbit pAb) and rabbit anti-GST antibody from Abcam (Cambridge, MA) and
anti-FLAG (mouse monoclonal antibody M2) from Sigma-Aldrich. Dynabeads,
Protein G, HRP- and Alexa-conjugated secondary antibodies and Alexa 488- and
Alexa 568-conjugated phalloidin were from Life Technologies (Carlsbad, CA).
Arp2/3 complex inhibitors CK-666 and CK-869 (ref. 39), along with the control
compound CK-689, were purchased from Sigma-Aldrich. pERFPC-1 and
pEGFPC-1 were obtained from Clontech (Mountain View, CA). PIP2 was obtained
from Avanti Polar Lipids (Alabaster, AL).

Protein expression and purification. Plasmids used in this study are listed in
Table 1. CP mutants were generated by site-directed mutagenesis (QuikChange,
Stratagene Agilent, La Jolla, CA) of the His-tagged expression plasmid. Arginine 15
and tyrosine 79 of mouse CPb2 (GenBank FJ692320.1) were both changed to

alanine to produce two single mutants R15A and Y79A and one double mutant
R15A/Y79A.

His-tagged CP proteins were expressed in Escherichia coli BL21 (DE3, pRIL).
They were purified as described24, with gel filtration chromatography on Sephacryl
S-200 HR (GE Healthcare) in 20 mM Tris-HCl pH 7.4, 50 mM KCl, 0.5 mM Tris
(2-carboxyethyl)phosphine (TCEP) and 1 mM NaN3. Proteins were snap-frozen in
liquid nitrogen and stored at � 70 �C.

Glutathione S-transferase (GST)-tagged CBR fragment of human
CARMIL1a (GenBank FJ009082), residues Glu964 to Ser1078 was expressed in
E. coli BL21 (DE3, pRIL), affinity-purified on Glutathione Sepharose Fast-Flow (GE
Healthcare), followed by chromatography on DEAE Sepharose Fast-Flow (GE
Healthcare). Purified GST-CBR was exchanged into 20 mM Tris-HCl pH 7.4,
50 mM KCl, 0.5 mM dithiothreitol, 1 mM NaN3, snap-frozen in liquid nitrogen and
stored at � 70 �C.

GST-tagged V-1 was expressed in E. coli BL21 Star (DE3) (Life Technologies),
affinity-purified on Glutathione Sepharose Fast-Flow (GE Healthcare),
chromatographed on Sephacryl S-200 HR (GE Healthcare) in 20 mM Tris-HCl pH
7.4, 50 mM KCl, 1 mM TCEP, 1 mM NaN3, snap-frozen in liquid nitrogen and
stored at � 70 �C.

Actin polymerization assays and SPR. Pyrene–actin polymerization assays were
performed as described40. Elongation rates were measured using time-based scans
on a steady-state fluorometer (QuantaMaster, PTI, Edison, NJ) with excitation at
368 nm and emission at 386 nm. Actin monomer concentration was 1.5 mM with
5% pyrene labelling. The indicated concentrations of CP, GST-CBR, GST-V-1 and
PIP2 were added at the start of the experiments. Pyrene–actin filament seeds were
prepared as described44. Spectrin–actin seeds were prepared from a low-ionic-
strength extract of bovine red blood cell ghosts as described45. Extraction of the
ghost pellet was performed at 37 �C for 40 min followed by centrifugation at
110,000 g. The supernatant was collected and an equal volume of ethylene glycol
was added for storage at � 20 �C.

Binding kinetics were measured by SPR using a Reichert SR7000 Single Channel
Surface Plasmon Resonance System at 25 �C. Rabbit anti-GST antibody was
immobilized onto a carboxymethyldextran chip (Reichert Technologies, gold
sensor slide, 500,000 Da) using carbodiimide coupling. Goat anti-Dap12 Ab was
used as a negative control. GST-CBR was injected onto the chip containing the
immobilized antibodies. Next, wild-type or mutant CP was injected at 25 ml min� 1.
The buffer for GST-CBR and CP was 20 mM Tris-HCl pH 7.4, 150 mM NaCl,
5 mM EDTA, 0.5 mM TCEP, 0.005% Tween-20 and 1 mM NaN3. Chip
regeneration was performed with 3.5 M MgCl2, 20 mM MES pH 6.5.

CP mutants were injected over a range of concentrations, and kinetic rate
constants were obtained using Scrubber V2.0c software (Biologic Software,
Canberra, Australia). The dissociation phase was fit well by an exponential decay
model for all mutants. Using the value for k� from the dissociation phase, the
association phase was fit well by a single-site two-component binding model,
yielding a value for kþ . Kd was calculated as the quotient of the rate constants. For
the weak-binding R15A/Y79A double-mutant, fitting the association phase was not
possible because the signal was too low. As part of the analysis, we considered a
model including an additional step for mass transport, along with binding, which is
sometimes necessary depending on the conditions and design of an SPR
experiment. Adding the transport step did not improve the fit by a significant
amount, so we did not use this model.

1

2

3

CPI-motif proteins

CPI

Capping protein

V-1

Arp2/3

Actin

Figure 7 | CP localization and function requires interaction with CPI-motif proteins. CPI-motif proteins facilitate the recruitment of free cytosolic CP to

biological membranes via the CPI motif (1). The CPI–CP interaction accelerates the dissociation of V-1 bound to CP (2). CPI–CP complex caps the barbed

end of growing actin filaments near the membrane and promotes dendritic actin network growth and dynamics (3).
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Cell culture and lentiviral expression. Human HEK-293 cells and HT1080 cells
(American Type Culture Collection, Manassas, VA) were cultured in DMEM
(Life Technologies) supplemented with 10% fetal bovine serum (Sigma-Aldrich) in
5% CO2. Cells were transfected using Transit LT1 (Mirus, Madison, WI).

Dr Wei-Lih Lee made the expression construct pEYFP-CPa1 by fusing mouse
CPa1 complementary DNA (GenBank U16740.1) to the C terminus of yellow
fluorescent protein (YFP) in the PEYFP C-1 vector (Clontech). Site-directed
mutagenesis was performed on pEGFP-CPb2 (ref. 30) to prepare GFP-CPb2
mutants.

To deplete endogenous CP, we infected cells with lentivirus-expressing shRNA
in pLKO.1 (ref. 46). Infected cells were selected with puromycin and used for
experiments at 72 h. The shRNA sequence was 50-GCCTGGTAGAGGACATGG
AAA-30 , which targets all isoforms of human CPb, because the isoforms are
produced by alternative splicing from a single gene, and this sequence is present in
the mature messenger RNA of all splice variants. The shRNA construct was
developed by the RNAi Consortium at the Broad Institute47 and purchased from
the Children’s Discovery Institute/Genome Sequencing Center at Washington
University (St Louis, MO). A non-targeting shRNA sequence recommended for the
library was used as a control (Sigma-Aldrich).

For knockdown/expression experiments, cells were first infected with lentivirus-
expressing shRNA targeting CP. After 72 h, 106 infected cells were transfected with
5mg of YFP CPa1 and 5mg of GFPb2 wild-type, R15A, Y79A or R15A/Y79A, then
fixed and stained after an additional 24 h. For overexpression, 106 cells were
transfected with 5mg of YFP CPa1 and 5mg of GFP–CPb2 wild-type, R15A, Y79A or
R15A/Y79A DNA and fixed after 48 h. Cells were positive for both YFP and GFP,
based on imaging on a Zeiss 510 laser scanning confocal microscope with a Meta
detector. For localization experiments, cells were transfected with 1mg of CPb2 wild-
type or R15A/Y79A and fixed and stained with the indicated antibodies after 36 h.

Microinjection and immunofluorescence. For microinjection, HT1080 cells were
injected with a solution containing 5.1 mg ml� 1 mouse CPa1b2 and 0.05 mg ml� 1

fluorescent fixable dextran (Sigma-Aldrich) in injection buffer (10 mM potassium
phosphate, pH 7.5, 75 mM KCl). Cells were fixed 15 min after injection, stained
with Alexa 488-conjugated phalloidin and imaged with a � 63/1.4 numerical
aperture (NA) objective on a Zeiss 510 laser scanning confocal microscope (Zeiss,
Jena, Germany). Control cells were injected with fluorescent dextran only.

For immunofluorescence, HT1080 cells were plated for 3 h at 37 �C on glass
coverslips previously coated with 15 mg ml� 1 fibronectin (Sigma-Aldrich). Cells
were fixed in 2% formaldehyde with 0.25% glutaraldehyde for 10 min at 37 �C and
processed as described33. Immunostaining was performed with primary and
secondary antibodies listed above at concentrations of 1 and 5 mg ml� 1,
respectively. Cells were imaged with � 100/1.4 NA and � 40/0.75 NA objectives
on an Olympus IX70 inverted microscope (Olympus, Melville, NY) equipped with
a cooled CCD camera (CoolSnap, Photometrics, Tucson, AZ), a Zeiss Axiovert 200
(Carl Zeiss AG, Oberkochen, Germany) with a � 100/1.3 NA objective and a Zeiss
780 (Carl Zeiss AG) with a � 63/1.5 NA objective.

Filopodia density was quantified by counting phalloidin-stained filopodia per
10mm of cell perimeter. Fluorescence intensity in selected regions of interest was
calculated using ImageJ48 and the following formula: integrated density� (mean
background fluorescence� area of the region of interest).

To quantitate fluorescence of GFP-CP at the plasma membrane, we
co-expressed RFP (red fluorescent protein) as a volume marker for the cytoplasm.

PM index, ((GFPm/RFPm)/(GFPc/RFPc))-1, was calculated as described32 with
the following modifications. Using ImageJ, GFPm/RFPm was calculated by
dividing the GFP image by the RFP image, then measuring fluorescence intensity
along a 3-mm-wide band drawn around the cell cortex using the freehand-line tool.
GFPc and RFPc denote average cytoplasmic fluorescence intensity and was
calculated using the freehand-line tool in ImageJ to define an irregularly shaped
region of the cytoplasm between the membrane and nucleus. Values for PM index
are near 0 for cytoplasmic proteins and 41 for PM proteins. The statistical
significance of the membrane indices was determined using the Student’s t-test,
with a two-tailed non-paired comparison.

Co-immunoprecipitation and immunoblots. Anti-GFP was coupled to protein A
Dynabeads at a concentration of 1 mg ml� 1 (Life Technologies) according to the
manufacturer’s instructions. Cells were harvested 24 h after transfection in lysis
buffer (PBS with 0.1% NP-40 and protease inhibitors aprotinin, bestatin, leupeptin,
E-64, pepstatin A and phenylmethylsulphonyl fluoride). Cleared cell lysate was
incubated with anti-GFP-coupled protein A Dynabeads for 3 h at 4 �C. Beads were
washed five times with PBS. Precipitated proteins were eluted by boiling in SDS
and analysed by SDS–polyacrylamide gel electrophoresis and immunoblots. Blots
were developed with electrochemiluminescence (ECL; PerkinElmer-Cetus, Boston,
MA) and exposed to autoradiography film.

Arp2/3 complex inhibition. Cells were plated on fibronectin-coated coverslips
and incubated with 100mM of CK-666, CK-869 or CK-689, or the vehicle dimethyl
sulfoxide for 3 h at 37 �C in 5% CO2. For washout assays, cells were washed with
growth media five times for a total of 30 min. Cells were then fixed and stained with
fluorescent phalloidin.
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